1
|
Nagai Y, Iwamoto H, Fukuda S, Akashi S, Iseri S, Tada H, Yamanaka T, Wada K, Tsuji S, Ono T, Miura Y, Taniguchi T, Hoshino Y. Stereoisomer library prepared via controlled radical polymerization: isolation, structural identification and discovery of stereospecific gelation behaviour of tri(N-phenyl acrylamide). Chem Sci 2025:d5sc00612k. [PMID: 40438163 PMCID: PMC12109607 DOI: 10.1039/d5sc00612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
The construction of stereoisomer libraries is essential for designing, maximizing, and tuning the biological, self-assembly, and photoelectromagnetic properties of optically active molecules. In this study, a stereoisomer library consisting of all eight stereoisomers of a vinyl oligomer, a trimer of phenyl acrylamide (tri(PAAm)), was prepared by a one-pot controlled radical polymerization reaction followed by two-step column chromatography. Tacticity of each isomer, i.e., the relative stereochemistry of three chiral centers within tri(PAAm), was assigned using proton nuclear magnetic resonance (1H-NMR) and circular dichroism (CD) spectra. Interestingly, one stereoisomer self-assembled and formed an organo-gel. The control experiments revealed that the assembly was driven via configuration-dependent intermolecular hydrogen bonding and π-π interaction. The absolute structure of the gelled tri(PAAm) was identified by combining the tacticity data with the CD spectra and an electronic CD spectrum calculated by density functional theory (DFT). Stereoisomer libraries easily prepared via one-pot radical polymerization are promising modalities for supramolecular chemistry, pharmaceuticals, and photoelectromagnetic materials.
Collapse
Affiliation(s)
- Yukiko Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hinako Iwamoto
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Satoki Fukuda
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shota Iseri
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hayato Tada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Tomohiro Yamanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Konosuke Wada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Tsuji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Tohru Taniguchi
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo 060-0810 Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS), Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
2
|
Ball LE, Smith MP, Klumperman B. Bioderived copolymer alternatives to poly(styrene- co-maleic anhydride) via RAFT-mediated copolymerization. Polym Chem 2025; 16:1019-1023. [PMID: 39831173 PMCID: PMC11740854 DOI: 10.1039/d4py01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Poly(styrene-co-maleic anhydride) (SMAnh) is a petroleum-based copolymer with desirable properties that afford utility in both industrial and academic fields. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of the bioderived comonomers, indene and itaconic anhydride, was explored using three chain transfer agents with varying activity, and generally well-controlled (Đ < 1.40) polymerizations were observed.
Collapse
Affiliation(s)
- Lauren Elaine Ball
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| | - Michael-Phillip Smith
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| |
Collapse
|
3
|
Yu Z, Tan R, Cheng X, Zhang W, Wang Y, Zhang J, Zhou N, Zhang Z, Zhu X. Activation and Deactivation of Chirality Transfer in the Superbundles of Sequence-defined Stereoisomers. Angew Chem Int Ed Engl 2025; 64:e202416853. [PMID: 39424603 DOI: 10.1002/anie.202416853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Discrete oligomers can be used to precisely evaluate the structure-property relationship and enable unique chiroptical activities, however, the role of stereochemical sequences on chirality transfer is still unclear. Herein, we report the successful synthesis of a series of sequence-defined chiral azobenzene (Azo) oligomers via iterative stepwise chain growth strategy. Sequence-defined stereoisomers with one single chiral (L or D) stereocenter at the α-position, ω-position and middle- (m-) position have completely different self-assembly dynamics. ω-positional stereocenter can effectively command all Azo building blocks to adopt a tilted π-π stacking along the helical superbundles, exhibiting the activation of chirality transfer. However, discrete oligomers with the stereocenter at other positions can only self-assemble into non-helical nanowires, accompanied by the deactivation of chirality transfer.Cooperative supramolecular interactions, including the π-π interaction between Azo units, the intermolecular hydrogen bonding and steric hindrance, are intrinsic driving forces for these differentiations.
