1
|
Phiromphu N, Juthathan M, Chainok K, Theppitak C, Thamyongkit P, Tuntulani T, Leeladee P. Facile synthesis of acridine-based nickel(II) complexes via metal-mediated rearrangement of diphenylamine derivative and application in H 2 evolution reaction. Sci Rep 2025; 15:15839. [PMID: 40328822 PMCID: PMC12055961 DOI: 10.1038/s41598-025-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
In this study, the formation of acridine-based metal complexes from rearrangement of diphenylamine-2,2'-dicarboxaldehyde (2,2'-dpadc) in the presence of transition metal ions was investigated. As a result, two novel isomorphic nickel(II) complexes bearing acridine-based Schiff-base ligand [NiLACR](X)2·CH3CN (X = BF4 (1), ClO4 (2), LACR = (E)-N1-(2-((acridin-4-ylmethylene)amino)ethyl)-N1-(2-aminoethyl)ethane-1,2-diamine) were successfully synthesized via a one-pot condensation of 2,2'-dpadc and tris(2-aminoethyl)amine (TREN) with a satisfactory yield of approximately 60%. These complexes were fully characterized by X-ray crystallography, UV-vis spectroscopy and CHN elemental analysis. Additionally, their thermal stability (thermogravimetric analysis) and electrochemical properties were also determined. A plausible mechanism for the nickel(II)-mediated rearrangement of 2,2'-dpadc to form the acridine-based nickel(II) complex was proposed. To demonstrate their potential applications, complex 1 was explored in the realm of electrocatalysis. It exhibited moderate activity towards hydrogen evolution reaction (HER). During 1-h controlled-potential electrolysis (CPE) experiments, H2 production (16 micromole) was observed with faradaic efficiency of 40% when the reaction was conducted in a TBAPF6/DMF solution at -2.1 V vs. Fc/Fc+ in the presence of acetic acid as a proton source. The facile synthesis of these acridine-based nickel(II) complexes reported herein may stimulate further development of novel acridine-based ligands and their corresponding metal complexes for a wide range of applications.
Collapse
Affiliation(s)
- Nutchanikan Phiromphu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Chakraborty S, Singha Mohapatra A, Saha S, Mandal S, Paul ND. Ligand Assisted Co(II)-Catalyzed Multicomponent Synthesis of Substituted Pyrroles and Pyridines. Chem Asian J 2025; 20:e202401038. [PMID: 39714368 DOI: 10.1002/asia.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/23/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
Herein, we describe a sustainable Co(II)-catalyzed synthesis of pyrroles and pyridines. Using a Co(II)-catalyst [CoII 2(La)2Cl2] (1 a) bearing redox-active 2-(phenyldiazenyl)-1,10-phenanthroline) (La) scaffold, various substituted pyrroles and pyridines were synthesized in good yields, taking alcohol as one of the primary feedstock. Pyrroles were synthesized by the equimolar reaction of 2-amino and secondary alcohols. A series of 2,4,6-substituted symmetrical pyridines were prepared via a three-component reaction of NH4OAc with 1 : 2.2 molar primary and secondary alcohols, respectively. Unsymmetrically substituted 2,4,6-trisubstituted, 2,4,5,6-tetrasubstituted, and 2,3,4,5,6-pentasubstituted pyridines were achieved via a multi-component coupling reaction of alcohols and NH4OAc. Catalyst 1 a showed encouraging results during the gram-scale synthesis of these N-heterocycles. Mechanistic investigation revealed synergistic involvement of cobalt metal and the ligand during the catalytic reactions.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Arijit Singha Mohapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Subhangi Saha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| | - Sutanuva Mandal
- Department of Chemistry, Banwarilal Bhalotia College, Ushagram, Asansol, West Bengal, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah, 711103, India
| |
Collapse
|
3
|
Pal S, Guin AK, Khanra S, Paul ND. Zn(II)-Stabilized Azo-Anion Radical-Catalyzed Dehydrogenative Synthesis of Olefins. J Org Chem 2024. [PMID: 39680640 DOI: 10.1021/acs.joc.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl2] (1) of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L), various (E)-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of 1. Control experiments and mechanistic investigation indicate the active involvement of the aryl-azo ligand as an electron and hydrogen reservoir, permitting 1 to perform as a promising catalyst.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
4
|
