1
|
Zhou C, Singh D, Arndtsen BA. A Versatile Carbonylative Approach to Ureas and Carbamates through Light Activated Nickel Catalyzed Formation of Aliphatic Isocyanates. Angew Chem Int Ed Engl 2025; 64:e202423519. [PMID: 39945527 DOI: 10.1002/anie.202423519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
We describe the development of a nickel-catalyzed route to prepare aliphatic isocyanates via carbonylation chemistry. Unlike thermal reactions, where the affinity of Ni(0) for carbon monoxide has traditionally limited its use in carbonylations, mechanistic studies suggest that visible light excitation of a Xantphos-bound nickel catalyst can enable a radical pathway for the carbonylation of alkyl halides, while the CO-bound nickel drives the formation of a reactive acyl azide product for rapid Curtius rearrangement. Coupling this transformation with subsequent nucleophilic reactions has opened a unique and modular pathway to apply carbonylations to the synthesis of an array of diversely substituted, unsymmetrical ureas and carbamates, including those of relevance to drug design.
Collapse
Affiliation(s)
- Cuihan Zhou
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Dushyant Singh
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
2
|
Wang SC, Liu L, Duan M, Xie W, Han J, Xue Y, Wang Y, Wang X, Zhu S. Regio- and Enantioselective Nickel-Catalyzed Ipso- and Remote Hydroamination Utilizing Organic Azides as Amino Sources for the Synthesis of Primary Amines. J Am Chem Soc 2024; 146:30626-30636. [PMID: 39442777 DOI: 10.1021/jacs.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Primary amines serve as key synthetic precursors to most other N-containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
Collapse
Affiliation(s)
- Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Lin Liu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weijia Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jiabin Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Liu Y, Huang J, Sun Z, Deng Y, Qian Y, Huang Q, Cao S. Two-step synthesis of vicinal trifluoromethyl primary amines from α-(trifluoromethyl)styrenes and phthalimide. Org Biomol Chem 2024; 22:4641-4646. [PMID: 38775720 DOI: 10.1039/d4ob00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A novel two-step synthesis of β-trifluoromethyl primary amines from readily available α-(trifluoromethyl)styrenes and phthalimide is developed. The first step involves a hydroamination between α-(trifluoromethyl)styrenes and phthalimide (PhthNH) with the assistance of a base. Next, the hydrazinolysis of the resulting N-(β-trifluoromethyl-β-arylethyl)phthalimides with hydrazine hydrate affords the desired N-(β-trifluoromethyl-β-arylethyl)amines.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Jiaqi Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Zhudi Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yuhao Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Qingchun Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Geniller L, Taillefer M, Jaroschik F, Prieto A. Photocatalyzed Amination of Alkyl Halides to Access Primary Amines. J Org Chem 2024; 89:656-664. [PMID: 38061988 DOI: 10.1021/acs.joc.3c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We demonstrate that oxime ester derivatives can be used as both a halogen atom transfer (XAT) agent and an imine source under photocatalytic conditions, allowing the radical amination of alkyl halides, resulting in the formation of a broad scope of imines. Hydrolysis of the latter gives direct access to the corresponding primary amines. Mechanistically, the reaction is believed to proceed through the formation of aryl radical intermediates, which are responsible for the activation of alkyl halides via XAT.
Collapse
Affiliation(s)
- Lilian Geniller
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Marc Taillefer
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
5
|
Lyu MY, Morais GN, Chen S, Brown MK. Ni-Catalyzed 1,1- and 1,3-Aminoboration of Unactivated Alkenes. J Am Chem Soc 2023; 145:27254-27261. [PMID: 38078874 PMCID: PMC11078560 DOI: 10.1021/jacs.3c12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alkene borylfunctionalization reactions have emerged as useful methods for chemical synthesis. While much progress has been made on 1,2-borylamination reactions, the related 1,1- and 1,3-borylaminations have not been reported. Herein, a Ni-catalyzed 1,1-borylamination of 1,1-disubstituted and monosubstituted alkenes and a 1,3-borylamination of cyclic alkenes are presented. Key to development of these reactions was the identification of an alkyllithium activator in combination with Mg salts. The utility of the products and the mechanistic details are discussed.
Collapse
Affiliation(s)
- Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Gabriel N Morais
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Urbiña-Alvarez J, Rincón-Carvajal S, Gamba-Sánchez D. Ammonia surrogates in the synthesis of primary amines. Org Biomol Chem 2023; 21:7036-7051. [PMID: 37575051 DOI: 10.1039/d3ob01202f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary amines are derivatives of ammonia in which one hydrogen atom is replaced by an alkyl or aryl group. Ammonia serves as the primary nitrogen source in amination reactions, and its utilization in solution or as a pure gas has witnessed notable advancements. However, the use of gaseous ammonia remains problematic in academic laboratory settings, while employing aqueous ammonia poses challenges in highly water-sensitive transformations. Consequently, the search for alternative sources of ammonia has garnered considerable attention among the organic chemistry community. This comprehensive literature review focuses on the use of ammonia surrogates in amination reactions, irrespective of the resulting intermediate. The review emphasizes the formation of the C-N bond and underscores the importance of generating intermediate products that can be readily transformed into primary amines through well-established reactions.