Collapse
Affiliation(s)
- Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Hakobyan K, Ishizuka F, Corrigan N, Xu J, Zetterlund PB, Prescott SW, Boyer C. RAFT Polymerization for Advanced Morphological Control: From Individual Polymer Chains to Bulk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412407. [PMID: 39502004 DOI: 10.1002/adma.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Control of the morphology of polymer systems is achieved through reversible-deactivation radical polymerization techniques such as Reversible Addition-Fragmentation chain Transfer (RAFT). Advanced RAFT techniques offer much more than just "living" polymerization - the RAFT toolkit now enables morphological control of polymer systems across many decades of length-scale. Morphological control is explored at the molecular-level in the context of syntheses where individual monomer unit insertion provides sequence-defined polymers (single unit monomer insertion, SUMI). By being able to define polymer architectures, the synthesis of bespoke shapes and sizes of nanostructures becomes possible by leveraging self-assembly (polymerization induced self-assembly, PISA). Finally, it is seen that macroscopic materials can be produced with nanoscale detail, based on phase-separated nanostructures (polymerization induced microphase separation, PIMS) and microscale detail based on 3D-printing technologies. RAFT control of morphology is seen to cross from molecular level to additive manufacturing length-scales, with complete morphological control over all length-scales.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Fumi Ishizuka
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Per B Zetterlund
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
5
|
Yao N, Wu J, Liu G, Hua Z. Bioinspired and biomimetic nucleobase-containing polymers: the effect of selective multiple hydrogen bonds. Chem Sci 2024; 15:18698-18714. [PMID: 39568625 PMCID: PMC11575573 DOI: 10.1039/d4sc06720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinspired and biomimetic nucleobase-containing polymers are a series of polydisperse nucleic acid analogs, mainly obtaining through highly efficient and scalable step-growth or chain polymerizations. The combination of pendant nucleobase groups and various backbones endows the polymers/materials with selective multiple H-bonds under distinct conditions, demonstrating the broad applicability of this new family of polymeric materials. In this perspective, we critically summarize recent advances of bioinspired and biomimetic nucleobase-containing polymers and materials in both solution and the bulk. Then, we discuss the effect of multiple H-bonds between complementary nucleobases on the structures and properties of the nucleobase-containing polymers and materials. Selective multiple H-bonds between complementary nucleobases are feasible to modulate the polymer sequence and self-assembly behaviour, achieve templated polymerization, tune nanostructure morphologies and functions, and selectively bind with nucleic acids in various solutions. Meanwhile, bioinspired and biomimetic nucleobase-containing polymers are capable of forming robust polymeric materials such as hydrogels, bioplastics, elastomers, adhesives, and coatings by optimizing the inter- and intramolecular multiple H-bonding interactions. Further, the conclusions and outlook for future development and challenges of bioinspired and biomimetic nucleobase-containing polymers are also presented. This perspective presents useful guidelines for fabricating novel bioinspired and biomimetic polymers and materials through rational design of multiple H-bonds nucleobase interactions.
Collapse
Affiliation(s)
- Nan Yao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
6
|
Gu Y, Zhang Z, Gao T, Gómez-Bombarelli R, Chen M. Low-Dispersity Polymers via Free Radical Alternating Copolymerization: Effects of Charge-Transfer-Complexes. Angew Chem Int Ed Engl 2024; 63:e202409744. [PMID: 39058330 DOI: 10.1002/anie.202409744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Alternating copolymers are crucial for diverse applications. While dispersity (Ð, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this work, we demonstrated an unexpected discovery that dispersities are affected by the participation of charge transfer complexes (CTCs) formed between monomer pairs during free radical alternating copolymerization, which have inspired the successful synthesis of various alternating copolymers with low dispersities (>30 examples, Ð=1.13-1.39) under visible-light irradiation. The synthetic method is compatible with binary, ternary and quaternary alternating copolymerizations and is expandable for both fluorinated and non-fluorinated monomer pairs. DFT calculations combined with model experiments indicated that CTC-absent reaction exhibits higher propagation rates and affords fewer radical terminations, which could contribute to low dispersities. Based on the integration of Monte Carlo simulation and Bayesian optimization, we established the relationship map between FRP parameter space and dispersity, further suggested the correlation between low dispersities and higher propagation rates. Our research sheds light on dispersity control via FRPs and creates a novel platform to investigate polymer dispersity through machine learning.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Zexi Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Tianyi Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139, Massachusetts, USA
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| |
Collapse
|
7
|