Savarimuthu Selvan C, Rengan R, Malecki JG. One-Pot Sustainable Synthesis of Highly Substituted Pyrimidines via Acceptorless Dehydrogenative Annulation of Alcohols Using Pincer Ni(II)-NNS Catalysts. J Org Chem 2024; 89:11148-11160. [PMID: 39087691 DOI: 10.1021/acs.joc.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We report an efficient and sustainable synthesis of highly substituted pyrimidines promoted by nickel(II)-NNS pincer-type complexes via acceptorless dehydrogenative annulations of readily available alcohols, malononitrile, and guanidine/benzamidine salt under eco-friendly conditions for the first time. Different sets of Ni(II) complexes (C1-C3) encapsulated in NNS pincer-type thiosemicarbazone ligands have been synthesized and authenticated by analytical and spectroscopic (Fourier transform infrared, nuclear magnetic resonance, and high-resolution mass spectrometry) techniques. The solid state three-dimensional structure of a representative complex (C2) has been determined with the aid of single crystal XRD analysis and confirms a square planar architecture around the nickel ion. Further, the well-defined Ni(II) complexes have been employed as efficient catalysts for the fabrication of a wide range of 4-aminopyrimidine-5-carbonitrile derivatives (33 examples) from readily available alcohols with suitable coupling partners such as malononitrile and guanidine/benzamidine under eco-friendly conditions. The current catalytic approach affords maximum yields up to 95% utilizing 3 mol % catalyst loading and water/hydrogen as the only byproduct. A feasible catalytic pathway has been proposed based on the different control experiment reactions, which clearly indicate that the coupling reaction proceeds via aldehyde and benzylidenemalononitrile intermediates. The practicability of the current protocol has been demonstrated by the large-scale synthesis of one of the products, 4-amino-2,6-diphenylpyrimidine-5-carbonitrile, and a short synthesis of a cytosine antifungal analogue.
Collapse
Affiliation(s)
- Clinton Savarimuthu Selvan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
5
|
Li J, Sun X, Dmitrieva E, Israel N, Wu F, Yang L, Liu R, Feng X, Plietker B. Tosylazide as N1-Synthon: Iron-Catalyzed Nitrogenative Dimerization of Indoles to p-Bisindolopyrazine Derivatives. Org Lett 2024; 26:1046-1050. [PMID: 38294841 DOI: 10.1021/acs.orglett.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We present a straightforward one-step process to access a range of novel p-diindolepyrazines via an unprecedented [n-Bu4N][Fe(CO)3(NO)] (TBA[Fe])-catalyzed intermolecular nitrogenative dimerization of various indole derivatives. Remarkably, tosylazide functions as a N1-synthon forming the central pyrazine unit that joins the two indole subunits. The catalytic transformation shows a good substrate scope, and the obtained products show interesting electronic properties.
Collapse
Affiliation(s)
- Jianan Li
- Chair of Organic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| | - Xiaohan Sun
- Chair of Organic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research, DE-01069 Dresden, Germany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research, DE-01069 Dresden, Germany
| | - Fupeng Wu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, TU Dresden, Mommsenstrasse 4, DE-01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, TU Dresden, Mommsenstrasse 4, DE-01062 Dresden, Germany
| | - Renxiang Liu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, TU Dresden, Mommsenstrasse 4, DE-01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, TU Dresden, Mommsenstrasse 4, DE-01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
| | - Bernd Plietker
- Chair of Organic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66, DE-01069 Dresden, Germany
| |
Collapse
|
6
|
Sundar S, Veerappan T, Pennamuthiriyan A, Rengan R. Arene Ruthenium(II)-Catalyzed Sustainable Synthesis of 2,4-Disubstituted Quinazolines via Acceptorless Dual Dehydrogenative Coupling of Alcohols. J Org Chem 2023. [PMID: 38029325 DOI: 10.1021/acs.joc.3c01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We demonstrate an efficient and sustainable strategy for the direct synthesis of 2,4-disubstituted quinazolines by arene Ru(II)benzhydrazone complex via the eco-friendly sequential acceptorless dehydrogenative coupling of 2-aminobenzhydrol derivatives and benzyl alcohols for the first time. The new ruthenium(II) complex of the general formula [(η6-p-cymene)Ru(L1)Cl] (L1-acenaphthenequinone hydrazone) has been synthesized and characterized by analytical, spectroscopic, and single-crystal X-ray diffraction techniques. A broad spectrum of 2,4-disubstituted quinazolines have been successfully derived (25 examples) from 2-aminobenzhydrol derivatives with various benzyl alcohols using 1 mol % of catalyst loading in the presence of NH4OAc. The present protocol is highly selective and produces a maximum yield of 95% under mild reaction conditions. The different reaction intermediates detected through control experiments such as aldehyde, 2-aminobenzophenone, benzylidene(amino)phenylmethanone, and 1,2-dihydroquinazoline are isolated and authenticated by the NMR study. Gratifyingly, the coupling reaction is a simple and atom economic with the release of water and hydrogen gas as the only byproducts. A gram-scale synthesis of 2-(4-methoxyphenyl)-4-phenylquinazoline illustrates the synthetic utility of the present protocol.
