1
|
Gao L, Zhang R, Tang Y, Li F. Engineering a Proximity Biosensor via Constitutional Dynamic Chemistry. Angew Chem Int Ed Engl 2025:e202425644. [PMID: 40294133 DOI: 10.1002/anie.202425644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Affinity binding-induced DNA assembly is a fundamental principle for designing proximity biosensors for sensitive and wash-free protein detection and imaging. However, current design strategies for these biosensors face an intrinsic trade-off between binding affinity and background signal. Here, we demonstrate that this intrinsic issue can be addressed by using constitutional dynamic chemistry (CDC) as a guiding principle in the rational design of proximity biosensors. As exists in a dynamic equilibrium, the constitutional dynamic network (CDN)-based proximity biosensors can be adjusted to maximize the affinity to the target protein while minimizing non-specific interactions that contribute to background signals. By further detecting the ratio of agonist to antagonist within the CDN, we also significantly improved assay robustness, enabling the sensitive detection of antibodies in complex matrices such as human serum. With the high affinity, low background, and high robustness, we anticipate that our CDN-based design strategy will find wide applications in biosensor development. Our study also opens the possibility to engineer protein-responsive synthetic systems with complex dynamic behaviors and functions.
Collapse
Affiliation(s)
- Lu Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ruiqi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yanan Tang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Zhao X, Zhao Y, Li Z, Liu H, Fu W, Chen F, Sun Y, Song D, Fan C, Zhao Y. Proximity-activated DNA scanning encoded sequencing for massive access to membrane proteins nanoscale organization. Proc Natl Acad Sci U S A 2025; 122:e2425000122. [PMID: 40208941 PMCID: PMC12012555 DOI: 10.1073/pnas.2425000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025] Open
Abstract
Cellular structure maintenance and function regulation critically depend on the composition and spatial distribution of numerous membrane proteins. However, current methods face limitations in spatial coverage and data scalability, hindering the comprehensive analysis of protein interactions in complex cellular nanoenvironment. Herein, we introduce proximity-activated DNA scanning encoded sequencing (PADSE-seq), an innovative technique that utilizes flexible DNA probes with adjustable lengths. These dynamic probes are anchored at a single end, enabling free swings within a nanoscale range to perform global scanning, recording, and accumulating of information on diverse proximal proteins in random directions along unrestricted paths. PADSE-seq leverages the autonomous cyclic cleavage of single-stranded DNA to sequentially activate encoded probes distributed throughout the local area. This process triggers strand displacement amplification and bidirectional extension reactions, linking proteins barcodes with molecular barcodes in tandem and further generating millions to billions of amplicons embedded with the combinatorial identifiers for next-generation sequencing analysis. As a proof of concept, we validated PADSE-seq for mapping the distribution of over a dozen kinds of proteins, including HER1, EpCAM, and PDL1, in proximity to HER2 in breast cancer cell lines, demonstrating its ability to decode multiplexed protein proximities at the nanoscale. Notably, we observed that the spatial distribution of proximal proteins around low-abundance target proteins exhibited greater diversity across regions with variable proximity ranges. This method offers a massive access for high-resolution and comprehensive mapping of cellular molecular interactions, paving the way for deeper insights into complex biological processes and advancing the field of precision medicine.
Collapse
Affiliation(s)
- Xueqi Zhao
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Changchun130012, Jilin, People’s Republic of China
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Zhu Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Huan Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| | - Ying Sun
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Changchun130012, Jilin, People’s Republic of China
| | - Daqian Song
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Changchun130012, Jilin, People’s Republic of China
| | - Chunhai Fan
- New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, People’s Republic of China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
- Frontier Institute of Science and Technology, and Interdisciplinary Research Center of Frontier science and technology, Xi’an Jiaotong University, Xi’an710049, Shaanxi, People’s Republic of China
| |
Collapse
|
3
|
Lin F, Cheng Y, Li M, Li Z, Dai J. Detection of uranyl ions by single-hairpin based self-hybridization chain reaction. Talanta 2025; 285:127374. [PMID: 39673981 DOI: 10.1016/j.talanta.2024.127374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Uranium is a toxic radionuclide, and its most stable and common ionic form is water-soluble uranyl ions (UO22+), which migrates into the environment easily and causes adverse effects on environment and human health. Herein, by cleverly designing the stem of DNA hairpin with palindromic sequence, a self-hybridization chain reaction (SHCR) system was developed for sensitive UO22+ detection. This detection system showed a good linear correlation between the ratio of fluorescence intensities and UO22+ concentration within the range of 0.05 nM-20 nM, and the detection limit was calculated to be 0.017 nM. Unlike the traditional HCR system which involves two hairpins, this proposed SHCR system only needs one DNA hairpin, which reduces the complexity of sequence design and experimental operation. And it can be used for the detection of other non-nucleic acid targets by simply changing the target molecule recognition module.
Collapse
Affiliation(s)
- Fengyi Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuxin Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Min Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhi Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China.
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Wu Q, Zeng Y, Wang W, Liu S, Huang Y, Zhang Y, Chen X, You Z, Zhang C, Wang T, Yang C, Song Y. Profiling Nascent Tumor Extracellular Vesicles via Metabolic Timestamping and Aptamer-Driven Specific Click Chemistry. J Am Chem Soc 2025; 147:10737-10749. [PMID: 40082216 DOI: 10.1021/jacs.5c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Tumor-derived extracellular vesicles (tEVs) are essential mediators of tumor progression and therapeutic resistance, yet their secretion dynamics and cargo composition in response to therapies remain poorly understood. Here, we present STAMP, specific click-tagging driven by aptamer for tEV labeled with a metabolic timestamp, which exploits the unique kinetics and thermodynamics of aptamer to significantly enhance the local concentration of clickable probes on tEVs for their covalent attachment to the timestamp, resulting in the selective microfluidic isolation of nascent tEVs following stimulation. In a PD-L1 antibody-treated model, we demonstrated the feasibility of STAMP and revealed a robust positive correlation between the nascent EpCAM+ EV levels and tumor volume. Proteome profiling of isolated nascent tEVs identified previously unknown upregulated vesicle proteins following immunotherapy, including key regulators of immune activation and suppression, suggesting that tumors orchestrate an intricate dual adaptive response through tEV secretion modulation to simultaneously elicit therapeutic sensitivity and resistance. Notably, among the upregulated proteins, we identified HSP70, whose enhanced presentation on tEVs promotes antitumor immunity and inhibits tumor growth. Thus, STAMP provides an effective gateway for studying EV dynamics with cell-origin accuracy and for identifying potential therapeutic targets based on EV transitions.