Szczepaniak G, Kapil K, Adida S, Kim K, Lin TC, Yilmaz G, Murata H, Matyjaszewski K. Solid-Phase Synthesis of Well-Defined Multiblock Copolymers by Atom Transfer Radical Polymerization. J Am Chem Soc 2024; 146:22247-22256. [PMID: 39079042 PMCID: PMC11328128 DOI: 10.1021/jacs.4c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Solid-phase polymer synthesis, historically rooted in peptide synthesis, has evolved into a powerful method for achieving sequence-controlled macromolecules. This study explores solid-phase polymer synthesis by covalently immobilizing growing polymer chains onto a poly(ethylene glycol) (PEG)-based resin, known as ChemMatrix (CM) resin. In contrast to traditional hydrophobic supports, CM resin's amphiphilic properties enable swelling in both polar and nonpolar solvents, simplifying filtration, washing, and drying processes. Combining atom transfer radical polymerization (ATRP) with solid-phase techniques allowed for the grafting of well-defined block copolymers in high yields. This approach is attractive for sequence-controlled polymer synthesis, successfully synthesizing di-, tri-, tetra-, and penta-block copolymers with excellent control over the molecular weight and dispersity. The study also delves into the limitations of achieving high molecular weights due to confinement within resin pores. Moreover, the versatility of the method is demonstrated through its applicability to various monomers in organic and aqueous media. This straightforward approach offers a rapid route to developing tailored block copolymers with unique structures and functionalities.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Samuel Adida
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ting-Chih Lin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Balzer C, Fredrickson GH. Sequence and gelation in supramolecular polymers. J Chem Phys 2024; 161:054907. [PMID: 39092956 DOI: 10.1063/5.0218748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Supramolecular polymer networks exhibit unique and tunable thermodynamic and dynamic properties that are attractive for a wide array of applications, such as adhesives, rheology modifiers, and compatibilizers. Coherent states (CS) field theories have emerged as a powerful approach for describing the possibly infinite reaction products that result from associating polymers. Up to this point, CS theories have focused on relatively simple polymer architectures. In this work, we develop an extension of the CS framework to study polymers with reversible bonds distributed along the polymer backbone, opening a broad array of new materials that can be studied with theoretical methods. We use this framework to discern the role of reactive site placement on sol-gel phase behavior, including the prediction of a microstructured gel phase that has not been reported for neutral polymer gels. Our results highlight the subtleties of thermodynamics in supramolecular polymers and the necessity for theories that capture them.
Collapse
Affiliation(s)
- Christopher Balzer
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
He X, Cui Y, Liu G. Synthesis of Dendrimer-Like Molecules with Partial Carbon Chain via Iterative Single Unit Monomer Insertions. Macromol Rapid Commun 2024; 45:e2400158. [PMID: 38651593 DOI: 10.1002/marc.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Carbon-chain dendritic polymers hold unique properties and promising applications. However, synthesizing carbon-chain dendrimers, beyond conjugated ones, remains a challenge. Here, the use of the iterative single unit monomer insertion technique for synthesizing 2.5 generation partial-carbon-chain dendrimers (G2.5) is described, utilizing bismaleimide as the core, a maleimide-trithiocarbonate conjugate as the branching unit, and indene as the spacer unit, following a divergent growth strategy. The optimized conditions for synthesizing the maleimide-trithiocarbonate branching unit are a bismaleimide to trithiocarbonate ratio of 5:1 and a reaction time of 30 min. The structures are verified using 1H nuclear magnetic resonance, gel permeation chromatography, and matrix-assisted laser desorption/ionization-time of flight mass spectra. A four-arm star polymer is then synthesized using the G2.5 as the core. This synthesis of a partial-carbon-chain dendrimer establishes a foundational step toward creating all-carbon-chain ones and may open new application avenues in material science.
Collapse
Affiliation(s)
- Xinying He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuru Cui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
10
|
Wei Z, He W, Liu Z, Lin Y, Wang M, Li L, Wu C, Yang S, Liu G, Yang R. Orthogonal Radical and Cationic Single-Unit Monomer Insertions for Engineering Polymer Architectures. Angew Chem Int Ed Engl 2024; 63:e202402265. [PMID: 38760991 DOI: 10.1002/anie.202402265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.
Collapse
Affiliation(s)
- Ze Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhihua Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Maolin Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liang Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunxiao Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
11
|
Hakobyan K, Noble B, Xu J. Pyrazole carbodithiolate-driven iterative RAFT single-additions. Chem Commun (Camb) 2024; 60:7443-7446. [PMID: 38946353 DOI: 10.1039/d4cc02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this Communication, we comprehensively investigated substituent effects relevant to iterative reversible activation fragmentation chain transfer (RAFT) single unit monomer insertion (SUMI) reactions. Through the use of the pyrazole carbodithiolate (PCDT) "Z-group" as the chain transfer component in RAFT SUMI, we show the importance of "Z-group" effects and its interplay with "R-group" (the carbon-centred radical precursor) effects. We also expanded the scope of RAFT SUMI to new monomer types and sequences thereof. As such, the C-S bond dissocation/reformation steps were found to be crucial factors in SUMI, and it was found that general substituent effects must be wholistically examined for every step of this reaction. This stands in contrast with conventional knowledge of RAFT polymerisation, where the main consideration is often centred around the propagation stage, i.e., the key C-C bond formation step. Indeed, contrary to SUMI, the latter characteristic was observed in the analogous alternating copolymerisation.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Benjamin Noble