Collapse
Affiliation(s)
- Saranya Sundar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamilnadu, India
| | - Tamilthendral Veerappan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
7
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
8
|
Sahoo ST, Mohanty A, Sharma R, Daw P. A switchable route for selective transformation of ethylene glycol to hydrogen and glycolic acid using a bifunctional ruthenium catalyst. Dalton Trans 2023; 52:15343-15347. [PMID: 37432662 DOI: 10.1039/d3dt01671d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The developed bifunctional NNN-Ru complex features a high catalytic efficiency for the selective production of hydrogen and glycolic acid from ethylene glycol under mild reaction conditions, where a TON of 6395 was achieved. Tuning the reaction conditions afforded further dehydrogenation of the organic substrate with higher hydrogen production, and a higher TON of 25 225 was attained. The scale-up reaction yielded 1230 mL of pure hydrogen gas under the optimized reaction conditions. The role of the bifunctional catalyst was studied and mechanistic investigations were performed.
Collapse
Affiliation(s)
- Satabdee Tanaya Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, (Govt. ITI Building), Engg. School Junction, Berhampur 760010, Odisha, India.
| | - Aisa Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, (Govt. ITI Building), Engg. School Junction, Berhampur 760010, Odisha, India.
| | - Raju Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, (Govt. ITI Building), Engg. School Junction, Berhampur 760010, Odisha, India.
| | - Prosenjit Daw
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, (Govt. ITI Building), Engg. School Junction, Berhampur 760010, Odisha, India.
| |
Collapse
|
9
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
10
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
11
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
12
|
Pal S, Das S, Chakraborty S, Khanra S, Paul ND. Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. J Org Chem 2023; 88:3650-3665. [PMID: 36854027 DOI: 10.1021/acs.joc.2c02867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report a Zn(II)-catalyzed solvent-free sustainable synthesis of tri- and tetra-substituted pyridines using alcohols as the primary feedstock and NH4OAc as the nitrogen source. Using a well-defined air-stable Zn(II)-catalyst, 1a, featuring a redox-active tridentate azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (La), a wide variety of unsymmetrical 2,4,6-substituted pyridines were prepared by three-component coupling of primary and secondary alcohols with NH4OAc. Catalyst 1a is equally compatible with the four-component coupling. Unsymmetrical 2,4,6-substituted pyridines were also prepared via a four-component coupling of a primary alcohol with two different secondary alcohols and NH4OAc. A series of tetra-substituted pyridines were prepared up to 67% yield by coupling primary and secondary alcohols with 1-phenylpropan-1-one or 1,2-diphenylethan-1-one and NH4OAc. The 1a-catalyzed reactions also proceeded efficiently upon replacing the secondary alcohols with the corresponding ketones, producing the desired tri- and tetra-substituted pyridines in higher yields in a shorter reaction time. A few control experiments were performed to unveil the mechanistic aspects, which indicates that the active participation of the aryl-azo ligand during catalysis enables the Zn(II)-complex to act as an efficient catalyst for the present multicomponent reactions. Aerial oxygen acts as an oxidant during the Zn(II)-catalyzed dehydrogenation of alcohols, producing H2O and H2O2 as byproducts.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
13
|
Kocsis M, Baán K, Ötvös SB, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Sustainable synthesis of azobenzenes, quinolines and quinoxalines via oxidative dehydrogenative couplings catalysed by reusable transition metal oxide–Bi( iii) cooperative catalysts. Catal Sci Technol 2023; 13:3069-3083. [DOI: 10.1039/d3cy00327b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Heterogeneous catalytic oxidative dehydrogenative processes for N-heterocycles are presented, which enable waste-minimized (additive-, oxidant-, base-free), efficient cyclisations/couplings via transition metal oxide–Bi(iii) cooperative catalysis.
