1
|
Iwasawa H, Takahashi N, Shimada N. Synthesis of N-methyl secondary amides via diboronic acid anhydride-catalyzed dehydrative condensation of carboxylic acids with aqueous methylamine. Org Biomol Chem 2025; 23:2400-2410. [PMID: 39912522 DOI: 10.1039/d4ob02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In this study, we present the first catalytic methodology for synthesizing N-methyl secondary amides via dehydrative condensation of hydroxycarboxylic acids with readily available and safe aqueous methylamine, employing diboronic acid anhydride (DBAA) as the catalyst. DBAA catalysis can also be applied to direct amidations using aqueous ethylamine or aqueous dimethylamine. Moreover, we demonstrate the applicability of this catalytic system for the concise synthesis of eight biologically active compounds containing β-amino alcohol motifs, including halostachine, synephrine, longimammine, phenylephrine, metanephrine, normacromerine, etilefrine, and macromerine.
Collapse
Affiliation(s)
- Hinata Iwasawa
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
2
|
Blackner JJ, Schneider OM, Wong WO, Hall DG. Removing Neighboring Ring Influence in Monocyclic B-OH Diazaborines: Properties and Reactivity as Phenolic Bioisosteres with Dynamic Hydroxy Exchange. J Am Chem Soc 2024; 146:19499-19508. [PMID: 38959009 DOI: 10.1021/jacs.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of small molecules with unique geometric profiles or molecular connectivity represents an intriguing yet neglected challenge in modern organic synthesis. This challenge is compounded when emphasis is placed on the preparation of new chemotypes that have distinct and practical functions. To expand the structural diversity of boron-containing heterocycles, we report herein the preparation of novel monocyclic hemiboronic acids, diazaborines. These compounds have enabled the study of a pseudoaromatic boranol-containing (B-OH) ring free of influence from an appended aromatic system. Synthetic and spectroscopic studies have provided insight into the aromatic character, Lewis acidic nature, chemical reactivity, and unique ability of the exocyclic B-OH unit to participate in hydroxy exchange, suggesting their use in organocatalysis and as reversible covalent inhibitors. Moreover, density functional theory and nucleus-independent chemical shift calculations reveal that the aromatic character of the boroheterocyclic ring is increased significantly in comparison to known bicyclic benzodiazaborines (naphthoid congeners), consequently leading to attenuated Lewis acidity. Direct structural comparison to a well-established biaryl isostere, 2-phenylphenol, through X-ray crystallographic analysis reveals that N-aryl derivatives are strikingly similar in size and conformation, with attenuated logP values underscoring the value of the polar BNN unit. Their potential application as low-molecular-weight scaffolds in drug discovery is demonstrated through orthogonal diversification and preliminary antifungal evaluation (Candida albicans), which unveiled analogs with low micromolar inhibitory concentration.
Collapse
Affiliation(s)
- Jake J Blackner
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Olivia M Schneider
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Tsutsumi R, Kashiwagi N, Kumagai N. Expeditious Access to the B 3NO 2 Heterocycle Enabling Modular Derivatization. J Org Chem 2023; 88:6247-6251. [PMID: 37126653 DOI: 10.1021/acs.joc.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
DATB (1,3-dioxa-5-aza-2,4,6-triborinane) is a unique six-membered heterocycle exhibiting proficient catalytic activity in direct dehydrative amidation. Reported herein is an improved synthetic protocol for DATB derivatives featuring a concise two-step chromatography-free process. Suzuki-Miyaura coupling assembled 2,6-dibromoaniline derivatives and 1,2-phenylenediboronic acid to afford dimeric B-spiroborate salts. Acidic untying of the spiroborates gave rise to the DATB ring system with various substituents.