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
He W, Tao W, Wei Z, Tong G, Liu X, Tan J, Yang S, Hu J, Liu G, Yang R. Controlled switching thiocarbonylthio end-groups enables interconvertible radical and cationic single-unit monomer insertions and RAFT polymerizations. Nat Commun 2024; 15:5071. [PMID: 38871718 DOI: 10.1038/s41467-024-49463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
To emulate the ordered arrangement of monomer units found in natural macromolecules, single-unit monomer insertion (SUMI) have emerged as a potent technique for synthesizing sequence-controlled vinyl polymers. Specifically, numerous applications necessitate vinyl polymers encompassing both radically and cationically polymerizable monomers, posing a formidable challenge due to the distinct thiocarbonylthio end-groups required for efficient control over radical and cationic SUMIs. Herein, we present a breakthrough in the form of interconvertible radical and cationic SUMIs achieved through the manipulation of thiocarbonylthio end-groups. The transition from a trithiocarbonate (for radical SUMI) to a dithiocarbamate (for cationic SUMI) is successfully accomplished via a radical-promoted reaction with bis(thiocarbonyl) disulfide. Conversely, the reverse transformation utilizes the reaction between dithiocarbamate and bistrithiocarbonate disulfide under a cationic mechanism. Employing this strategy, we demonstrate a series of synthetic examples featuring discrete oligomers containing acrylate, maleimide, vinyl ether, and styrene, compositions unattainable through the SUMI of a single mechanism alone.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Tao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ze Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Guoming Tong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaojuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
13
|
Zhu J, Wang R, Ma Z, Zuo W, Zhu M. Unleashing the Power of PET-RAFT Polymerization: Journey from Porphyrin-Based Photocatalysts to Combinatorial Technologies and Advanced Bioapplications. Biomacromolecules 2024; 25:1371-1390. [PMID: 38346318 DOI: 10.1021/acs.biomac.3c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The emergence of photoinduced energy/electron transfer-reversible addition-fragmentation chain transfer polymerization (PET-RAFT) not only revolutionized the field of photopolymerization but also accelerated the development of porphyrin-based photocatalysts and their analogues. The continual expansion of the monomer family compatible with PET-RAFT polymerization enhances the range of light radiation that can be harnessed, providing increased flexibility in polymerization processes. Furthermore, the versatility of PET-RAFT polymerization extends beyond its inherent capabilities, enabling its integration with various technologies in diverse fields. This integration holds considerable promise for the advancement of biomaterials with satisfactory bioapplications. As researchers delve deeper into the possibilities afforded by PET-RAFT polymerization, the collaborative efforts of individuals from diverse disciplines will prove invaluable in unleashing its full potential. This Review presents a concise introduction to the fundamental principles of PET-RAFT, outlines the progress in photocatalyst development, highlights its primary applications, and offers insights for future advancements in this technique, paving the way for exciting innovations and applications.
Collapse
Affiliation(s)
- Jiaoyang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
14
|
Baker J, Zhang R, Figg CA. Installing a Single Monomer within Acrylic Polymers Using Photoredox Catalysis. J Am Chem Soc 2024; 146:106-111. [PMID: 38128915 PMCID: PMC10785814 DOI: 10.1021/jacs.3c12221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Incorporating exactly one monomer at a defined position during a chain polymerization is exceptionally challenging due to the statistical nature of monomer addition. Herein, photoinduced electron/energy transfer (PET) enables the incorporation of exactly one vinyl ether into polyacrylates synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Near-quantitative addition (>96%) of a single vinyl ether is achieved while retaining >99% of the thiocarbonylthio chain ends. Kinetic studies reveal that performing the reactions at 2 °C limits unwanted chain breaking events. Finally, the syntheses of diblock copolymers are reported where molecular weights and dispersities are well-controlled on either side of the vinyl ether. Overall, this report introduces an approach to access acrylic copolymers containing exactly one chemical handle at a defined position, enabling novel macromolecular architectures to probe structure-function properties, introduce sites for de/reconstruction, store information, etc.
Collapse
Affiliation(s)
- Jared
G. Baker
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard Zhang
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - C. Adrian Figg
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Perez AR, Bornowski EC, Chen L, Wolfe JP. Synthesis of 2-Cyanomethyl Indane Derivatives via Pd-Catalyzed Alkene Difunctionalization Reactions of Alkyl Nitriles. Org Lett 2023; 25:2767-2770. [PMID: 37071777 PMCID: PMC10428494 DOI: 10.1021/acs.orglett.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The synthesis of indanes bearing substituted cyanomethyl groups at C2 is achieved through Pd-catalyzed coupling reactions between 2-allylphenyl triflate derivatives and alkyl nitriles. Related partially saturated analogues were generated from analogous transformations of alkenyl triflates. The use of a preformed BrettPhosPd(allyl)(Cl) complex as a precatalyst was essential for the success of these reactions.
