1
|
Heard DM, Lessard MC, Hall DG. Xanthopinacol Boronate: A Robust, Photochemically Assembled and Cleavable Boronic Ester for Orthogonal Chemistry. Angew Chem Int Ed Engl 2025:e202507571. [PMID: 40299965 DOI: 10.1002/anie.202507571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
Organoboronic acids impact numerous fields of application from organic synthesis to drug discovery and materials science. However, their highly polar nature makes them challenging to handle, purify, and characterize. Boronic esters help overcome these issues, and pinacol esters (Bpin) have become the dominant boronic acid surrogate in organic synthesis. Despite its popularity, Bpin is not without drawbacks. Its formation from pinacol is intrinsically reversible in the presence of water or alcohols, which may cause premature release leading to losses during reactions and purification. This reversibility complicates the hydrolytic regeneration of free boronic acids, which often requires additional steps to destroy the pinacol by-product. Although other boronyl protecting groups exist, their removal requires harsh pH conditions. To address these issues, we developed xanthopinacol boronates (Bxpin), a robust protecting group for boronic acids with excellent orthogonality in various chemical reactions and mild irreversible removal under catalyzed photoredox conditions. Xpin boronates can be obtained directly by irradiation of a mixture of free boronic acid and xanthone with UV light, causing an in situ dimerization of xanthone to the required xanthopinacol. The unique attributes of xpin boronates were further studied by UV-vis spectrophotometry, X-ray crystallography, cyclic voltammetry, and various stability tests.
Collapse
Affiliation(s)
- David M Heard
- Department of Chemistry, 4-010 Centennial Centre for Interdisciplinary Science, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB, T6G2G2, Canada
| | - Martin C Lessard
- Department of Chemistry, 4-010 Centennial Centre for Interdisciplinary Science, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB, T6G2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 Centennial Centre for Interdisciplinary Science, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB, T6G2G2, Canada
| |
Collapse
|
2
|
Aryal V, Inaththappulige SINH, Acharya A, Giri R. Ni-Catalyzed Regioselective Alkylarylation of Unactivated Alkenes in Amines Enabled by Cooperative Ligand Effects of Nitriles and Electron-Deficient Alkenes. J Am Chem Soc 2025; 147:1667-1676. [PMID: 39763054 DOI: 10.1021/jacs.4c12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We report a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ- and δ,ε-alkenylamines with aryl halides and alkylzinc reagents. The reaction is enabled by amine coordination and can use all primary, secondary, and tertiary amines. The reaction constructs two new C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds and produces δ- and ε-arylamines with C(sp3)-branching at the γ- and δ-positions. A variety of aryl and heteroaryl iodides and both the primary and secondary alkylzinc reagents can be used as coupling carbon sources. Mechanistic studies suggest that the reaction is enabled by the cooperative effect of organic nitriles and electron-deficient alkenes (EDAs) as ligands.
Collapse
Affiliation(s)
- Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Ayush Acharya
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Tran MK, Ready JM. Chemoselective and Stereoselective Allylation of Bis(alkenyl)boronates. Angew Chem Int Ed Engl 2024; 63:e202407824. [PMID: 38781007 PMCID: PMC11347121 DOI: 10.1002/anie.202407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Bis(alkenyl)boronates react with optically active Ir(π-allyl) species in a process that involves allylation of the more substituted olefin and 1,2-metalate shift of the less substituted olefin. The method constructs valuable enantioenriched tertiary allylic boronic esters with high chemoselectivity, enantioselectivity and diastereoselectivity. Allylic functionalization reactions transform the 1,3-stereodiad to 1,5- and 1,6-stereochemical relationships.
Collapse
Affiliation(s)
- Minh-Khoa Tran
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| | - Joseph M. Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| |
Collapse
|
4
|
Trauner F, Ghazali R, Rettig J, Thiele CM, Didier D. Stereoselective polar radical crossover for the functionalization of strained-ring systems. Commun Chem 2024; 7:139. [PMID: 38898159 PMCID: PMC11187220 DOI: 10.1038/s42004-024-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Radical-polar crossover of organoborates is a poweful tool that enables the creation of two C-C bonds simultaneously. Small ring systems have become essential motifs in drug discovery and medicinal chemistry. However, step-economic methods for their selective functionalization remains scarce. Here we present a one-pot strategy that merges a simple preparation of strained organoboron species with the recently popularized polar radical crossover of borate derivatives to stereoselectively access tri-substituted azetidines, cyclobutanes and five-membered carbo- and heterocycles.