Collapse
Affiliation(s)
- Ryosuke Tsutsumi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Nobuaki Kashiwagi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
4
|
Opie CR, Noda H, Shibasaki M, Kumagai N. Less Is More: N(BOH) 2 Configuration Exhibits Higher Reactivity than the B 3NO 2 Heterocycle in Catalytic Dehydrative Amide Formation. Org Lett 2023; 25:694-697. [PMID: 36662124 DOI: 10.1021/acs.orglett.2c04382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diboron substructures have emerged as a promising scaffold for the catalytic dehydrative amidation of carboxylic acids and amines. This Letter describes the design, synthesis, and evaluation of the first isolable N(BOH)2 compound as an amidation catalyst. The new catalyst outperforms the previously reported B3NO2 heterocycle catalyst, with respect to turnover frequency, albeit the former gradually decomposes upon exposure to amines. This work opens up an avenue for designing a better catalyst for direct amidation.
Collapse
Affiliation(s)
- Christopher R Opie
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.,Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
5
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Ang HT, Ponich AA, Paladino M, Miskolzie M, Hall DG. Unraveling the Silent Hydrolysis of Cyclic B-X/C═C Isosteres: The Striking Impact of a Single Heteroatom on the Aromatic, Acidic, and Dynamic Properties of Hemiboronic Phenanthroids. J Am Chem Soc 2022; 144:10570-10581. [PMID: 35647809 DOI: 10.1021/jacs.2c03429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although heterocyclic hemiboronic acids are represented in several recently approved drugs, many questions remain unanswered regarding the physical properties and reactivity of these boranol (BOH)-containing compounds in aqueous media. Over the past 60 years, studies on the acidic and aromatic character of 10-hydroxy-10,9-boroxarophenanthrene and its boraza analog have been conflicting. In contradiction with the Lewis acidic behavior of arylboronic acids in aqueous conditions, it has been proposed that the central boroheterocyclic ring of these borophenanthroids confers sufficient aromatic character to compel the boranol unit to behave as a Brønsted acid and favor the boron oxy conjugate base, thereby avoiding the disruption of cyclic resonance that would otherwise occur with a tetravalent boronate anion. These questions are addressed with a combination of physical and spectroscopic characterizations, X-ray crystallographic analysis, and computational studies. Although both oxa and aza derivatives are conclusively shown to behave as Lewis acids in aqueous solutions, according to pKa measurements and MO and NICS calculations, only the boraza derivatives possess an appreciable aromatic character within the boroheterocyclic ring. For the first time, the possibility of dynamic chemical exchange via a reversible hydrolysis of the endocyclic B-heteroatom bond was examined using VT and EXSY NMR with suitable probe compounds. Whereas the boraza analog is static at neutral pH, its oxa analog undergoes a rapid hydrolytic ring opening-closing equilibrium with the transient boronic acid. Altogether, this study will guide the methodical application of these heterocycles as reaction catalysts, in bioconjugation, and as new-drug chemotypes and bioisosteres of pharmaceutically important classes of heterocycles.
Collapse
Affiliation(s)
- Hwee Ting Ang
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ashley A Ponich
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Marco Paladino
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
7
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
8
|
Braddock DC, Davies JJ, Lickiss PD. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Org Lett 2022; 24:1175-1179. [PMID: 35084870 PMCID: PMC9007566 DOI: 10.1021/acs.orglett.1c04265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Methyltrimethoxysilane [MTM, CH3Si(OMe)3]
has been demonstrated to be an effective, inexpensive, and safe reagent
for the direct amidation of carboxylic acids with amines. Two simple
workup procedures that provide the pure amide product without the
need for further purification have been developed. The first employs
an aqueous base-mediated annihilation of MTM. The second involves
simple product crystallization from the reaction mixture providing
a low process mass intensity
direct amidation protocol.