Collapse
Affiliation(s)
- Qiuyue Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yinyan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wencheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sinong Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yihao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuqian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ximing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhenlong You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Tonghao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectro-Chemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
5
|
Ye M, Mou L, Feng J, Wu L, Jin D, Hu X, Xu Q, Shu Y. Aptamer-Proximity Ligation Coupled with Rolling Circle Amplification Strategy for an Ultrasensitive Analysis of Tumor-Derived Extracellular Vesicles PD-L1. Anal Chem 2025; 97:2343-2350. [PMID: 39824759 DOI: 10.1021/acs.analchem.4c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids. Herein, a simple and ultrasensitive method based on the dual-aptamer-proximity ligation assay (PLA)-guided rolling circle amplification (RCA) for the analysis of T-EVs PD-L1 was developed. First, dual aptamers with strong binding affinity were utilized for the recognition of EpCAM and PD-L1 on EVs, and then the aptamer-based PLA occurred. With the aid of the high signal amplification ability of RCA guided by the dual-aptamer-based PLA and efficient magnetic separation, the biosensor could realize highly sensitive quantification of EpCAM and PD-L1 dual-positive EVs with a low detection limit of 7.5 particles/μL. In addition, this method based on the aptamer-PLA-guided RCA was used to discriminate cancer patients from healthy donors with 100% accuracy without additional purification. Overall, this strategy might provide a practical tool for the analysis of multiple proteins on EVs, exhibiting great potential in early cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mingli Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Lihua Mou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Dangqin Jin
- College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
6
|
Su M, Peng T, Zhu Y, Li J. Nucleic Acid Covalent Tags. Chembiochem 2025; 26:e202400805. [PMID: 39572501 DOI: 10.1002/cbic.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Indexed: 03/05/2025]
Abstract
The selective and site-specific chemical labeling of proteins has emerged as a pivotal research area in chemical biology and cell biology. An effective protein labeling typically meets several criteria, including high specificity, rapid and robust conjugation under physiological conditions, operation at low concentrations with biocompatibility, and minimal perturbation of the protein function and activity. The conjugation of nucleic acids with proteins has garnered significant attention recently due to the rapid advancements in nucleic acid probe technologies, leveraging the programmable nature of nucleic acids alongside the multifaceted functionalities of proteins. It helps to convert protein-specific information into nucleic acid signals, facilitating upstream versatile recognition and downstream signal amplification for the target protein. This review critically evaluates the recent progress in nucleic acid-based protein labeling methodologies, with a specific focus on covalent labeling using aptamer tags, protein fusion tags or the technique of metabolic oligosaccharide engineering. The tags establish covalent linkages with target proteins through various modalities such as small molecules or metabolic glycan engineering. The insights presented in the review highlight promising avenues for the development of highly specific and versatile protein labeling techniques, which is essential for the improvement of protein-targeted detection and imaging across diverse biological contexts.
Collapse
Affiliation(s)
- Min Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tao Peng
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
7
|
Tang D, He S, Yang Y, Zeng Y, Xiong M, Ding D, Wei W, Lyu Y, Zhang XB, Tan W. Microenvironment-confined kinetic elucidation and implementation of a DNA nano-phage with a shielded internal computing layer. Nat Commun 2025; 16:923. [PMID: 39843440 PMCID: PMC11754784 DOI: 10.1038/s41467-025-56219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement. We explain the contradiction between fast molecular diffusion and effective DNA computation using a "diffusion trap" theory and comprehensively overcome the kinetic bottleneck of DNP by determining the rate-limiting step. We predict and verify that identifying trace amount of target cells in complex cell mixtures is an intrinsic merit of microenvironment-confined DNA computation. Finally, we show that DNP can efficiently work in complex human blood samples by shielding the interference of erythrocytes and enhance phagocytosis of macrophages toward target cells by blocking CD47-SIRPα pathway.