Collapse
Affiliation(s)
- Marianna Kocsis
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Sándor B. Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary
| | - István Pálinkó
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Gábor Varga
- Department of Physical Chemistry and Materials Science and Materials and Solution Structure Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| |
Collapse
|
14
|
Fu W, Zhu L, Tan S, Zhao Z, Yu X, Wang L. Copper/Nitroxyl-Catalyzed Synthesis of Pyrroles by Oxidative Coupling of Diols and Primary Amines at Room Temperature. J Org Chem 2022; 87:13389-13395. [PMID: 36130051 DOI: 10.1021/acs.joc.2c01646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cu/ABNO-catalyzed aerobic oxidative coupling of diols and primary amines to access N-substituted pyrroles is highlighted (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl). The reaction proceeds at room temperature with an O2 balloon as the oxidant using commercially available materials as the substrates and catalysts. The catalyst system is characterized by a broad range of substrates and a good tolerance to sensitive functional groups. The gram-scale experiment proves this system's practicability.
Collapse
Affiliation(s)
- Weiru Fu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lina Zhu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Shangzhi Tan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Zhengjia Zhao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Xiangzhu Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lianyue Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| |
Collapse
|
15
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
16
|
Sundarraman B, Rengan R, Semeril D. NNO Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Balaji Sundarraman
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, 67000 Strasbourg, France
| |
Collapse
|
17
|
Luo J, Zhou QQ, Montag M, Ben-David Y, Milstein D. Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia. Chem Sci 2022; 13:3894-3901. [PMID: 35432908 PMCID: PMC8966752 DOI: 10.1039/d1sc07102e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 12/22/2022] Open
Abstract
The highly desirable synthesis of the widely-used primary amides directly from alcohols and ammonia via acceptorless dehydrogenative coupling represents a clean, atom-economical, sustainable process. Nevertheless, such a reaction has not been previously reported, and the existing catalytic systems instead generate other N-containing products, e.g., amines, imines and nitriles. Herein, we demonstrate an efficient and selective ruthenium-catalyzed synthesis of primary amides from alcohols and ammonia gas, accompanied by H2 liberation. Various aliphatic and aromatic primary amides were synthesized in high yields, with no observable N-containing byproducts. The selectivity of this system toward primary amide formation is rationalized through density functional theory (DFT) calculations, which show that dehydrogenation of the hemiaminal intermediate into primary amide is energetically favored over its dehydration into imine.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Quan-Quan Zhou
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yehoshoa Ben-David
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
18
|
Kar S, Milstein D. Sustainable catalysis with fluxional acridine-based PNP pincer complexes. Chem Commun (Camb) 2022; 58:3731-3746. [PMID: 35234797 PMCID: PMC8932388 DOI: 10.1039/d2cc00247g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Because of the widespread use of fossil fuels and the resulting global warming, development of sustainable catalytic transformations is now more important than ever to obtain our desired fuels and building materials with the least carbon footprint and waste production. Many sustainable (de)hydrogenation reactions, including CO2 reduction, H2 carrier systems, and others, have been reported using molecular pincer complexes. A specific subset of pincer complexes containing a central acridine donor with flanking CH2PR2 ligands, known as acridine-based PNP pincer complexes, exhibit special reactivities that are not imitable by other PNP pincer complexes such as pyridine-based or (R2PCH2CH2)2NH type ligands. The goal of this article is to highlight the unique reactivities of acridine-based complexes and then investigate how these reactivities allow these complexes to catalyse many sustainable reactions that traditional pincer complexes cannot catalyse. To that end, we will initially go over the synthesis and structural features of acridine complexes, such as the labile coordination of the central N donor and the observed fac-mer fluxionality. Following that, distinct reactivity patterns of acridine-based complexes including their reactivity with acids and water will be discussed. Finally, we will discuss the reaction systems that have been developed with acridine complexes thus far, including the notable selective transformations of primary alcohols to primary amines using ammonia, N-heteroaromatic synthesis from alcohols and ammonia, oxidation reactions with water with H2 liberation, development of H2 carrier systems, and others, and conclude the article with future possible directions. We hope that the systemic study presented here will aid researchers in developing further sustainable reactions based on the unique acridine-based pincer complexes.