Collapse
Affiliation(s)
- Alma R. Perez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| | - Evan C. Bornowski
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| | - Lei Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055, United States
| |
Collapse
|
17
|
Zhang X, Yu T, Ding S. Iridium-Catalyzed Synthesis of Chiral 1,2,3-Triazoles Units and Precise Construction of Stereocontrolled Oligomers. Molecules 2023; 28:molecules28093726. [PMID: 37175140 PMCID: PMC10180159 DOI: 10.3390/molecules28093726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Iridium-catalyzed azide-thioalkyne cycloaddition reaction (IrAAC) has proved to be a powerful tool for the synthesis of fully substituted 1,2,3-triazole compounds with exclusive regioselectivity. Here we report its successful use in the precise construction of stereocontrolled oligomers that have great potential in diverse applications. Starting with the azide derived from L-prolinol and different functionalized thioalkynes, chiral 1,2,3-triazole units were fabricated with high efficiency under the IrAAC condition, which were further assembled into stereocontrolled oligotriazoles through metal-free exponential growth strategies. The structure and uniformity of these oligomers were well identified by 1H NMR, size-exclusion chromatography, and mass spectrometry, the stereoregularity of which were studied through circular dichroism and circular polarized luminescence analysis.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Yang Y, Yu K, Xing F, Zhou Y, Xiao P. Development of Sequence-Controlled, Degradable, and Cytocompatible Oligomers with Explicit Fragmentation Pathways. Macromol Rapid Commun 2023; 44:e2200788. [PMID: 36398569 DOI: 10.1002/marc.202200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Indexed: 11/19/2022]
Abstract
Sequence-defined and degradable polymers can mimic biopolymers, such as peptides and DNA, to undertake life-supporting functions in a chemical way. The design and development of well-structured oligomers/polymers is the most concern for the public, even to further uncover their degradation process illustrating the degraded products and their properties. However, seldom investigation has been reported on the aforementioned aspects. In this work, the alternating photo-reversible addition-fragmentation chain-transfer (photo-RAFT) single unit monomer insertion (SUMI) of different N-substituted maleimides and thermal radical ring-opening SUMI of a cyclic ketene acetal monomer (i.e., 5,6-benzo-2-methylene-1,3-dioxepane (BMDO)) is adopted, to produce two degradable pentamers owing to the conversion of the exo-methylene group of BMDO into ester bonds along the main chains of the prepared products. Moreover, the possible degraded approach of pentamers is studied by combining high-resolution mass spectrometry (HRMS) and liquid chromatography-mass spectrometry (LC-MS) for the first time. This work also sheds light on the precise structures and cytotoxicity of SUMI products and their degraded compounds, proposing a detailed and credible outlook for biomedical applications.
Collapse
Affiliation(s)
- Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
| | - Keman Yu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yingshan Zhou
- Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
19
|
Tao W, He W, Feng X, Liu G, Shi Q, Tan J, Hu J, Yang S, Liu G, Yang R. Cationic Single-Unit Monomer Insertion (cSUMI): From Discrete Oligomers to the α-/ω-End and In-Chain Sequence-Regulated Polymers. J Am Chem Soc 2023; 145:3636-3646. [PMID: 36724078 DOI: 10.1021/jacs.2c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-unit monomer insertion (SUMI) has become an important strategy for the synthesis of sequence-controlled vinyl polymers due to its strong versatility and high efficiency. However, all reported SUMI processes are based on a free-radical mechanism, resulting in a limited number of monomer types being applicable to SUMI or a limited number of sequences of structural units that SUMI can synthesize. Herein, we developed a novel SUMI based on a cationic mechanism (cSUMI), which operates through a degenerative (similar to radical SUMI) but cationic chain transfer process. By optimizing the chain transfer agent (CTA) and monomer pairs, a high-efficiency cSUMI was achieved for vinyl ether and styrene monomers. Based on this reaction, a range of discrete oligomers containing vinyl ether and styrene moieties, and even α-/ω-end and in-chain sequence-regulated polymers were synthesized, most of which cannot be achieved by radical SUMI. In addition, we explored the application of these sequence-regulated polymers in the preparation of miktoarm star polymers, delivery of photosensitizers, and solubilization of fluorescence probes. The development of SUMI with a new mechanism will certainly broaden the scope of structures and sequences in precise vinyl-based polymers.
Collapse
Affiliation(s)
- Wei Tao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xuepu Feng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guoqin Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiangqiang Shi
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
20
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
21
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Wang Q, Bai FY, Wang Y, Niu F, Zhang Y, Mi Q, Hu K, Pan X. Photoinduced Ion-Pair Inner-Sphere Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2022; 144:19942-19952. [PMID: 36266241 DOI: 10.1021/jacs.2c08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.