Collapse
Affiliation(s)
- Decui Tang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Shuoyao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Wu S, Wang Y, Yang Y, Yang C, Jiensi A, Geng C, Ju H, Chen Y. In Situ and In Vivo Evaluation of Multiplex Protein-Specific Glycosylation of Tumors with a Dual-SERS Encoding Strategy. Anal Chem 2025; 97:936-944. [PMID: 39705316 DOI: 10.1021/acs.analchem.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A dual-SERS encoding strategy was designed for in situ and in vivo evaluation of multiplex protein-specific glycosylation of tumors. The dual-SERS encoding strategy consisted of two pairs of dual gold nanoprobes with different diameters of 10 and 30 nm, which were encoded with four different and distinguishable Raman signal molecules. The 10 and 30 nm gold nanoprobes (Au10 and Au30 probes, respectively) were further modified with lectins and aptamers to recognize the target glycans and proteins, respectively. After sequential binding to the target glycans and proteins, the adjacent Au10 and Au30 probes could emit strong surface-enhanced Raman scattering (SERS) signals to indicate the multiplex protein-specific glycosylation information on cells and in vivo, which can reveal in situ the distribution differences of different tumor markers in the central and marginal regions of tumors. This strategy has been successfully applied for in situ imaging and evaluation of the MUC1 and EpCAM-specific Sia and Gal/GalNAc information on cell surfaces and tumor xenografted mice, providing a convenient and powerful tool to study protein-specific glycosylation-related physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ayidana Jiensi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengyao Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Liu J, Zhou Z, Bo Y, Yan Q, Su X. Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins. NANO LETTERS 2024; 24:14236-14243. [PMID: 39470128 DOI: 10.1021/acs.nanolett.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Bo
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Chen Y, Liu Z, Zhang B, Wu H, Lv X, Zhang Y, Lin Y. Biomedical Utility of Non-Enzymatic DNA Amplification Reaction: From Material Design to Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404641. [PMID: 39152925 DOI: 10.1002/smll.202404641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoying Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Kundu S, Craig KC, Gupta P, Guo J, Jaiswal M, Guo Z. Sensitive Method To Analyze Cell Surface GPI-Anchored Proteins Using DNA Hybridization Chain Reaction-Mediated Signal Amplification. Anal Chem 2024; 96:9576-9584. [PMID: 38808923 PMCID: PMC11299218 DOI: 10.1021/acs.analchem.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Palak Gupta
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
12
|
Cai J, Zhu Q. New advances in signal amplification strategies for DNA methylation detection in vitro. Talanta 2024; 273:125895. [PMID: 38508130 DOI: 10.1016/j.talanta.2024.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
5-methylcytosine (5 mC) DNA methylation is a prominent epigenetic modification ubiquitous in the genome. It plays a critical role in the regulation of gene expression, maintenance of genome stability, and disease control. The potential of 5 mC DNA methylation for disease detection, prognostic information, and prediction of response to therapy is enormous. However, the quantification of DNA methylation from clinical samples remains a considerable challenge due to its low abundance (only 1% of total bases). To overcome this challenge, scientists have recently developed various signal amplification strategies to enhance the sensitivity of DNA methylation biosensors. These strategies include isothermal nucleic acid amplification and enzyme-assisted target cycling amplification, among others. This review summarizes the applications, advantages, and limitations of these signal amplification strategies over the past six years (2018-2023). Our goal is to provide new insights into the selection and establishment of DNA methylation analysis. We hope that this review will offer valuable insights to researchers in the field and facilitate further advancements in this area.
Collapse
Affiliation(s)
- Jiajing Cai
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
13
|
Deng J, Liu C, Sun J. DNA-Based Nanomaterials for Analysis of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303092. [PMID: 38016069 DOI: 10.1002/adma.202303092] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Indexed: 11/30/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanovesicles comprising a myriad of molecular cargo such as proteins and nucleic acids, playing essential roles in intercellular communication and physiological and pathological processes. EVs have received substantial attention as noninvasive biomarkers for disease diagnosis and prognosis. Owing to their ability to recognize protein and nucleic acid targets, DNA-based nanomaterials with excellent programmability and modifiability provide a promising tool for the sensitive and accurate detection of molecular cargo carried by EVs. In this perspective, recent advancements in EV analysis using a variety of DNA-based nanomaterials are summarized, which can be broadly classified into three categories: linear DNA probes, DNA nanostructures, and hybrid DNA nanomaterials. The design, construction, advantages, and disadvantages of different types of DNA nanomaterials, as well as their performance for detecting EVs are reviewed. The challenges and opportunities in the field of EV analysis by DNA nanomaterials are also discussed.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
15
|
Zhang M, Yang T, Hu R, Li M, Liu Y, He W, Zhao L, Xu Y, Guo M, Ding S, Chen J, Cheng W. Zipper-Confined DNA Nanoframe for High-Efficient and High-Contrast Imaging of Heterogeneous Tumor Cell. Anal Chem 2024; 96:2253-2263. [PMID: 38277203 DOI: 10.1021/acs.analchem.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Current study in the heterogeneity and physiological behavior of tumor cells is limited by the fluorescence in situ hybridization technology in terms of probe assembly efficiency, background suppression capability, and target compatibility. In a typically well-designed assay, hybridization probes are constructed in a confined nanostructure to achieve a rapid assembly for efficient signal response, while the excessively high local concentration between different probes inevitably leads to nonspecific background leakage. Inspired by the fabric zipper, we propose a novel confinement reaction pattern in a zipper-confined DNA nanoframe (ZCDN), where two kinds of hairpin probes are independently anchored respective tracks. The metastable states of the dual tracks can well avoid signal leakage caused by the nonspecific probe configuration change. Biomarker-mediated proximity ligation reduces the local distance of dual tracks, kinetically triggering an efficient allosteric chain reaction between the hairpin probes. This method circumvents nonspecific background leakage while maintaining a high efficiency in responding to targets. ZCDN is employed to track different cancer biomarkers located in both the cytoplasm and cytomembrane, of which the expression level and oligomerization behavior can provide crucial information regarding intratumoral heterogeneity. ZCDN exhibits high target response efficiency and strong background suppression capabilities and is compatible with various types of biological targets, thus providing a desirable tool for advanced molecular diagnostics.
Collapse
Affiliation(s)
- Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Menghan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
16
|
Liu S, Zhao F, Xu K, Cao M, Sohail M, Li B, Zhang X. Harnessing aptamers for the biosensing of cell surface glycans - A review. Anal Chim Acta 2024; 1288:342044. [PMID: 38220315 DOI: 10.1016/j.aca.2023.342044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
Cell surface glycans (CSGs) are essential for cell recognition, adhesion, and invasion, and they also serve as disease biomarkers. Traditional CSG recognition using lectins has limitations such as limited specificity, low stability, high cytotoxicity, and multivalent binding. Aptamers, known for their specific binding capacity to target molecules, are increasingly being employed in the biosensing of CSGs. Aptamers offer the advantage of high flexibility, small size, straightforward modification, and monovalent recognition, enabling their integration into the profiling of CSGs on living cells. In this review, we summarize representative examples of aptamer-based CSG biosensing and identify two strategies for harnessing aptamers in CSG detection: direct recognition based on aptamer-CSG binding and indirect recognition through protein localization. These strategies enable the generation of diverse signals including fluorescence, electrochemical, photoacoustic, and electrochemiluminescence signals for CSG detection. The advantages, challenges, and future perspectives of using aptamers for CSG biosensing are also discussed.