Collapse
Affiliation(s)
- Florian Trauner
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany
| | - Rahma Ghazali
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Jan Rettig
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Dorian Didier
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany.
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany.
| |
Collapse
|
5
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
6
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
7
|
Zhang Y, Chen Y, Tian Q, Wang B, Cheng G. Palladium-Catalyzed Multicomponent Assembly of ( Z)-Alkenylborons via Carbopalladation/Boronation/Retro-Diels-Alder Cascade Reaction. J Org Chem 2023; 88:11793-11800. [PMID: 37515567 DOI: 10.1021/acs.joc.3c01084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
A palladium-catalyzed multicomponent cascade reaction of aryl iodides, oxanorbornadiene, and diborns to access (Z)-alkenylborons is reported. This transformation proceeds through the sequential carbopalladation/boronation/retro-Diels-Alder domino reaction. The oxanorbornadiene used in this reaction serves as an acetylene surrogate, which is generated via a retro-Diels-Alder reaction. Such a stereoselective and scalable approach has a wide range of functional group tolerance and good substrate universality.
Collapse
Affiliation(s)
- Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Shen HC, Popescu MV, Wang ZS, de Lescure L, Noble A, Paton RS, Aggarwal VK. Iridium-Catalyzed Asymmetric Difunctionalization of C-C σ-Bonds Enabled by Ring-Strained Boronate Complexes. J Am Chem Soc 2023. [PMID: 37471704 PMCID: PMC10401714 DOI: 10.1021/jacs.3c03248] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Ze-Shu Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Louis de Lescure
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
9
|
He J, Seo CB, Yoon WS, Yun J. Asymmetric Synthesis of β-Aminoboronates via Copper-Catalyzed Reductive Coupling of Vinyl Boronates with Imines. Org Lett 2023. [PMID: 37450435 DOI: 10.1021/acs.orglett.3c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We report a copper-catalyzed asymmetric reductive coupling of vinyl boronates with imines, which directly access enantiomerically enriched β-aminoalkylboronates. Stereoselective addition of the in situ generated chiral α-borylalkyl copper to N-phosphinoyl imines provided target products in good yields with high diastereo- and enantioselectivity. Vinyl boronate with methylated acenaphthoquinone as a boron ligand was essential to efficiently spawn asymmetric products, and organic transformations of the boron moiety, along with the easily removable N-protecting group, proved their synthetic utility.
Collapse
Affiliation(s)
- Jing He
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Cham Bi Seo
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Wan Seok Yoon
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
10
|
Liu G, Gao Y, Su W. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. J Org Chem 2022; 88:6322-6332. [PMID: 36173738 DOI: 10.1021/acs.joc.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol was proposed for the preparation of secondary alcohols in good to excellent yields via photoredox-catalyzed decarboxylative couplings between readily available arylacetic acids and a variety of less reactive (hetero)aromatic aldehydes. The formation of carbanion is the key intermediate in this reaction. Various substituted arylacetic acids and aldehydes were all compatible with this transformation under mild reaction conditions. Furthermore, the current protocol was successfully applied to the direct alcoholization of several drug acids.
Collapse
Affiliation(s)
- Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
11
|
LaPorte AJ, Shi Y, Hein JE, Burke MD. Stereospecific Csp 3 Suzuki–Miyaura Cross-Coupling That Evades β-Oxygen Elimination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio J. LaPorte
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yao Shi
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin D. Burke
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
- Arnold and Mabel Beckman Institute, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Aryal V, Chesley LJ, Niroula D, Sapkota RR, Dhungana RK, Giri R. Ni-Catalyzed Regio- and Stereoselective Alkylarylation of Unactivated Alkenes in γ,δ-Alkenylketimines. ACS Catal 2022; 12:7262-7268. [PMID: 37829145 PMCID: PMC10569404 DOI: 10.1021/acscatal.2c01697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We disclose a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ-alkenylketimines with aryl halides and alkylzinc reagents. The reaction produces γ-C(sp3)-branched δ-arylketones with the construction of two new C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds. Electron-deficient alkenes play crucial dual roles as ligands to stabilize reaction intermediates and to increase catalytic rates for the formation of C(sp3)-C(sp3) bonds. This alkene alkylarylation reaction is also effective for secondary alkylzinc reagents and internal alkenes, and proceeds with a complete regio- and stereocontrol, affording products with up to three contiguous all-carbon all-cis secondary stereocenters.