Collapse
Affiliation(s)
- D Christopher Braddock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Joshua J Davies
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Paul D Lickiss
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
9
|
Wang A, Xie Y, Wang J, Shi D, Yu H. Atom-economic amide synthesis by using an iron-substituted polyoxometalate catalyst. Chem Commun (Camb) 2022; 58:1127-1130. [PMID: 34981100 DOI: 10.1039/d1cc05417a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report an efficient and economical amidation strategy by using a polyoxometalate-based iron catalyst that affords the corresponding amide products in good yields. All of the aliphatic, aromatic and heterocyclic substrates are produced in high yields without additional base or organic ligands. Most importantly, the first example of heterogeneous iron(III)-catalyzed formation of the diamides is developed.
Collapse
Affiliation(s)
- Aiping Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Ya Xie
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jingjing Wang
- Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 67081 Strasbourg cedex, France
| | - Da Shi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Han Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China. .,Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Guo Y, Zhang L, Li C, Jin M, Zhang Y, Ye J, Chen Y, Wu X, Liu X. BN/BO-Ullazines and Bis-BO-Ullazines: Effect of BO Doping on Aromaticity and Optoelectronic Properties. J Org Chem 2021; 86:12507-12516. [PMID: 34337940 DOI: 10.1021/acs.joc.1c00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have achieved substitutional doping of ullazine with either two BO units or with one BO unit and one BN unit. The synthesis of these B-doped ullazines is straightforward, using demethylation and borylative cyclization as the key steps. Ullazine cores of both BN/BO-ullazines (2) and bis-BO-ullazines (3) are very close to being planar. Their electronic and photophysical properties were investigated by ultraviolet-visible, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Jincheng Ye
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
11
|
Affiliation(s)
- Mihajlo Todorovic
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - David M. Perrin
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
12
|
Shimada N, Takahashi N, Ohse N, Koshizuka M, Makino K. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids. Chem Commun (Camb) 2020; 56:13145-13148. [PMID: 33007055 DOI: 10.1039/d0cc05630h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first successful example of the direct synthesis of Weinreb amides using catalytic hydroxy-directed dehydrative amidation of carboxylic acids using the diboronic acid anhydride catalyst is described. The methodology is applicable to the concise syntheses of eight α-hydroxyketone natural products, namely, sattabacin, 4-hydroxy sattabacin, kurasoins A and B, soraphinols A and B, and circumcins B and C.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | | | |
Collapse
|
13
|
Koshizuka M, Makino K, Shimada N. Diboronic Acid Anhydride-Catalyzed Direct Peptide Bond Formation Enabled by Hydroxy-Directed Dehydrative Condensation. Org Lett 2020; 22:8658-8664. [PMID: 33044828 DOI: 10.1021/acs.orglett.0c03252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the catalytic direct peptide bond formations via dehydrative condensation of β-hydroxy-α-amino acids, affording the serine, threonine, or β-hydroxyvaline-derived peptides in high to excellent yields with high functional group tolerance, minimum epimerization, and excellent chemoselectivity. The key to the success of these atom-economical transformations is the use of diboronic acid anhydride catalyst for the hydroxy-directed reactions.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
14
|
Noda H, Shibasaki M, Kumagai N. Design, Synthesis, and Application of Multiboron Heterocycle to Direct Amidation Catalyst. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Massolo E, Pirola M, Benaglia M. Amide Bond Formation Strategies: Latest Advances on a Dateless Transformation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000080] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elisabetta Massolo
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Margherita Pirola
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica; Università degli Studi di Milano; Via Golgi 19 20133 Milano Italy
| |
Collapse
|
16
|