Collapse
Affiliation(s)
- Sirui Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ke Xu
- Department of Cardiology, Nanjing Yuhua Hospital, Nanjing, 210012, China
| | - Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Wu X, Shuai X, Nie K, Li J, Liu L, Wang L, Huang C, Li C. DNA-Based Fluorescent Nanoprobe for Cancer Cell Membrane Imaging. Molecules 2024; 29:267. [PMID: 38202850 PMCID: PMC10780466 DOI: 10.3390/molecules29010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression. This article examines the recent application of DNA nanomaterials for fluorescence imaging on cell membranes. First, we present the conditions for imaging DNA nanomaterials in the cell membrane microenvironment, such as the ATP, pH, etc. Second, we summarize the imaging applications of cell membrane receptors and other molecules. Finally, some difficulties and challenges associated with DNA nanomaterials in the imaging of cell membranes are presented.
Collapse
Affiliation(s)
- Xiaoqiao Wu
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Kunhan Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| |
Collapse
|
18
|
Lee CH, Park S, Kim S, Hyun JY, Lee HS, Shin I. Engineering of cell-surface receptors for analysis of receptor internalization and detection of receptor-specific glycosylation. Chem Sci 2024; 15:555-565. [PMID: 38179521 PMCID: PMC10762726 DOI: 10.1039/d3sc05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface glycoprotein that is involved mainly in cell proliferation. Overexpression of this receptor is intimately related to the development of a broad spectrum of tumors. In addition, glycans linked to the EGFR are known to affect its EGF-induced activation. Because of the pathophysiological significance of the EGFR, we prepared a fluorescently labeled EGFR (EGFR128-AZDye 488) on the cell surface by employing the genetic code expansion technique and bioorthogonal chemistry. EGFR128-AZDye 488 was initially utilized to investigate time-dependent endocytosis of the EGFR in live cells. The results showed that an EGFR inhibitor and antibody suppress endocytosis of the EGFR promoted by the EGF, and that lectins recognizing glycans of the EGFR do not enhance EGFR internalization into cells. Observations made in studies of the effects of appended glycans on the entry of the EGFR into cells indicate that a de-sialylated or de-fucosylated EGFR is internalized into cells more efficiently than a wild-type EGFR. Furthermore, by using the FRET-based imaging method of cells which contain an EGFR linked to AZDye 488 (a FRET donor) and cellular glycans labeled with rhodamine (a FRET acceptor), sialic acid residues attached to the EGFR were specifically detected on the live cell surface. Taken together, the results suggest that a fluorescently labeled EGFR will be a valuable tool in studies aimed at gaining an understanding of cellular functions of the EGFR.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sookil Park
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Ji Young Hyun
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
19
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
20
|
Chen D, Lin Y, Fan Y, Li L, Tan C, Wang J, Lin H, Gao J. Glycan Metabolic Fluorine Labeling for In Vivo Visualization of Tumor Cells and In Situ Assessment of Glycosylation Variations. Angew Chem Int Ed Engl 2023; 62:e202313753. [PMID: 37899303 DOI: 10.1002/anie.202313753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
The abnormality in the glycosylation of surface proteins is critical for the growth and metastasis of tumors and their capacity for immunosuppression and drug resistance. This anomaly offers an entry point for real-time analysis on glycosylation fluctuations. In this study, we report a strategy, glycan metabolic fluorine labeling (MEFLA), for selectively tagging glycans of tumor cells. As a proof of concept, we synthesized two fluorinated unnatural monosaccharides with distinctive 19 F chemical shifts (Ac4 ManNTfe and Ac4 GalNTfa). These two probes could undergo selective uptake by tumor cells and subsequent incorporation into surface glycans. This approach enables efficient and specific 19 F labeling of tumor cells, which permits in vivo tracking of tumor cells and in situ assessment of glycosylation changes by 19 F MRI. The efficiency and specificity of our probes for labeling tumor cells were verified in vitro with A549 cells. The feasibility of our method was further validated with in vivo experiments on A549 tumor-bearing mice. Moreover, the capacity of our approach for assessing glycosylation changes of tumor cells was illustrated both in vitro and in vivo. Our studies provide a promising means for visualizing tumor cells in vivo and assessing their glycosylation variations in situ through targeted multiplexed 19 F MRI.