Collapse
Affiliation(s)
- Sayan Kar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
20
|
Dindar S, Nemati Kharat A, Abbasi A. Green and chemo selective amine methylation using methanol by an organometallic ruthenium complex. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
22
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021; 60:26500-26505. [PMID: 34596302 PMCID: PMC9299216 DOI: 10.1002/anie.202110910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
Collapse
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
23
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
24
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of N-Heterocycles via Oxidant-Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021; 60:25188-25202. [PMID: 34138507 PMCID: PMC9292538 DOI: 10.1002/anie.202104979] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 01/15/2023]
Abstract
N-Heterocycles, such as pyrroles, pyrimidines, quinazolines, and quinoxalines, are important building blocks for organic chemistry and the fine-chemical industry. For their synthesis, catalytic borrowing hydrogen and acceptorless dehydrogenative coupling reactions of alcohols as sustainable reagents have received significant attention in recent years. To overcome the problems of product separation and catalyst reusability, several metal-based heterogeneous catalysts have been reported to achieve these transformations with good yields and selectivity. In this Minireview, we summarize recent developments using both noble and non-noble metal-based heterogeneous catalysts to synthesize N-heterocycles from alcohols and N-nucleophiles via acceptorless dehydrogenation or borrowing hydrogen methodologies. Furthermore, this Minireview introduces strategies for the preparation and functionalization of the corresponding heterogeneous catalysts, discusses the reaction mechanisms and the roles of metal electronic states, and the influence of support Lewis acid-base properties on these reactions.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| | - Hongbin Shan
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Guo‐Ping Lu
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Chun Cai
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Matthias Beller
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
25
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of
N
‐Heterocycles via Oxidant‐Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hongbin Shan
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Chun Cai
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Matthias Beller
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
26
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
27
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Shen L, Chen ZN, Zheng Q, Wu J, Xu X, Tu T. Selective Transformation of Vicinal Glycols to α-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021; 86:13186-13197. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Susmita Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
30
|
Schäfer C, Cho H, Vlocskó B, Xie G, Török B. Recent Advances in the Green Synthesis of Heterocycles: From Building Blocks to Biologically Active Compounds. Curr Org Synth 2021; 19:426-462. [PMID: 34515007 DOI: 10.2174/1570179418666210910110205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022]
Abstract
Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Hyejin Cho
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| |
Collapse
|
31
|
Efficient access to quinolines and quinazolines by ruthenium complexes catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with ketones and nitriles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Yu H, Ma L, Wada K, Kurihara R, Feng Q, Uemura S, Isoda K. Rapid Multialkylation of Aqueous Ammonia with Alcohols by Heterogeneous Iridium Catalyst under Simple Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- Department of Advanced Materials Science Faculty of Engineering and Design Kagawa University Takamatsu 761-0396 Japan
| | - Lin Ma
- College of Chemistry and Chemical Engineering Baoji University of Arts and Sciences Baoji 721013 P. R. China
| | - Kenji Wada
- Department of Chemistry for Medicine Faculty of Medicine Kagawa University Miki-cho, Kita-gun, Kagawa 761-0793 Japan
| | - Ryohsuke Kurihara
- Department of Chemistry for Medicine Faculty of Medicine Kagawa University Miki-cho, Kita-gun, Kagawa 761-0793 Japan
| | - Qi Feng
- Department of Advanced Materials Science Faculty of Engineering and Design Kagawa University Takamatsu 761-0396 Japan
| | - Shinobu Uemura
- Department of Advanced Materials Science Faculty of Engineering and Design Kagawa University Takamatsu 761-0396 Japan
| | - Kyosuke Isoda
- Department of Advanced Materials Science Faculty of Engineering and Design Kagawa University Takamatsu 761-0396 Japan
| |
Collapse
|
33
|
Das B, Rout N, Sarkar D. Ruthenium (VIII) Catalysed Dearomative Pyridyl C−X Activation: Direct Synthesis of