Ðorđević L, Valentini C, Demitri N, Mézière C, Allain M, Sallé M, Folli A, Murphy D, Mañas‐Valero S, Coronado E, Bonifazi D. O‐Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixed‐Valence Complexes. Angew Chem Int Ed Engl 2020; 59:4106-4114. [DOI: 10.1002/anie.201914025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Luka Ðorđević
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Cataldo Valentini
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza, Trieste Italy
| | - Cécile Mézière
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Andrea Folli
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Damien Murphy
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Samuel Mañas‐Valero
- Instituto de Ciencia Molecular Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Davide Bonifazi
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
17
|
O‐Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixed‐Valence Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Morisset E, Chardon A, Rouden J, Blanchet J. Phenysilane and Silicon Tetraacetate: Versatile Promotors for Amide Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eléonore Morisset
- Laboratoire de Chimie Moléculaire et Thio-organique; Normandie Univ, ENSICAEN, UNICAEN, CNRS; 14000 Caen France
| | - Aurélien Chardon
- Laboratoire de Chimie Moléculaire et Thio-organique; Normandie Univ, ENSICAEN, UNICAEN, CNRS; 14000 Caen France
| | - Jacques Rouden
- Laboratoire de Chimie Moléculaire et Thio-organique; Normandie Univ, ENSICAEN, UNICAEN, CNRS; 14000 Caen France
| | - Jérôme Blanchet
- Laboratoire de Chimie Moléculaire et Thio-organique; Normandie Univ, ENSICAEN, UNICAEN, CNRS; 14000 Caen France
| |
Collapse
|
19
|
Michigami K, Sakaguchi T, Takemoto Y. Catalytic Dehydrative Peptide Synthesis with gem-Diboronic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kenichi Michigami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuhiko Sakaguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Kuwano S, Hosaka Y, Arai T. Chiral Benzazaborole‐Catalyzed Regioselective Sulfonylation of Unprotected Carbohydrate Derivatives. Chemistry 2019; 25:12920-12923. [DOI: 10.1002/chem.201903443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yusei Hosaka
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
21
|
Coomber CE, Laserna V, Martin LT, Smith PD, Hailes HC, Porter MJ, Sheppard TD. Catalytic direct amidations in tert-butyl acetate using B(OCH 2CF 3) 3. Org Biomol Chem 2019; 17:6465-6469. [PMID: 31225568 PMCID: PMC6724682 DOI: 10.1039/c9ob01012b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/12/2019] [Indexed: 01/17/2023]
Abstract
Catalytic direct amidation reactions have been the focus of considerable recent research effort, due to the widespread use of amide formation processes in pharmaceutical synthesis. However, the vast majority of catalytic amidations are performed in non-polar solvents (aromatic hydrocarbons, ethers) which are typically undesirable from a sustainability perspective, and are often poor at solubilising polar carboxylic acid and amine substrates. As a consequence, most catalytic amidation protocols are unsuccessful when applied to polar and/or functionalised substrates of the kind commonly used in medicinal chemistry. In this paper we report a practical and useful catalytic direct amidation reaction using tert-butyl acetate as the reaction solvent. The use of an ester solvent offers improvements in terms of safety and sustainability, but also leads to an improved reaction scope with regard to polar substrates and less nucleophilic anilines, both of which are important components of amides used in medicinal chemistry. An amidation reaction was scaled up to 100 mmol and proceeded with excellent yield and efficiency, with a measured process mass intensity of 8.
Collapse
Affiliation(s)
- Charlotte E Coomber
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Victor Laserna
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Liam T Martin
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Peter D Smith
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Michael J Porter
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Tom D Sheppard
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.
| |
Collapse
|
22
|
Huy PH, Mbouhom C. Formamide catalyzed activation of carboxylic acids - versatile and cost-efficient amidation and esterification. Chem Sci 2019; 10:7399-7406. [PMID: 31489162 PMCID: PMC6713870 DOI: 10.1039/c9sc02126d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/16/2019] [Indexed: 01/24/2023] Open
Abstract
Formamide catalysis enables highly cost-efficient amide C–N and ester C–O bond formation through carboxylic acid chlorides as essential intermediates.