Collapse
Affiliation(s)
- Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Fan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingxuan Li
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chenlei Tan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junjie Wang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
21
|
Li P, Chang Q, Liu M, Lei K, Ping S, Wang J, Gu Y, Ren H, Ma Y. DNA-Encoded and Spatial Proximity Replaced Glycoprotein Analysis Reveals Glycosylation Heterogeneity of Extracellular Vesicles. Anal Chem 2023; 95:17467-17476. [PMID: 38009238 DOI: 10.1021/acs.analchem.3c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Glycosylation of proteins is an essential feature of extracellular vesicles (EVs). However, while the glycosylation heterogeneity focusing on specific EV subtypes and proteins will better reveal the functions of EVs, the determination of their specific glycans remains highly challenging. Herein, we report a method of protein-specific glycan recognition using DNA-encoded affinity ligands to label proteins and glycans. Manipulating the sequences of DNA tags and employing a DNA logic gate to trigger a spatial proximity-induced DNA replacement reaction enabled the release of glycan-representative DNA strands for the quantitative detection of multiple glycoforms. After size-dependent isolation of EV subgroups and decoding of three typical glycoforms on the epithelial growth factor receptor (EGFR), we found that the different EV subgroups of the EGFR glycoprotein varied with respect to glycan types and abundance. The distinctive glycoforms of the EV subgroups could interfere with the EGFR-related EV functions. Furthermore, the sialylation of small EVs possessed the potential as a cancer biomarker. This method provides new insights into the role of protein-specific glycoforms in EV functions.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Mengmeng Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Lei
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Shuai Ping
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Jia Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yi Ma
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
22
|
Li T, Xing S, Liu Y. Simultaneous Proximity DNAzyme-Activated Duplexed Protein-Specific Glycosylation Imaging on Cell Surface via Bioorthogonal Chemistry. Anal Chem 2023; 95:17790-17797. [PMID: 37994926 DOI: 10.1021/acs.analchem.3c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Due to the scarcity of strategies to evaluate the multiple subtype monosaccharides in one specific protein simultaneously within a single assay, understanding the glycosylation mechanisms and revealing their roles in disease development become extremely challenging. Herein, a strategy of proximity DNAzyme-activated fluorescence imaging of multiplex saccharides in a protein on the cell surface via bio-orthogonal chemistry is reported. The multichannel proximity DNAzyme-activated fluorescence recovery enabled the highly selective and effective imaging analysis of multiplexed protein-specific glycosylation in situ and has been demonstrated. This strategy is successfully applied to visualize the sialylation and fucosylation in four specific proteins on different cell lines and evaluate the variations of protein-specific glycosylation in response to the alterations of the cellular physiological status. More importantly, the quantitative tracking of the terminal sialyation and fucosylation changes at the single-protein level is realized by assigning the target protein as the native reference, which has the potential to be a versatile platform for glycobiology research and clinical diagnosis.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
23
|
Xu L, Lu S, Wang H, Xu H, Ye BC. Dual-Recognition Triggered Proximity Ligation Combined with a Rolling Circle Amplification Strategy for Analysis of Exosomal Protein-Specific Glycosylation. Anal Chem 2023; 95:15745-15754. [PMID: 37842978 DOI: 10.1021/acs.analchem.3c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.
Collapse
Affiliation(s)
- Lijun Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Ling P, Wang L, Sun X, Xu W, Yang P, Tang C. A cell-surface-anchored DNA probe coupled with hybridization chain reaction enzyme-free dual signal amplification for sensitive electrochemical detection of the cellular microenvironment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3165-3172. [PMID: 37337716 DOI: 10.1039/d3ay00697b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cellular microenvironment plays key roles in regulating physiological processes. However, it is still a challenge to detect it with quantification. Here, a simple, biocompatible, and universal strategy based on cell surface-anchored specific DNAzymes and hybridization chain reaction enzyme-free signal amplification for cellular microenvironment electrochemical detection is presented. In this strategy, the cell could be captured on the surface of the electrode via aptamer-target recognition. On the other hand, the DNAzyme hybridized with the substrate strand as a metal ion probe was anchored on the surface of the cell. In the presence of metal ions, the substrate strand could be cleaved into two fragments by the DNAzyme and released from the cell surface. Then, the DNA modified gold nanoparticles (AuNPs) could be captured on the electrode. Subsequently, an alternative hybridization reaction of two hairpin probes was triggered by the carried initiators forming nicked double helices. For signal readout, hemin could be inserted into the double-helix DNA long chain via electrostatic interaction, which could electro-reduce hydrogen peroxide to generate an electrochemical signal. Based on the intrinsic advantages of DNAzymes, including rapid kinetics, high sensitivity, and high selectivity, and the signal amplification strategy, this method should be able to monitor and semi-quantify target metal ions in the cellular microenvironment. Furthermore, this method shows potential for various targets by employing different DNA probes in the cellular microenvironment, providing a platform for bioanalysis.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Wenwen Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Chuanye Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
25
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
26
|
Li L, Li S, Wang J, Wen X, Yang M, Chen H, Guo Q, Wang K. Extracellular ATP-activated hybridization chain reaction for accurate and sensitive detection of cancer cells. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
27
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
28
|
Xu H, Zheng Y, Chen D, Cheng Y, Fang X, Zhong C, Huang X, Huang Q, Xu J, Xu J, Xue C. Branch-Shaped Trapping Device Regulates Accelerated Catalyzed Hairpin Assembly and Its Application for MicroRNA In Situ Imaging. Anal Chem 2023; 95:1210-1218. [PMID: 36583970 DOI: 10.1021/acs.analchem.2c03956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzyme-free DNA strand displacement process is often practical when detecting miRNAs expressed at low levels in living cells. However, the poor kinetics, tedious reaction period, and multicomponent system hamper its in vivo applications to a great extent. Herein, we design a branch-shaped trapping device (BTD)-based spatial confinement reactor and applied it for accelerated miRNA in situ imaging. The reactor consists of a pair of trapped probe-based catalyzed hairpin assembly (T-CHA) reactions attached around the BTD. The trapping device naturally offered CHA reactions a good spatial-confinement effect by integrating the metastable probes (MHPa and MHPb) of the traditional CHA with the four-branched arm of BTD, which greatly improved the localized concentration of probes and shortened their physical distance. The autonomous and progressive walk of miRNA on the four-arm nanoprobes via T-CHA can rapidly tie numerous four-arm nanoprobes into figure-of-eight nanoknots (FENs), yielding strong fluorescence that is proportional to the miRNA expression level. The unique nanoarchitecture of the FEN also benefits the restricted freedom of movement (FOM) in a confined cellular environment, which makes the system ideally suitable for in situ imaging of intracellular miRNAs. In vitro and in situ analyses also demonstrated that the T-CHA overall outperformed the dissociative probe-based CHA (D-CHA) in stability, reaction speed, and amplification sensitivity. The final application of the T-CHA-based four-arm nanoprobe for imagings of both cancer cells and normal cells shows the potential of the platform for accurately and timely revealing miRNA in biological systems.