N
‐ Alkyl‐2‐pyridones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Biswajit Das
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| | - Nilendri Rout
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| |
Collapse
|
34
|
Biswas N, Srimani D. Synthesis of 1,8-Dioxo-decahydroacridine Derivatives via Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. J Org Chem 2021; 86:9733-9743. [PMID: 34170141 DOI: 10.1021/acs.joc.1c01075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ru-catalyzed acceptorless dehydrogenative multicomponent reaction has been developed. This reaction offers a cost-effective and simple operational strategy to synthesize biologically active 1,8-dioxodecahydroacridine derivatives. The protocol provides a wide range of substrate scope and various functional groups are also well tolerated under the reaction condition. To shed light on the mechanistic and kinetic study, some controlled experiments and deuterium labeling experiments were executed. A time-dependent product distribution experiment is also presented and the reaction scale-up is performed to highlight the practical utility of this strategy.
Collapse
Affiliation(s)
- Nandita Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
35
|
Xie F, Chen X, Zhang X, Luo C, Lin S, Chen X, Li B, Li Y, Zhang M. OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Maji M, Panja D, Borthakur I, Kundu S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org Chem Front 2021. [DOI: 10.1039/d0qo01577f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, we have summarized various aspects of homogeneous and heterogeneously catalyzed recent advancements in the synthesis of heterocycles following the ADC approach.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Dibyajyoti Panja
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ishani Borthakur
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
37
|
Luo J, Rauch M, Avram L, Diskin-Posner Y, Shmul G, Ben-David Y, Milstein D. Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-00514-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Nickel-catalyzed formal [3 + 2]-cycloaddition of 2H-azirines with 1,3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Arora V, Dutta M, Das K, Das B, Srivastava HK, Kumar A. Solvent-Free N-Alkylation and Dehydrogenative Coupling Catalyzed by a Highly Active Pincer-Nickel Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Moumita Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
40
|
Mondal A, Sahoo MK, Subaramanian M, Balaraman E. Manganese(I)-Catalyzed Sustainable Synthesis of Quinoxaline and Quinazoline Derivatives with the Liberation of Dihydrogen. J Org Chem 2020; 85:7181-7191. [DOI: 10.1021/acs.joc.0c00561] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Manoj Kumar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
41
|
Tan Z, Fu Z, Yang J, Wu Y, Cao L, Jiang H, Li J, Zhang M. Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. iScience 2020; 23:101003. [PMID: 32278286 PMCID: PMC7150509 DOI: 10.1016/j.isci.2020.101003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Selective linkage of renewable alcohols and ammonia into functional products would not only eliminate the prepreparation steps to generate active amino agents but also help in the conservation of our finite fossil carbon resources and contribute to the reduction of CO2 emission. Herein the development of a novel 2-(4-methoxyphenyl)-1,8-naphthyridine-based iridium (III) complex is reported, which exhibits excellent catalytic performance toward a new hydrogen transfer-mediated annulation reaction of 2-nitrobenzylic alcohols with alcohols and ammonia. The catalytic transformation proceeds with the striking features of good substrate and functional group compatibility, high step and atom efficiency, no need for additional reductants, and liberation of H2O as the sole by-product, which endows a new platform for direct access to valuable quinazolines. Mechanistic investigations suggest that the non-coordinated N-atom in the ligand serves as a side arm to significantly promote the condensation process by hydrogen bonding.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhongxin Fu
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Juan Li
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Huang Y, Liu C, Li M, Li H, Li Y, Su R, Zhang B. Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00282] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yi Huang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Mengyang Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Huizhi Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, P. R. China
| | - Ren Su
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, P. R. China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
43
|