Collapse
Affiliation(s)
- Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lucas J Chesley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
13
|
Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. Catalytic Asymmetric Diarylation of Internal Acyclic Styrenes and Enamides. J Am Chem Soc 2022; 144:8389-8398. [PMID: 35482430 DOI: 10.1021/jacs.2c03411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enantioselective transformations of olefins are among the most important strategies for the asymmetric synthesis of organic compounds. Chemo-, diastereo-, and stereoselective control of reactions with internal acyclic alkenes for the construction of functionalized acyclic alkanes still remain a persistent challenge. Here, we report a palladium-catalyzed asymmetric regiodivergent Heck-type diarylation of internal acyclic alkenes. The 1,2-diarylation of two accessible acyclic alkenes, cinnamyl carbamates and enamides with diazonium salts and aromatic boronic acids, furnishes products containing vicinal stereogenic centers via the stereospecific formation of carbonyl coordination-assisted transient palladacycles. Moreover, the asymmetric migratory diarylation of enamides enables the formation of incontiguous stereocenters by an interrupted diastereoselective 1,3-chain-walking process. This protocol streamlines access to highly functionalized multisubstituted enantioenriched carbamates and amine derivatives which are embedded in the key biologically active motifs.
Collapse
Affiliation(s)
- Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haojie Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
14
|
Wilhelmsen CA, Zhang X, Myhill JA, Morken JP. Enantioselective Synthesis of Tertiary β‐Boryl Amides by Conjunctive Cross‐Coupling of Alkenyl Boronates and Carbamoyl Chlorides. Angew Chem Int Ed Engl 2022; 61:e202116784. [PMID: 35090083 PMCID: PMC8960357 DOI: 10.1002/anie.202116784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Synthesis of versatile β tert-boryl amides is accomplished by conjunctive cross-coupling of α-substituted alkenyl boron "ate" complexes and carbamoyl chloride electrophiles. This reaction can be accomplished in an enantioselective fashion using a palladium catalyst in combination with MandyPhos. The addition of water results in enhanced chemoselectivity for the conjunctive coupling product relative to the Suzuki-Miyaura cross-coupling product. Transformations of the reaction products were examined as well as application to the synthesis of (+)-adalinine.
Collapse
Affiliation(s)
| | - Xuntong Zhang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jesse A. Myhill
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
15
|
Morken JP, Wilhelmsen CA, Zhang X, Myhill JA. Enantioselective Synthesis of Tertiary β‐Boryl Amides by Conjunctive Cross‐Coupling of Alkenyl Boronates and Carbamoyl Chlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Patrick Morken
- Boston College Dept. of Chemistry 2609 Beacon Street, Merkert Chemistry Lab 02467 Chestnut Hill UNITED STATES
| | | | | | | |
Collapse
|
16
|
Mizoguchi H, Kamada H, Morimoto K, Yoshida R, Sakakura A. Annulative Coupling of Vinylboronic Esters: Aryne-Triggered 1,2-Metallate Rearrangement. Chem Sci 2022; 13:9580-9585. [PMID: 36091886 PMCID: PMC9400639 DOI: 10.1039/d2sc02623f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
A stereoselective annulative coupling of a vinylboronic ester ate-complex with arynes producing cyclic borinic esters has been developed. An annulation reaction that proceeded through the formation of two C–C bonds and a C–B bond was realized by exploiting a 1,2-metallate rearrangement of boronate triggered by the addition of a vinyl group to the strained triple bond of an aryne. The generated aryl anion would then cyclize to a boron atom to complete the annulation cascade. The annulated borinic ester could be converted to boronic acids and their derivatives by oxidation, halogenation, and cross-coupling. Particularly, halogenation and Suzuki–Miyaura coupling proceeded in a site-selective fashion and produced highly substituted alkylboronic acid derivatives. A stereoselective annulative coupling of a vinylboronic ester ate-complex with arynes producing cyclic borinic esters has been developed.![]()
Collapse
Affiliation(s)
- Haruki Mizoguchi
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Hidetoshi Kamada
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Kazuki Morimoto
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Ryuji Yoshida
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Akira Sakakura
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
17
|
You C, Studer A. Three-component 1,2-carboamination of vinyl boronic esters via amidyl radical induced 1,2-migration. Chem Sci 2021; 12:15765-15769. [PMID: 35003609 PMCID: PMC8654000 DOI: 10.1039/d1sc05811h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
Three-component 1,2-carboamination of vinyl boronic esters with alkyl/aryl lithium reagents and N-chloro-carbamates/carboxamides is presented. Vinylboron ate complexes generated in situ from the boronic ester and an organo lithium reagent are shown to react with readily available N-chloro-carbamates/carboxamides to give valuable 1,2-aminoboronic esters. These cascades proceed in the absence of any catalyst upon simple visible light irradiation. Amidyl radicals add to the vinylboron ate complexes followed by oxidation and 1,2-alkyl/aryl migration from boron to carbon to give the corresponding carboamination products. These practical cascades show high functional group tolerance and accordingly exhibit broad substrate scope. Gram-scale reaction and diverse follow-up transformations convincingly demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
18
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
19
|
Abstract
This paper describes a detailed mechanistic study of the silver-catalyzed Z-selective hydroalkylation of terminal alkynes. Considering the established mechanistic paradigms for Z-selective hydroalkylation of alkynes, we explored a mechanism based on the radical carbometalation of alkynes. Experimental results have provided strong evidence against the initially proposed radical mechanism and have led us to propose a new mechanism for the Z-selective hydroalkylation of alkynes based on boronate formation and a 1,2-metalate shift. The new mechanism provides a rationale for the excellent Z-selectivity observed in the reaction. A series of stoichiometric experiments has probed the feasibility of the proposed elementary steps and revealed an additional role of the silver catalyst in the protodeboration of an intermediate. Finally, a series of kinetic measurements, KIE experiments, and competition experiments allowed us to identify the turnover limiting step and the resting state of the catalyst. We believe that the results of this study will be useful in the further exploration and development of related transformations of alkynes.