Collapse
Affiliation(s)
- Qianyi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yinling Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Fushuang Niu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Hu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Chen J, Rizvi A, Patterson JP, Hawker CJ. Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. J Am Chem Soc 2022; 144:19466-19474. [PMID: 36240519 DOI: 10.1021/jacs.2c07859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(ethylene glycol) (PEG) is an important and widely used polymer in biological and pharmaceutical applications for minimizing nonspecific binding while improving blood circulation for therapeutic/imaging agents. However, commercial PEG samples are polydisperse, which hampers detailed studies on chain length-dependent properties and potentially increases antibody responses in pharmaceutical applications. Here, we report a practical and scalable method to prepare libraries of discrete PEG analogues with a branched, nonlinear structure. These lipid-PEG derivatives have a monodisperse backbone with side chains containing a discrete number of ethylene glycol units (3 or 4) and unique functionalizable chain ends. Significantly, the branched, nonlinear structure is shown to allow for efficient nanoparticle assembly while reducing anti-PEG antibody recognition when compared to commercial polydisperse linear systems, such as DMG-PEG2000. By enabling the scalable synthesis of a broad library of graft copolymers, fundamental self-assembly properties can be understood and shown to directly correlate with the total number of PEG units, nature of the chain ends, and overall backbone length. These results illustrate the advantages of discrete macromolecules when compared to traditional disperse materials.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Craig J Hawker
- Materials Department, Materials Research Laboratory, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Guo Z, He J. Synthesis of Linear and Cyclic Discrete Oligomers with Defined Sequences via Efficient Anionic Coupling Reaction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenhao Guo
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed Engl 2022; 61:e202206456. [DOI: 10.1002/anie.202206456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Saito
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Ryutaro Honda
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Masanori Nagao
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Applied Chemistry Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
26
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Saito
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Ryutaro Honda
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Sotaro Akashi
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Hinata Takimoto
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Masanori Nagao
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Yoshiko Miura
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering 744 MotookaNishi-kuFukuoka 8190001 JAPAN
| | - Yu Hoshino
- Kyushu University Department of Chemical Engineering 744 Motooka 819-0395 Fukuoka JAPAN
| |
Collapse
|
27
|
Li P, Pang H, Wang Y, Deng H, Liu J, Loisel G, Jin B, Li X, Vione D, Gligorovski S. Inorganic Ions Enhance the Number of Product Compounds through Heterogeneous Processing of Gaseous NO 2 on an Aqueous Layer of Acetosyringone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5398-5408. [PMID: 35420794 DOI: 10.1021/acs.est.1c08283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols represent important pollutants that can participate in the formation of secondary organic aerosols (SOAs) through chemical reactions with atmospheric oxidants. In this study, we determine the influence of ionic strength, pH, and temperature on the heterogeneous reaction of NO2 with an aqueous film consisting of acetosyringone (ACS), as a proxy for methoxyphenols. The uptake coefficient of NO2 (50 ppb) on ACS (1 × 10-5 mol L-1) is γ = (9.3 ± 0.09) × 10-8 at pH 5, and increases by one order of magnitude to γ = (8.6 ± 0.5) × 10-7 at pH 11. The lifetime of ACS due to its reaction with NO2 is largely affected by the presence of nitrate ions and sulfate ions encountered in aqueous aerosols. The analysis performed by membrane inlet single-photon ionization-time-of-flight mass spectrometry (MI-SPI-TOFMS) reveals an increase in the number of product compounds and a change of their chemical composition upon addition of nitrate ions and sulfate ions to the aqueous thin layer consisting of ACS. These outcomes indicate that inorganic ions can play an important role during the heterogeneous oxidation processes in aqueous aerosol particles.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
28
|
Nagao M, Kimoto Y, Hoshino Y, Miura Y. Facile Preparation of a Glycopolymer Library by PET-RAFT Polymerization for Screening the Polymer Structures of GM1 Mimics. ACS OMEGA 2022; 7:13254-13259. [PMID: 35474828 PMCID: PMC9026043 DOI: 10.1021/acsomega.2c00719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Commercialized oligosaccharides such as GM1 are useful for biological applications but generally expensive. Thus, facile access to an effective alternative is desired. Glycopolymers displaying both carbohydrate and hydrophobic units are promising materials as alternatives to oligosaccharides. Prediction of the appropriate polymer structure as an oligosaccharide mimic is difficult, and screening of the many candidates (glycopolymer library) is required. However, repeating polymerization manipulation for each polymer sample to prepare the glycopolymer library is time-consuming. Herein, we report a facile preparation of the glycopolymer library of GM1 mimics by photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. Glycopolymers displaying galactose units were synthesized in various ratios of hydrophobic acrylamide derivatives. The synthesized glycopolymers were immobilized on a gold surface, and the interactions with cholera toxin B subunits (CTB) were analyzed using surface plasmon resonance imaging (SPRI). The screening by SPRI revealed the correlation between the log P values of the hydrophobic monomers and the interactions of the glycopolymers with CTB, and the appropriate polymer structure as a GM1 mimic was determined. The combination of the one-time preparation and the fast screening of the glycopolymer library provides a new strategy to access the synthetic materials for critical biomolecular recognition.