Daw P, Kumar A, Oren D, Espinosa-Jalapa NA, Srimani D, Diskin-Posner Y, Leitus G, Shimon LJW, Carmieli R, Ben-David Y, Milstein D. Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Shee S, Panja D, Kundu S. Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. J Org Chem 2020; 85:2775-2784. [DOI: 10.1021/acs.joc.9b03104] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sujan Shee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
45
|
Zhang J, Guo B, Young DJ, Li HX. Acceptorless dehydrogenative coupling with Ru-based catalysts for the synthesis of N-heteroaromatic compounds. Dalton Trans 2020; 49:15527-15547. [DOI: 10.1039/d0dt03282d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A summary of recently developed ruthenium catalysts for the synthesis of N-heteroaromatic compounds via acceptorless dehydrogenative coupling (ADC) and the related auto-transfer-hydrogenative (ATH) reaction.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Bin Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - David James Young
- College of Engineering
- Information Technology and Environment
- Charles Darwin University
- Darwin NT 0909
- Australia
| | - Hong-Xi Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
46
|
Wiedmaier NR, Speth H, Leistikow G, Eichele K, Schubert H, Mayer HA, Wesemann L. Conformation controlled stepwise hydride shuffling from the metal to the ligand backbone. Dalton Trans 2020; 49:7218-7227. [DOI: 10.1039/d0dt01431a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protonation of the benzo annulated cycloheptatriene PCP pincer ruthenium hydrido dicarbonyl complex using the superacid [H(Et2O)2][BArF24] launches a cascade of hydride shifts which lead to the hydrogenation of the ligand backbone.
Collapse
Affiliation(s)
| | - Hansjörg Speth
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Georg Leistikow
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Hermann A. Mayer
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
47
|
Long Y, Liu S, Ma X, Lu L, He Y, Deng Y. One-pot synthesis of 1-butylpyrrolidine and its derivatives from aqueous ammonia and 1,4-butandiol over CuNiPd/ZSM-5 catalysts. NEW J CHEM 2020. [DOI: 10.1039/d0nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and economical route for 1-butylpyrrolidine over CuNiPd/ZSM-5 catalysts.
Collapse
Affiliation(s)
- Yan Long
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Shimin Liu
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Xiangyuan Ma
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Liujin Lu
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Yude He
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Youquan Deng
- Centre for Green Chemistry and Catalysis
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| |
Collapse
|
48
|
Paul B, Maji M, Chakrabarti K, Kundu S. Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Org Biomol Chem 2020; 18:2193-2214. [DOI: 10.1039/c9ob02760b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, the progress of tandem transformation of nitro, nitrile and azide functionalities is summarised to develop new C–C and C–N bonds as well as multi-component reactions using alcohols.
Collapse
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Kaushik Chakrabarti
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
49
|
Qi L, Li R, Yao X, Zhen Q, Ye P, Shao Y, Chen J. Syntheses of Pyrroles, Pyridines, and Ketonitriles via Catalytic Carbopalladation of Dinitriles. J Org Chem 2019; 85:1097-1108. [PMID: 31877047 DOI: 10.1021/acs.joc.9b02999] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first example of the Pd-catalyzed addition of organoboron reagents to dinitriles, as an efficient means of preparing 2,5-diarylpyrroles and 2,6-diarylpyridines, has been discussed here. Furthermore, the highly selective carbopalladation of dinitriles with organoboron reagents to give long-chain ketonitriles has been developed as well. Based on the broad scope of substrates, excellent functional group tolerance, and use of commercially available substrates, the Pd-catalyzed addition reaction of arylboronic acid and dinitriles is expected to be significant in future synthetic procedures.
Collapse
Affiliation(s)
- Linjun Qi
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P. R. China
| | - Xinrong Yao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Qianqian Zhen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Pengqing Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| |
Collapse
|
50
|
Mondal R, Sinha S, Das S, Chakraborty G, Paul ND. Iron Catalyzed Synthesis of Pyrimidines Under Air. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901172] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Botanic Garden, Howrah 711103 India
| | - Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Botanic Garden, Howrah 711103 India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Botanic Garden, Howrah 711103 India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Botanic Garden, Howrah 711103 India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Botanic Garden, Howrah 711103 India
| |
Collapse
|