Collapse
Affiliation(s)
- Mitchell T. Lee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gojko Lalic
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni‐Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX
2
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Laura M. Wickham
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Bijay Shrestha
- Current address: Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
21
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni-Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 *. Angew Chem Int Ed Engl 2021; 60:22977-22982. [PMID: 34427992 PMCID: PMC8490319 DOI: 10.1002/anie.202110459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/08/2022]
Abstract
We report a Ni-catalyzed regioselective arylbenzylation of alkenylarenes with benzyl halides and arylzinc reagents. The reaction furnishes differently substituted 1,1,3-triarylpropyl structures that are reminiscent of the cores of oligoresveratrol natural products. The reaction is also compatible for the coupling of internal alkenes, secondary benzyl halides and variously substituted arylzinc reagents. Kinetic studies reveal that the reaction proceeds with a rate-limiting single-electron-transfer process and is autocatalyzed by in-situ-generated ZnX2 . The reaction rate is amplified by a factor of three through autocatalysis upon addition of ZnX2 .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramesh Giri
- Department of Chemistry Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Vivek Aryal
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Margaret G. Lakomy
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
23
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel-Catalyzed Regioselective Alkenylarylation of γ,δ-Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021; 60:19092-19096. [PMID: 34115911 PMCID: PMC8373804 DOI: 10.1002/anie.202104871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.
Collapse
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vivek Aryal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Doleshwar Niroula
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rishi R. Sapkota
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Margaret G. Lakomy
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Computational study of silver-catalyzed stereoselective hydroalkylation of alkynes: Pauli repulsion controlled Z/ E selectivity. Chem Commun (Camb) 2021; 57:6412-6415. [PMID: 34086023 DOI: 10.1039/d1cc01917a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism and origin of stereoselectivity of silver-catalyzed hydroalkylation of alkynes were computationally investigated at the B3LYP-D3BJ/6-311+G(d,p)-SDD//B3LYP/6-31G(d)-LANL2DZ level. The complex of alkynyl trialkylboronate with cationic silver is a key intermediate, which triggers the rate- and stereoselectivity-determining 1,2-migration step. Energy decomposition analysis indicates that the difference of Pauli repulsion dominates the stereoselectivity.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
25
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2‐Metalate Rearrangement of Indole‐Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
26
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2-Metalate Rearrangement of Indole-Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021; 60:12366-12370. [PMID: 33734546 DOI: 10.1002/anie.202103108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
A process to achieve 1,2-metalate rearrangements of indole boronate as a way to access substituted indolines in high diastereoselectivities is presented. The reaction involves the generation of a Cu-allenylidene, which is sufficiently electrophilic to induce the 1,2-metalate rearrangement. The scope of the reaction is evaluated as well as further transformations of the product.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
27
|
Mizoguchi H, Sakakura A. Strain-release Difunctionalization of C–C σ- and π-bonds of an Organoboron Ate-complex through 1,2-Metallate Rearrangement. CHEM LETT 2021. [DOI: 10.1246/cl.200926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haruki Mizoguchi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Sakakura
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
28
|
Davis CR, Luvaga IK, Ready JM. Enantioselective Allylation of Alkenyl Boronates Promotes a 1,2-Metalate Rearrangement with 1,3-Diastereocontrol. J Am Chem Soc 2021; 143:4921-4927. [PMID: 33755457 DOI: 10.1021/jacs.1c01242] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkenyl boronates add to Ir(π-allyl) intermediates with high enantioselectivity. A 1,2-metalate shift forms a second C-C bond and sets a 1,3-stereochemical relationship. The three-component coupling provides tertiary boronic esters that can undergo multiple additional functionalizations. An extension to trisubstituted olefins sets three contiguous stereocenters.