Collapse
|
29
|
Reith MA, De Franceschi I, Soete M, Badi N, Aksakal R, Du Prez FE. Sequence-Defined Mikto-Arm Star-Shaped Macromolecules. J Am Chem Soc 2022; 144:7236-7244. [DOI: 10.1021/jacs.2c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Melissa A. Reith
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Irene De Franceschi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Matthieu Soete
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
30
|
Chen K, Zhou Y, Han S, Liu Y, Chen M. Main-Chain Fluoropolymers with Alternating Sequence Control via Light-Driven Reversible-Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022; 61:e202116135. [PMID: 35023256 DOI: 10.1002/anie.202116135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Polymers with regulated alternating structures are attractive in practical applications, particularly for main-chain fluoropolymers. We for the first time enabled controlled fluoropolymer synthesis with alternating sequence regulation using a novel fluorinated xanthate agent via a light-driven process, which achieved on-demand copolymerization of chlorotrifluoroethylene and vinyl esters/amides under both batch and flow conditions at ambient pressure. This method creates a facile access to fluoropolymers with a broad fraction range of alternating units, low dispersities and high chain-end fidelity. Moreover, a two-step photo-flow platform was established to streamline the in-situ chain-extension toward unprecedented block copolymers continuously from fluoroethylene. Influences of structural control were illustrated with thermal and surface properties. We anticipate that this work will promote advanced material engineering with customized fluoropolymers.
Collapse
Affiliation(s)
- Kaixuan Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yinli Liu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
31
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
32
|
Zhang L, Lin S, Xu J. Stereochemistry-Induced Discrimination in Reaction Kinetics of Photo-RAFT Initialization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Shiyang Lin
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Precise Pentamers with Diverse Monomer Sequences and Their Thermal Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo- and Sequence-Defined Polymers via Acid-Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022; 61:e202112439. [PMID: 34981638 DOI: 10.1002/anie.202112439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Absolute control over polymer stereo- and sequence structure is highly challenging in polymer chemistry. Here, an acid-orthogonal deprotection strategy is proposed for the iterative synthesis of a family of unimolecular polymers starting with enantiopure serines, featuring precise sequence, stereoconfiguration and side-chain functionalities that cannot be achieved using traditional polymerization techniques. Acid-orthogonal deprotections proceed independently of one another by the selection of protecting groups that feature the respective acid-lability. Under p-toluenesulfonic acid, acidolysis of tert-butyloxycarbonyl can proceed exclusively, while low-dosage trifluoroacetic acid and low temperature only trigger the selective and quantitative cleavage of trityl. The pioneering use of this acid-orthogonal deprotection chemistry increases the compatibility with otherwise sensitive groups and opens up pathways to facilely introduce structural and functional diversity into stereo- and sequence-defined polymers, thus imparting their unique properties beyond natural biopolymers.
Collapse
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
35
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo‐ and Sequence‐Defined Polymers
via
Acid‐Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
36
|
Chen M, Chen K, Zhou Y, Han S, Liu Y. Main‐Chain Fluoropolymers with Alternating Sequence Control via Light‐Driven Reversible‐Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mao Chen
- Fudan University State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Yangpu, Handan Road 220, Yuejin Building 505 200433 Shanghai CHINA
| | - Kaixuan Chen
- Fudan University Department of Macromolecular Science CHINA
| | - Yang Zhou
- Fudan University Department of Macromolecular Science CHINA
| | - Shantao Han
- Fudan University Department of Macromolecular Science CHINA
| | - Yinli Liu
- Fudan University Department of Macromolecular Science CHINA
| |
Collapse
|
37
|
Yu Z, Wang M, Chen X, Huang S, Yang H. Ring‐Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Shuai Huang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| |
Collapse
|
38
|
Miyajima M, Satoh K, Kamigaito M. Periodically Functionalized Sequence‐Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
39
|
Boeck P, Archer N, Tanaka J, You W. Reversible Addition-Fragmentation Chain Transfer Step-Growth Polymerization with Commercially Available Inexpensive Bis-Maleimides. Polym Chem 2022. [DOI: 10.1039/d2py00236a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, commercially available N-aromatic substituted bismaleimides were used in RAFT step-growth polymerization for the first time. In our initial report (J. Am. Chem. Soc. 2021, 143 (39), 15918-15923), maleimide precursors...