Collapse
Affiliation(s)
- Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yanhui Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Danlong Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Yinghao Cheng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojun Fang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Chunlian Zhong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Xinmei Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Qi Huang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jiawei Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
29
|
Li N, Li M, Li M. A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection. Analyst 2023; 148:328-336. [PMID: 36484518 DOI: 10.1039/d2an01798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the construction of a programmable catalytic molecular nanomachine based on a cross-linked catalytic hairpin assembly (CCHA) reaction for the one-step highly sensitive detection of proteins and small molecules. In this system, when the recognition elements attached on split initiators bind to the target proteins, it can trigger the cascade of the CCHA reaction, resulting in the formation of many macromolecular fluorescent products for signaling. This platform couples the advantages of highly efficient DNA-based nanotechnology with specific protein-small molecule interactions. We demonstrated the sensitive detection of streptavidin and anti-digoxigenin antibody with detection limits as low as 48.8 pM and 0.85 nM, respectively. This nanomachine also demonstrated its flexibility in the nanomolar detection of corresponding small molecules, such as biotin and digoxigenin, using a competitive method. In addition, the nanomachine was robust enough to perform well with human serum samples. Overall, this programmable catalytic molecular nanomachine provides a versatile platform for the detection of proteins and small molecules by replacing the recognition elements, which can promote the development of DNA nanotechnology in disease diagnosis and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Minhui Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Mei Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
30
|
Ye M, Hu S, Zhou L, Tang X, Zhao S, Zhao J. Fluidic Membrane Accelerating the Kinetics of Photoactivatable Hybridization Chain Reaction for Accurate Imaging of Tumor-Derived Exosomes. Anal Chem 2022; 94:17645-17652. [PMID: 36475450 DOI: 10.1021/acs.analchem.2c04392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Slow intermolecular collisions and "always active" responses compromise the amplification efficiency and response accuracy of nonenzymatic hybridization chain reaction (HCR). In this study, a photoactivatable membrane-oriented HCR (MOHCR) system was rationally designed by binding a photocleavable initiator probe onto a target protein and then anchoring cholesterol-modified hairpin-structure fuel probes. When irradiated, the bound initiator probe was photoactivated and initiated self-assembly to generate activatable and amplified imaging. In a proof-of-concept assay, breast-cancer-derived exosomes were imaged based on the surface protein epithelial cell adhesion molecule (EpCAM). Photoactivatable responses provided precise spatiotemporal control of the MOHCR, and fluidic membranes enabled accelerated reaction kinetics. Our MOHCR system demonstrated high efficiency and accuracy in differentiating between plasma samples from breast cancer patients and healthy donors.
Collapse
Affiliation(s)
- Mengying Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liuyan Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaolan Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
31
|
Localized DNA tetrahedrons assisted catalytic hairpin assembly for the rapid and sensitive profiling of small extracellular vesicle-associated microRNAs. J Nanobiotechnology 2022; 20:503. [PMID: 36457020 PMCID: PMC9714172 DOI: 10.1186/s12951-022-01700-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.
Collapse
|
32
|
Liang H, Yang K, Yang Y, Hong Z, Li S, Chen Q, Li J, Song X, Yang H. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. NANO LETTERS 2022; 22:9045-9053. [PMID: 36326607 DOI: 10.1021/acs.nanolett.2c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.
Collapse
Affiliation(s)
- Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
33
|
Chen D, Lin Y, Li A, Luo X, Yang C, Gao J, Lin H. Bio-orthogonal Metabolic Fluorine Labeling Enables Deep-Tissue Visualization of Tumor Cells In Vivo by 19F Magnetic Resonance Imaging. Anal Chem 2022; 94:16614-16621. [DOI: 10.1021/acs.analchem.2c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
34
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Zhang Y, Li R, Yu S, Shang J, He Y, Wang Y, Liu X, Wang F. Sensitive Autocatalytic Hybridization Circuit for Reliable In Situ Intracellular Polynucleotide Kinase Imaging. Anal Chem 2022; 94:13951-13957. [PMID: 36170650 DOI: 10.1021/acs.analchem.2c03169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploring the characteristic functions of polynucleotide kinase (PNK) could substantially promote the elucidation of PNK-related mechanistic pathways. Yet, the sensitive and reliable detection of intracellular PNK still presents a challenging goal. Herein, we propose a simple autocatalytic hybridization circuit (AHC) for in situ intracellular imaging of PNK with high reliability. The AHC amplifier consists of two mutually activated hybridization chain reaction (HCR) modules for magnified signal transduction. The PNK is transduced into initiator I by phosphorylation and cleavage of mediator Hp. Initiator I activates the initial HCR-1 module, leading to the formation of long dsDNA nanowires that carry numerous initiator T. Then, T-initiated feedback HCR-2 module generates branched products that contain plentiful initiator I, thus realizing an autocatalytic HCR amplification reaction. Simultaneously, the HCR-2 module is also assembled as a versatile signal transduction unit for generating the amplified readout. Based on the mutually sustained accumulation of two initiators for the reciprocal activation of two reaction modules, continuous signal amplification and assembly of high-molecular-weight copolymers endow the AHC system with high sensitivity and robustness for the PNK assay. Moreover, the PNK-sensing AHC system achieves reliable imaging of intracellular PNK, thus showing great potential to decipher the correlation between PNK and related diseases.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yushi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
36
|
Dong C, Fang X, Xiong J, Zhang J, Gan H, Song C, Wang L. Simultaneous Visualization of Dual Intercellular Signal Transductions via SERS Imaging of Membrane Proteins Dimerization on Single Cells. ACS NANO 2022; 16:14055-14065. [PMID: 35969886 DOI: 10.1021/acsnano.2c03914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The visualization of protein dimerization on live cells is an urgent need and of vital importance for facile monitoring the signal transduction during intercellular communication. Herein, a highly sensitive and specific SERS strategy for simultaneously imaging dual homodimerizations of membrane proteins on single live cells was proposed by networking of AuNPs-based dual-recognition probes (dual-RPs) and SERS tags via proximity ligation-assisted catalytic hairpin assembly (CHA). The dual-RPs were prepared by comodifying hairpin-structured ssDNAs H1-Met and H1-TβRII on 50 nm AuNPs and two SERS tags for membrane proteins Met and TβRII were prepared respectively by labeling their corresponding Raman molecules and hairpin-structured single-stranded DNAs H2-Met or H2-TβRII on 15 nm AuNPs. The membrane proteins were ligated proximally by specific aptamers, and the dimerizations of proteins resulted in the proximity ligation-assisted CHA-based networking of dual-RPs and SERS tags to form 15Au-50Au network nanostructures with significantly enhanced SERS effect. The SERS strategy for visualizing the membrane protein dimerization was established and the good performance on simultaneously SERS imaging dual dimerizations of membrane proteins (i.e., Met-Met and TβRII-TβRII) was confirmed. Furthermore, the membrane protein dimerization-based signaling pathways between cancer cells and stromal cells or stem cells were observed by SERS, which indicates that the proposed SERS strategy is a good method for high-sensitivity monitoring of membrane proteins dimerizations-based multiple intercellular signal transductions in a natural and complex cellular microenvironment.