Collapse
Affiliation(s)
- Colton R Davis
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8548, United States
| | - Irungu K Luvaga
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8548, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8548, United States
| |
Collapse
|
29
|
Boylan A, Nguyen TS, Lundy BJ, Li JY, Vallakati R, Sundstrom S, May JA. Rate Dependence on Inductive and Resonance Effects for the Organocatalyzed Enantioselective Conjugate Addition of Alkenyl and Alkynyl Boronic Acids to β-Indolyl Enones and β-Pyrrolyl Enones. Molecules 2021; 26:1615. [PMID: 33799473 PMCID: PMC8000498 DOI: 10.3390/molecules26061615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone β-position. For the former, the closer the heteroatom is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.
Collapse
Affiliation(s)
- Amy Boylan
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| | - Thien S. Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Brian J. Lundy
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baker Hughes, 17021 Aldine Westfield Rd, Houston, TX 77073, USA
| | - Jian-Yuan Li
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ravikrishna Vallakati
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Vallark Pharma Pvt. Ltd., Genome Valley, Turkapally, Hyderabad 500078, India
| | - Sasha Sundstrom
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Department of Chemistry and Biochemistry, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798, USA
| | - Jeremy A. May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| |
Collapse
|
30
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021; 60:4614-4618. [PMID: 33225611 DOI: 10.1002/anie.202014425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/23/2022]
Abstract
We report the diastereo- and enantioselective conjugate addition of chiral secondary borylalkyl copper species derived from borylalkenes in situ to α,β-unsaturated diesters. In the presence of a chiral bisphosphine-ligated CuH catalyst, the conjugate addition provides a direct access to enantioenriched alkylboron compounds containing two contiguous carbon stereogenic centers in good yield with high diastereo- and enantioselectivity (up to >98:2 dr, >99:1 er) by assembling readily available starting alkenyl reagents in a single operation without using preformed organometallic reagents or chiral auxiliaries. The resulting products were used in various organic transformations. The utility of the synthetic approach was highlighted by the synthesis of (-)-phaseolinic acid.
Collapse
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
31
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
32
|
Iitsuka H, Li K, Kobayashi M, Iida K, Yonezawa N, Okamoto A. Crystal structure of 1,2-bis-(4-fluoro-phen-yl)-1-hy-droxy-2,3,8-tri-meth-oxy-acenaphthene: formation of a five-membered intra-molecular O-H⋯O hydrogen-bonded ring. Acta Crystallogr E Crystallogr Commun 2021; 77:175-179. [PMID: 33614149 PMCID: PMC7869547 DOI: 10.1107/s2056989021000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
The structure of the title compound, C27H22F2O4, at 193 K has triclinic (P ) symmetry. The hy-droxy and meth-oxy groups at the 1,2-positions of the acenaphthene core display a cis configuration. Both substituents are involved in the formation of a five-membered intra-molecular O-H⋯O hydrogen-bonded ring. The 4-fluoro-phenyl rings make dihedral angles of 87.02 (7) and 51.86 (8)° with the naphthalene ring system. In the crystal, a pair of non-classical C-H⋯O hydrogen bonds forms centrosymmetric dimeric structures. The dimeric aggregates are linked in the ac plane through non-classical C-H⋯F hydrogen bonds and C-H⋯π interactions.