Collapse
|
40
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
42
|
Catania R, Foralosso R, Spanos L, Russo E, Mastrotto F, Gurnani P, Butler K, Williams H, Stolnik S, Mantovani G. Direct routes to functional RAFT agents from substituted N-alkyl maleimides. Polym Chem 2022. [DOI: 10.1039/d1py01565f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three different routes are presented for the synthesis of functional RAFT agents from N-substituted maleimides, which are then used to synthesise α,β,ω-functional RAFT polymers.
Collapse
Affiliation(s)
- Rosa Catania
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ruggero Foralosso
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lampros Spanos
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Emanuele Russo
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin Butler
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw Williams
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
43
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
44
|
Nagao M, Yamaguchi A, Matsubara T, Hoshino Y, Sato T, Miura Y. De Novo Design of Star-Shaped Glycoligands with Synthetic Polymer Structures toward an Influenza Hemagglutinin Inhibitor. Biomacromolecules 2021; 23:1232-1241. [PMID: 34968049 DOI: 10.1021/acs.biomac.1c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and 6'-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Yamaguchi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
45
|
Yang Y, Yu K, Liu S, Yan J, Lai H, Xing F, Xiao P. Radical Ring-Opening Single Unit Monomer Insertion: An Approach to Degradable and Biocompatible Sequence-Defined Oligomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Keman Yu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Shan Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Jieyu Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Haiwang Lai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
46
|
Liu R, Yang C, Huang Z, French R, Gu Z, Cheng J, Guo K, Xu J. Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers. Macromol Rapid Commun 2021; 43:e2100666. [PMID: 34850490 DOI: 10.1002/marc.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Sequence plays a critical role in enabling unique properties and functions of natural biomolecules, which has promoted the rapid advancement of synthetic sequence-defined polymers in recent decades. Particularly, investigation of short chain sequence-defined oligomers (also called discrete oligomers) on their properties has become a hot topic. However, most studies have focused on discrete oligomers with conjugated structures. In contrast, unconjugated oligomers remain relatively underexplored. In this study, three pairs of discrete oligomers with the same composition but different sequence for each pair are employed for investigating their glass transition temperatures (Tg s). The resultant Tg s of sequenced oligomers in each pair are found to be significantly different (up to 11.6 °C), attributable to variations in molecular packing as demonstrated by molecular dynamics and density function theory simulations. Intermolecular interaction is demonstrated to have less impact on Tg s than intramolecular interaction. The mechanistic investigation into two model dimers suggests that monomer sequence caused the difference in intramolecular rotational flexibility of the sequenced oligomers. In addition, despite having different monomer sequence and Tg s, the oligomers have very similar solubility parameters, which supports their potential use as effective oligomeric plasticizers to tune the Tg s of bulk polymer materials.
Collapse
Affiliation(s)
- Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chao Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zixuan Huang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rohan French
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
47
|
Yu Z, Wang M, Chen XM, Huang S, Yang H. Ring-Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2021; 61:e202112526. [PMID: 34693603 DOI: 10.1002/anie.202112526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,β'-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
48
|
Zhang L, Liu R, Lin S, Xu J. PET-RAFT single unit monomer insertion of β-methylstyrene derivatives: RAFT degradation and reaction selectivity. Chem Commun (Camb) 2021; 57:10759-10762. [PMID: 34585689 DOI: 10.1039/d1cc03927j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) single unit monomer insertion (SUMI) of β-methylstyrene derivatives into diverse RAFT agents presented fast reaction kinetics, but significant degradation of the SUMI products occurred due to a hydrogen abstraction reaction. Fortunately, such degradation can be suppressed through appropriate design of initial RAFT agents attributed to effective chain transfer and selective photoactivation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Shiyang Lin
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
49
|
Tanaka J, Archer NE, Grant MJ, You W. Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. J Am Chem Soc 2021; 143:15918-15923. [PMID: 34581557 DOI: 10.1021/jacs.1c07553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reversible-addition fragmentation chain transfer (RAFT) polymerization has been widely explored since its discovery due to its structural precision, versatility, and efficiency. However, the lack of tunability of the polymer backbone limits some applications. Herein, we synergistically combine RAFT and step-growth polymerization mechanisms, by employing a highly selective insertion process of a single monomer with a RAFT agent, to achieve RAFT step-growth polymerization. A unique feature of the RAFT step-growth polymers is that each backbone repeat unit bears a pendant RAFT agent, which can subsequently graft side chains in a second polymerization step and afford molecular brush polymers. Enabled by cleavable backbone functionality, we demonstrate transformation of the resulting brushlike polymers into linear chains of uniform size upon a stimulus.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Noel Edward Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Michael Jeffery Grant
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat Commun 2021; 12:5853. [PMID: 34615871 PMCID: PMC8494804 DOI: 10.1038/s41467-021-26186-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials.
Collapse
Affiliation(s)
- Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|