A novel, broadly applicable method for amide C–N and ester C–O bond formation is presented based on formylpyrrolidine (FPyr) as a Lewis base catalyst. Herein, trichlorotriazine (TCT), which is the most cost-efficient reagent for OH-group activation, was employed in amounts of ≤40 mol% with respect to the starting material (100 mol%). The new approach is distinguished by excellent cost-efficiency, waste-balance (E-factor down to 3) and scalability (up to >80 g). Moreover, high levels of functional group compatibility, which includes acid-labile acetals and silyl ethers, are demonstrated and even peptide C–N bonds can be formed. In comparison to reported amidation procedures using TCT, yields are considerably improved (for instance from 26 to 91%) and esterification is facilitated for the first time in synthetically useful yields. These significant enhancements are rationalized by activation by means of acid chlorides instead of less electrophilic acid anhydride intermediates.
Collapse
Affiliation(s)
- Peter H Huy
- Saarland University , Institute of Organic Chemistry , P. O. Box 151150 , D-66041 Saarbruecken , Germany . https://www.peterhuylab.de/ ;
| | - Christelle Mbouhom
- Saarland University , Institute of Organic Chemistry , P. O. Box 151150 , D-66041 Saarbruecken , Germany . https://www.peterhuylab.de/ ;
| |
Collapse
|
23
|
Shimada N, Hirata M, Koshizuka M, Ohse N, Kaito R, Makino K. Diboronic Acid Anhydrides as Effective Catalysts for the Hydroxy-Directed Dehydrative Amidation of Carboxylic Acids. Org Lett 2019; 21:4303-4308. [PMID: 31120259 DOI: 10.1021/acs.orglett.9b01484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The direct catalytic dehydrative amidation of β-hydroxycarboxylic acids with amines is described. A biphenyl-based diboronic acid anhydride with a B-O-B skeleton is shown to be an exceptionally effective catalyst for the reaction, providing β-hydroxycarboxylic amides in high to excellent yields with a low catalyst loading (minimum of 0.01 mol %, TON up to 7,500). This hydroxy-directed amidation shows excellent chemoselectivity and is applicable to gram-scale drug synthesis.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Mai Hirata
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Naoki Ohse
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Ryoto Kaito
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| |
Collapse
|
24
|
Kuwano S, Hosaka Y, Arai T. Chiral benzazaboroles as catalysts for enantioselective sulfonylation of cis-1,2-diols. Org Biomol Chem 2019; 17:4475-4482. [PMID: 30900704 DOI: 10.1039/c8ob03205j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A newly developed benzazaborole smoothly catalyzed the enantioselective sulfonylation of cis-1,2-diols. Using a chiral benzazaborole/NMI co-catalyst system, various sulfonate esters were prepared in high yields with good enantioselectivities.
Collapse
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan.
| | | | | |
Collapse
|
25
|
|
26
|
Opie CR, Noda H, Shibasaki M, Kumagai N. All Non-Carbon B 3 NO 2 Exotic Heterocycles: Synthesis, Dynamics, and Catalysis. Chemistry 2019; 25:4648-4653. [PMID: 30770614 DOI: 10.1002/chem.201900715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/03/2023]
Abstract
The B3 NO2 six-membered heterocycle (1,3-dioxa-5-aza-2,4,6-triborinane=DATB), comprising three different non-carbon period 2 elements, has been recently demonstrated to be a powerful catalyst for dehydrative condensation of carboxylic acids and amines. The tedious synthesis of DATB, however, has significantly diminished its utility as a catalyst, and thus the inherent chemical properties of the ring system have remained virtually unexplored. Here, a general and facile synthetic strategy that harnesses a pyrimidine-containing scaffold for the reliable installation of boron atoms is disclosed, giving rise to a series of Pym-DATBs from inexpensive materials in a modular fashion. The identification of a soluble Pym-DATB derivative allowed for the investigation of the dynamic nature of the B3 NO2 ring system, revealing differential ring-closing and -opening behaviors depending on the medium. Readily accessible Pym-DATBs proved their utility as efficient catalysts for dehydrative amidation with broad substrate scope and functional-group tolerance, offering a general and practical catalytic alternative to reagent-driven amidation.
Collapse
Affiliation(s)
- Christopher R Opie
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| |
Collapse
|