Collapse
Affiliation(s)
- Hiroaki Iitsuka
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Kun Li
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Miyuki Kobayashi
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Kikuko Iida
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Yonezawa
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | - Akiko Okamoto
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
33
|
Wang Y, Bai J, Yang Y, Zhao W, Liang Y, Wang D, Zhao Y, Shi Z. Rhodium-catalysed selective C-C bond activation and borylation of cyclopropanes. Chem Sci 2021; 12:3599-3607. [PMID: 34163633 PMCID: PMC8179453 DOI: 10.1039/d0sc06186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Transition metal (TM)-catalysed directed hydroboration of aliphatic internal olefins which facilitates the construction of complex alkylboronates is an essential synthetic methodology. Here, an efficient method for the borylation of cyclopropanes involving TM-catalysed directed C-C activation has been developed. Upon exposure to neutral Rh(i)-catalyst systems, N-Piv-substituted cyclopropylamines (CPAs) undergo proximal-selective hydroboration with HBpin to provide valuable γ-amino boronates in one step which are otherwise difficult to synthesize by known methods. The enantioenriched substrates can deliver chiral products without erosion of the enantioselectivities. Versatile synthetic utility of the obtained γ-amino boronates is also demonstrated. Experimental and computational mechanistic studies showed the preferred pathway and the origin of this selectivity. This study will enable the further use of CPAs as valuable building blocks for the tunable generation of C-heteroatom or C-C bonds through selective C-C bond activation.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jingyi Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Di Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
34
|
Kanti Das K, Manna S, Panda S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem Commun (Camb) 2021; 57:441-459. [PMID: 33350405 DOI: 10.1039/d0cc06460b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric multicomponent reactions allow stitching several functional groups in an enantioselective and atom economical manner. The introduction of boron-based reagents as a multicomponent coupling partner has its own merits. In addition to being non-toxic and highly stable, organoboron compounds can be easily converted to other functional groups in a stereoselective manner. In the last decade several transition metal catalyzed asymmetric multicomponent strategies have been evolved using boron based reagents. This review will discuss the merits and scope of multicomponent strategies based on their difference in the reaction mechanism and transition metals involved.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | |
Collapse
|
35
|
Yang Y, Tsien J, Ben David A, Hughes JME, Merchant RR, Qin T. Practical and Modular Construction of C(sp 3)-Rich Alkyl Boron Compounds. J Am Chem Soc 2020; 143:471-480. [PMID: 33347297 DOI: 10.1021/jacs.0c11964] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkyl boronic acids and esters play an important role in the synthesis of C(sp3)-rich medicines, agrochemicals, and material chemistry. This work describes a new type of transition-metal-free mediated transformation to enable the construction of C(sp3)-rich and sterically hindered alkyl boron reagents in a practical and modular manner. The broad generality and functional group tolerance of this method is extensively examined through a variety of substrates, including synthesis and late-stage functionalization of scaffolds relevant to medicinal chemistry. The strategic significance of this approach, with alkyl boronic acids as linchpins, is demonstrated through various downstream functionalizations of the alkyl boron compounds. This two-step concurrent cross-coupling approach, resembling formal and flexible alkyl-alkyl couplings, provides a general entry to synthetically challenging high Fsp3-containing drug-like scaffolds.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Ayala Ben David
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
36
|
Jiang SP, Dong XY, Gu QS, Ye L, Li ZL, Liu XY. Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp 3)-C(sp 2) Cross-Coupling. J Am Chem Soc 2020; 142:19652-19659. [PMID: 33146993 DOI: 10.1021/jacs.0c09125] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A copper-catalyzed enantioconvergent Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling of various racemic alkyl halides with organoboronate esters has been established in high enantioselectivity. Critical to the success is the use of a chiral cinchona alkaloid-derived N,N,P-ligand for not only enhancing the reducing capability of copper catalyst to favor a stereoablative radical pathway over a stereospecific SN2-type process but also providing an ideal chiral environment to achieve the challenging enantiocontrol over the highly reactive radical species. The reaction has a broad scope with respect to both coupling partners, covering aryl- and heteroarylboronate esters, as well as benzyl-, heterobenzyl-, and propargyl bromides and chlorides with good functional group compatibility. Thus, it provides expedient access toward a range of useful enantioenriched skeletons featuring chiral tertiary benzylic stereocenters.