Collapse
Affiliation(s)
- Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
37
|
Liu L, Chen X, Sun B. Construction of a Recyclable DNAzyme Motor for MUC1-Specific Glycoform In Situ Quantification. Anal Chem 2022; 94:13745-13752. [PMID: 36161871 DOI: 10.1021/acs.analchem.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in the glycosylation content, especially in specific proteins, are of great importance for interpreting the mechanisms and development of certain diseases. However, current detection techniques are limited by the weak ionization efficiency of glycosyls and poor anti-interference of fluorescence signals. Herein, we present a general in situ quantification strategy for protein-specific glycoforms by constructing a recyclable DNAzyme motor for mass spectrometric detection using MUC1-specific sialic acid (Sia) as a model. This approach relies on a DNAzyme-based recycling strategy and two well-designed probes: a protein and a glycan probe. The protein probe consists of an aptamer and a DNAzyme. The glycan probe contains three functional domains: a DNAzyme complementary sequence, a substrate peptide segment, and a dibenzocyclooctyne tag. First, these two probes bind to their corresponding targets and trigger hybridization between adjacent probes on the same protein. With the help of the metal cofactor, the DNAzyme of the protein probe hydrolyzes the double-stranded glycan probe. The protein probe then reverts to a single-stranded state and remains intact for the next round of hybridization and cleavage. In this way, the recyclable DNAzyme motor can hydrolyze all glycan probes bound to the target protein. Finally, the reporter peptide released from the hydrolyzed glycan probes can be quantified by mass spectrometry, thereby converting the signal of the protein-specific glycoform to that of mass spectrometry. This strategy has been successfully used for in situ quantification of MUC1-specific Sia in different breast cancer cell lines. It provides a promising platform for protein-specific glycoform quantification.
Collapse
Affiliation(s)
- Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| |
Collapse
|
38
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
39
|
Xu J, Zeng R, Huang L, Qiu Z, Tang D. Dual-Signaling Photoelectrochemical Biosensor Based on Biocatalysis-Induced Vulcanization of Bi 2MoO 6 Nanosheets. Anal Chem 2022; 94:11441-11448. [PMID: 35922420 DOI: 10.1021/acs.analchem.2c02848] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A magnetic-assisted photoelectrochemical (PEC) and colorimetric (CL) dual-modal biosensing platform with high precision was established to monitor prostate-specific antigen (PSA) based on Bi2MoO6 nanosheets (BMO) by coupling the aptamer-guided hybridization chain reaction (HCR) with the hydrolysate-induced vulcanization reaction of Bi2MoO6 nanosheets. Upon addition of PSA, trigger DNA (tDNA) was released by the interaction between the target analyte and the aptamer and then further hybridized with anchor DNA (aDNA) conjugated on magnetic beads (MBs). The as-released tDNA initiated the target-assisted HCR in the presence of two alternating hairpin sequences (Bio-H1 and Bio-H2) to produce nicked long double-stranded DNA on the surface of MBs, where numerous alkaline phosphatase (ALP) enzymes could assemble with MBs through the biotin-avidin reaction, resulting in the hydrolysis of sodium thiophosphate (TP) to H2S. The as-produced H2S reacted with BMO to form vulcanized BMO (BMO-S), thus leading to obvious enhanced PEC performance under visible light with the color change from light yellow to brown. Having optimized the test conditions, the magnetic-assisted biosensing system holds a good quantitative diagnosis sensitivity area in a range of 5.0 pg mL-1-100 ng mL-1 with a calculated detection limit down to 3.5 pg mL-1. Meanwhile, a visual colorimetric assay on basis of the change in the color of the materials was also realized. Given the exceptional performance of the constructed biosensor, it may possess great promise as an advanced bioanalytical tool for practical applications.
Collapse
Affiliation(s)
- Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
40
|
Versloot RA, Lucas FL, Yakovlieva L, Tadema MJ, Zhang Y, Wood TM, Martin NI, Marrink SJ, Walvoort MTC, Maglia G. Quantification of Protein Glycosylation Using Nanopores. NANO LETTERS 2022; 22:5357-5364. [PMID: 35766994 PMCID: PMC9284675 DOI: 10.1021/acs.nanolett.2c01338] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.