Collapse
Affiliation(s)
- Sheng-Peng Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Das KK, Panda S. Functionalization of Heterocycles through 1,2‐Metallate Rearrangement of Boronate Complexes. Chemistry 2020; 26:14270-14282. [DOI: 10.1002/chem.202002573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Indexed: 01/27/2023]
Affiliation(s)
| | - Santanu Panda
- Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
38
|
You C, Studer A. Synthesis of 1,3-Bis-(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2-Migration. Angew Chem Int Ed Engl 2020; 59:17245-17249. [PMID: 32579295 PMCID: PMC7540398 DOI: 10.1002/anie.202007541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 01/03/2023]
Abstract
A general and efficient approach for the preparation of 1,3-bis-(boryl)alkanes is introduced. It is shown that readily generated vinylboron ate complexes react with commercially available ICH2 Bpin to valuable 1,3-bis-(boryl)alkanes. The introduced transformation, which is experimentally easy to conduct, shows broad substrate scope and high functional-group tolerance. Mechanistic studies reveal that the reaction does not proceed via radical intermediates. Instead, an unprecedented boronic ester induced sequential bis-1,2-migration cascade is suggested.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
39
|
Wang H, Jing C, Noble A, Aggarwal VK. Stereospecific 1,2-Migrations of Boronate Complexes Induced by Electrophiles. Angew Chem Int Ed Engl 2020; 59:16859-16872. [PMID: 32592274 PMCID: PMC7540471 DOI: 10.1002/anie.202008096] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/16/2022]
Abstract
The stereospecific 1,2-migration of boronate complexes is one of the most representative reactions in boron chemistry. This process has been used extensively to develop powerful methods for asymmetric synthesis, with applications spanning from pharmaceuticals to natural products. Typically, 1,2-migration of boronate complexes is driven by displacement of an α-leaving group, oxidation of an α-boryl radical, or electrophilic activation of an alkenyl boronate complex. The aim of this article is to summarize the recent advances in the rapidly expanding field of electrophile-induced stereospecific 1,2-migration of groups from boron to sp2 and sp3 carbon centers. It will be shown that three different conceptual approaches can be utilized to enable the 1,2-migration of boronate complexes: stereospecific Zweifel-type reactions, catalytic conjunctive coupling reactions, and transition metal-free sp2 -sp3 couplings. A discussion of the reaction scope, mechanistic insights, and synthetic applications of the work described is also presented.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Changcheng Jing
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
40
|
Bennett SH, Fawcett A, Denton EH, Biberger T, Fasano V, Winter N, Aggarwal VK. Difunctionalization of C-C σ-Bonds Enabled by the Reaction of Bicyclo[1.1.0]butyl Boronate Complexes with Electrophiles: Reaction Development, Scope, and Stereochemical Origins. J Am Chem Soc 2020; 142:16766-16775. [PMID: 32885974 DOI: 10.1021/jacs.0c07357] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Difunctionalization reactions of C-C σ-bonds have the potential to streamline access to molecules that would otherwise be difficult to prepare. However, the development of such reactions is challenging because C-C σ-bonds are typically unreactive. Exploiting the high ring-strain energy of polycyclic carbocycles is a common strategy to weaken and facilitate the reaction of C-C σ-bonds, but there are limited examples of highly strained C-C σ-bonds being used in difunctionalization reactions. We demonstrate that highly strained bicyclo[1.1.0]butyl boronate complexes (strain energy ca. 65 kcal/mol), which were prepared by reacting boronic esters with bicyclo[1.1.0]butyl lithium, react with electrophiles to achieve the diastereoselective difunctionalization of the strained central C-C σ-bond of the bicyclo[1.1.0]butyl unit. The reaction shows broad substrate scope, with a range of different electrophiles and boronic esters being successfully employed to form a diverse set of 1,1,3-trisubstituted cyclobutanes (>50 examples) with high diastereoselectivity. The high diastereoselectivity observed has been rationalized based on a combination of experimental data and DFT calculations, which suggests that separate concerted and stepwise reaction mechanisms are operating, depending upon the migrating substituent and electrophile used.
Collapse
Affiliation(s)
- Steven H Bennett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Alexander Fawcett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Elliott H Denton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Tobias Biberger
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nils Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
41
|
You C, Studer A. Synthesis of 1,3‐Bis‐(boryl)alkanes through Boronic Ester Induced Consecutive Double 1,2‐Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
42
|
Wang H, Jing C, Noble A, Aggarwal VK. Stereospecific 1,2‐Migrations of Boronate Complexes Induced by Electrophiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hui Wang
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Changcheng Jing
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
43
|
Yang C, Gao Y, Bai S, Jiang C, Qi X. Chemoselective Cross-Coupling of gem-Borazirconocene Alkanes with Aryl Halides. J Am Chem Soc 2020; 142:11506-11513. [PMID: 32496064 DOI: 10.1021/jacs.0c03821] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct and chemoselective conversion of the carbon-metal bond of gem-dimetallic reagents enables rapid and sequential formation of multiple carbon-carbon and carbon-heteroatom bonds, thus representing a powerful method for efficiently increasing structural complexity. Herein, we report a visible-light-induced, nickel-catalyzed, chemoselective cross-coupling reaction between gem-borazirconocene alkanes and diverse aryl halides, affording a wide range of alkyl Bpin derivatives in high yields with excellent regioselectivity. This practical method features attractively simple reaction conditions and a broad substrate scope. Additionally, we systematically investigated a Bpin-directed chain walking process underlying the regioselectivity of alkylzirconocenes, thus uncovering the mechanism of the remote functionalization of internal olefins achieved with our method. Finally, DFT calculations indicate that the high regioselectivity of this reaction originates from the directing effect of the Bpin group.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yadong Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chao Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Kischkewitz M, Friese FW, Studer A. Radical-Induced 1,2-Migrations of Boron Ate Complexes. Adv Synth Catal 2020; 362:2077-2087. [PMID: 32612487 PMCID: PMC7319355 DOI: 10.1002/adsc.201901503] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/20/2019] [Indexed: 11/21/2022]
Abstract
1,2-Boron ate rearrangements represent a fundamental class of transformations to establish new C-C bonds while retaining the valuable boron moiety in the product. In established ionic processes, the boron ate complex is activated by an external electrophile to induce a 1,2-migration from boron to an adjacent sp 3 or sp 2 carbon atom. Recently, two complementary radical polar crossover approaches have been explored for both classes, 1,2-migrations to sp 2 and sp 3 carbon centers. This review describes the general concepts in this emerging research field and summarizes recent developments of radical-induced 1,2-migrations from boron to carbon.
Collapse
Affiliation(s)
- Marvin Kischkewitz
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Florian W. Friese
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
45
|
Meng Y, Kong Z, Morken JP. Catalytic Enantioselective Synthesis of anti-Vicinal Silylboronates by Conjunctive Cross-Coupling. Angew Chem Int Ed Engl 2020; 59:8456-8459. [PMID: 32078229 PMCID: PMC7359638 DOI: 10.1002/anie.202000937] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/04/2023]
Abstract
Chiral 1,2-bimetallic reagents are useful motifs in synthetic chemistry. Although syn-1,2-bimetallic compounds can be prepared by alkene dimetallation, anti-1,2-bimetallics are still rare. The stereospecific 1,2-metallate shift that occurs during conjunctive cross-coupling is shown to enable a practical and modular approach to the catalytic synthesis of enantioenriched anti-1,2-borosilanes. In addition to reaction development, the synthetic utility of anti-1,2-borosilanes was investigated, including applications to the synthesis of anti-1,2-diols and anti-1,2-amino alcohols.
Collapse
Affiliation(s)
- Yan Meng
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Ziyin Kong
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - James P. Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
46
|
Law C, Kativhu E, Wang J, Morken JP. Diastereo- and Enantioselective 1,4-Difunctionalization of Borylenynes by Catalytic Conjunctive Cross-Coupling. Angew Chem Int Ed Engl 2020; 59:10311-10315. [PMID: 32212403 DOI: 10.1002/anie.202001580] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 01/04/2023]
Abstract
Enantioselective conjunctive cross-coupling of enyne-derived boronate complexes occurs with 1,4 addition of the electrophile and migrating group across the π system. This reaction pathway furnishes α-boryl allenes as the reaction product. In the presence of a chiral catalyst, both the central and axial chirality of the product can be controlled during product formation.
Collapse
Affiliation(s)
- Chunyin Law
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Elton Kativhu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Johnny Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - James P Morken
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
47
|
Law C, Kativhu E, Wang J, Morken JP. Diastereo‐ and Enantioselective 1,4‐Difunctionalization of Borylenynes by Catalytic Conjunctive Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chunyin Law
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Elton Kativhu
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Johnny Wang
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
48
|
Meng Y, Kong Z, Morken JP. Catalytic Enantioselective Synthesis of
anti
‐Vicinal Silylboronates by Conjunctive Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yan Meng
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Ziyin Kong
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - James P. Morken
- Department of Chemistry Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
49
|
Sun S, Duan Y, Mega RS, Somerville RJ, Martin R. Site‐Selective 1,2‐Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shang‐Zheng Sun
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel lí Domingo, 1 43007 Tarragona Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Riccardo S. Mega
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Rosie J. Somerville
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Universitat Rovira i VirgiliDepartament de Química Analítica i Química Orgànica c/Marcel lí Domingo, 1 43007 Tarragona Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
50
|
Sun SZ, Duan Y, Mega RS, Somerville RJ, Martin R. Site-Selective 1,2-Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angew Chem Int Ed Engl 2020; 59:4370-4374. [PMID: 31910307 DOI: 10.1002/anie.201916279] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Indexed: 01/05/2023]
Abstract
A modular, site-selective 1,2-dicarbofunctionalization of vinyl boronates with organic halides through dual catalysis is described. This reaction proceeds under mild conditions and is characterized by excellent chemo- and regioselectivity. It thus represents a complementary new technique for preparing densely functionalized alkyl boron architectures from simple and accessible precursors.
Collapse
Affiliation(s)
- Shang-Zheng Sun
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel lí Domingo, 1, 43007, Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Riccardo S Mega
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Rosie J Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|