Collapse
Affiliation(s)
| | | | - Liubov Yakovlieva
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Matthijs Jonathan Tadema
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yurui Zhang
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Thomas M. Wood
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
41
|
Tang J, Li B, Qi C, Wang Z, Yin K, Guo L, Zhang W, Yuan B. Imaging specific cell-surface sialylation using DNA dendrimer-assisted FRET. Talanta 2022; 243:123399. [DOI: 10.1016/j.talanta.2022.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
|
42
|
Kang S, Zhu L, Wang W, Lu Y, You Z, Zhang C, Xu Y, Yang C, Song Y. Amplified visualization and function exploration of exosomal protein-specific glycosylation using hybridization chain reaction from non-functional epitope. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Proximity hybridization-induced competitive rolling circle amplification to construct fluorescent dual-sensor for simultaneous evaluation of glycated and total hemoglobin. Biosens Bioelectron 2022; 202:113998. [DOI: 10.1016/j.bios.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
|
44
|
Li LL, Lv WY, Xu YT, Li YF, Li CM, Huang CZ. DNA Logic Nanodevices for the Sequential Imaging of Cancer Markers through Localized Catalytic Hairpin Assembly Reaction. Anal Chem 2022; 94:4399-4406. [PMID: 35230818 DOI: 10.1021/acs.analchem.1c05327] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monitoring tumor biomarkers is crucial for cancer diagnosis, progression monitoring, and treatment. However, identifying single or multiple biomarkers with the same spatial locations can cause false-positive feedback. Herein, we integrated the DNA tetrahedron (DT) structures with logic-responsive and signal amplifying capability to construct transmembrane DNA logic nanodevices (TDLNs) for the in situ sequential imaging of transmembrane glycoprotein mucin 1 (MUC1) and cytoplasmic microRNA-21 (miR-21) to cell identifications. The TDLNs were developed by encoding two metastable hairpin DNAs (namely, H1 and H2) in a DT scaffold, in which the triggering toeholds of H1 for miR-21 were sealed by the MUC1-specific aptamer (MUC1-apt). The TDLNs not only had the function of signal amplification owing to the localized catalytic hairpin assembly (CHA) reaction through spatial constraints effect of DT structures but also performed an AND logic operation to output a green Cy3 signal in MCF-7 cells, where MUC1 protein and miR-21 were simultaneously expressed. These results showed that the newly developed TDLNs have better molecular targeting and recognition ability so as to be easily identify cell types and diagnose cancer early.
Collapse
Affiliation(s)
- Li Li Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yu Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
45
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
46
|
Chen B, Ma W, Long X, Cheng H, Sun H, Huang J, Jia R, He X, Wang K. Membrane Protein and Extracellular Acid Heterogeneity-Driven Amplified DNA Logic Gate Enables Accurate and Sensitive Identification of Cancer Cells. Anal Chem 2022; 94:2502-2509. [PMID: 35089704 DOI: 10.1021/acs.analchem.1c04347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA logic gates, as a class of smart molecular devices with excellent biocompatibility and convenient information processing mode, have been widely used for identification of cancer cells based on logic analysis of cancer biomarkers. However, most of the developed DNA logic gates for identification of cancer cells are mainly driven by homogeneous biomarkers such as membrane proteins or RNAs, which may suffer from insufficient accuracy. Herein, we reported a membrane protein and extracellular acid heterogeneity-driven amplified DNA logic gate (HDLG) for accurate and sensitive identification of cancer cells by combining the superior signal amplification characteristics of the hybridization chain reaction (HCR) and the precise computation ability of the logic operation. In this strategy, a DNA aptamer was employed for membrane protein recognition, and a split i-motif was used for the response of the extracellular acid. Only when the two heterogeneous biomarkers existed simultaneously, the DNA logic gate could be driven to perform the "AND" logic operation and induce the formation of an intact trigger to initiate a HCR process on the cell surface, generating an amplified "ON" fluorescence signal. Benefiting from the design of heterogeneity-driven and signal amplification, this DNA logic gate could not only autonomously perform high-resolution fluorescence imaging on the surface of target cancer cells, but also perform sensitive analysis of target cancer cells with a cell number of 70 detected in 200 μL of buffer and desirable accuracy in differentiating target cancer cells from complicated cell mixtures. We anticipate that this novel HDLG is expected to be applied in precise disease diagnosis.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xu Long
- The Guangdong Technion-Israel Institute of Technology, Shantou 515000, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
47
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
48
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
49
|
Huang M, Zhu L, Kang S, Chen F, Wei X, Lin L, Chen X, Wang W, Zhu Z, Yang C, Song Y. In Situ Visualization of PD-L1-Specific Glycosylation on Tissue Sections. Anal Chem 2021; 93:15958-15963. [PMID: 34812034 DOI: 10.1021/acs.analchem.1c03287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immune checkpoint therapy has provided a weapon against cancer, but its response rate has been extremely low due to the lack of effective predictors. Herein, we developed a FRET strategy based on lectin for glycan labeling and an aptamer for PD-L1 antigen recognition for visualization of PD-L1-specific glycosylation (FLAG). The FLAG strategy combines the PD-L1 aptamer, which efficiently labels the PD-L1 polyantigen with smaller steric hindrance than the PD-L1 antibody, and metabolism-free lectin labeling for glycosylation. As a result, the FLAG strategy enables in situ visualization of PD-L1-specific glycosylation on the tissue section while maintaining the spatial context and tissue architecture. Due to nonmetabolic labeling, the FLAG strategy revealed that the tissue level of PD-L1-specific glycosylation is correlated with the efficacy of PD-1/PD-L1 therapy. Overall, the FLAG strategy provides a powerful tool for revealing the significance of PD-L1 glycosylation, offering the unprecedented potential for immunophenotypic differential analysis to predict the immunotherapy response.
Collapse
Affiliation(s)
- Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siyin Kang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fude Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
50
|
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021; 179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Employing natural cells as drug carriers has been a hotspot in recent years, attributing to their biocompatibility and inherent dynamic properties. In the earlier stage, cells were mainly used as vehicles by virtue of their lipid-delimited compartmentalized structures and native membrane proteins. The scope emphasis was 'what cell displays' instead of 'how cell changes'. More recently, the dynamic behaviours, such as changes in surface protein patterns, morphologies, polarities and in-situ generation of therapeutics, of natural cells have drawn more attention for developing advanced drug delivery systems by fully taking advantage of these processes. In this review, we revolve around the dynamic cellular transformation behaviours which facilitate targeted therapy. Cellular deformation in geometry shape, spitting smaller vesicles, activation of antigen present cells, polarization between distinct phenotypes, local production of therapeutics, and hybridization with synthetic materials are involved. Other than focusing on the traditional delivery of concrete cargoes, more functional 'handles' that are derived from the cells themselves are introduced, such as information exchange, cellular communication and interactions between cell and extracellular environment.
Collapse
|