Collapse
Affiliation(s)
- Julia Urbiña-Alvarez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Sergio Rincón-Carvajal
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
7
|
Hu L, Gao H, Hu Y, Wu YB, Lv X, Lu G. Origins of Regioselectivity in CuH-Catalyzed Hydrofunctionalization of Alkenes. J Org Chem 2023. [PMID: 36790843 DOI: 10.1021/acs.joc.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Du B, Chan CM, Ouyang Y, Chan K, Lin Z, Yu WY. NiH-catalyzed anti-Markovnikov hydroamidation of unactivated alkenes with 1,4,2-dioxazol-5-ones for the direct synthesis of N-alkyl amides. Commun Chem 2022; 5:176. [PMID: 36697972 PMCID: PMC9814879 DOI: 10.1038/s42004-022-00791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The addition of a nitrogen-based functional group to alkenes via a direct catalytic method is an attractive way of synthesizing value-added amides. The regioselective hydroamidation of unactivated alkenes is considered one of the easiest ways to achieve this goal. Herein, we report the NiH-catalyzed anti-Markovnikov intermolecular hydroamidation of unactivated alkenes enabled by using 2,9-dibutylphenathroline (diBuphen) as the ligand. This protocol provides a platform for the direct synthesis of over 90 structurally diverse N-alkyl amides using dioxazolones, which can be easily derived from abundant carboxylic acid feedstocks. This method succeeds for both terminal and internal unactivated alkenes and some natural products. Mechanistic studies including DFT calculations reveal an initial reversible insertion/elimination of the [NiH] to the alkene, followed by the irreversible amidation to furnish the N-alkyl amides. By crossover experiments and deuterium labeling studies, the observed anti-Markovnikov regioselectivities are suggested to be controlled by the sterical environment of the coupling reaction.
Collapse
Affiliation(s)
- Bingnan Du
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Chun-Ming Chan
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yuxin Ouyang
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Kalok Chan
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Zhenyang Lin
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Wing-Yiu Yu
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| |
Collapse
|
9
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
10
|
Yang PF, Liang JX, Zhao HT, Shu W. Access to Enantioenriched 1, n-Diamines via Ni-Catalyzed Hydroamination of Unactivated Alkenes with Weakly Coordinating Groups. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Jian-Xing Liang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Han-Tong Zhao
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Hirano K, Miura M. Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of N-Containing Molecules from Alkenes and Alkynes. J Am Chem Soc 2022; 144:648-661. [PMID: 34986637 DOI: 10.1021/jacs.1c12663] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrogen (N) is ubiquitously found in bioactive molecules, pharmaceutical agents, and organic functional materials. Accordingly, development of new C-N bond-forming catalysis has been one of the long-standing research subjects in synthetic organic chemistry. In this Perspective, recent advances in highly selective amination reactions with electrophilic amination reagents are described: by taking advantage of the concept of nitrogen umpolung, otherwise challenging aminofunctionalizations, such as hydroamination, aminoboration, and carboamination, of readily available feedstock-like alkenes and alkynes are possible, giving densely functionalized complex and often chiral alkylamines with high selectivity. The scope, limitations, and reaction mechanism are briefly summarized.
Collapse
Affiliation(s)
- Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Sun P, Zhang Z, Wang X, Li L, Li Y, Li Z. Cobalt‐catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using
NFSI
as Nitrogen Source. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng‐Wei Sun
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ze Zhang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xinyao Wang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Linshan Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhengming Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Aoun P, Hammoud A, Martínez-Aguirre MA, Bouteiller L, Raynal M. Asymmetric hydroamination with far fewer chiral species than copper centers achieved by tuning the structure of supramolecular helical catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02168k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixing a BTA ligand (in black), a “sergeant” (in blue) and an achiral BTA additive (in orange) affords the amination product in 75% e.e. even though only one “sergeant” for ca. 10 copper centers are present in the supramolecular helical catalyst.
Collapse
Affiliation(s)
- Paméla Aoun
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Ahmad Hammoud
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Mayte A. Martínez-Aguirre
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Matthieu Raynal
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
16
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
17
|
Gao Y, Cui Y, Huo Y, Chen J, She M, Li X, Chen Q, Hu XQ. Nickel-Catalyzed Hydroamination of Olefins with Anthranils. J Org Chem 2021; 86:12107-12118. [PMID: 34427426 DOI: 10.1021/acs.joc.1c01430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nickel-catalyzed polarity-reversed hydroamination of olefins has been achieved with anthranils as the electrophilic aminating agents and hydrosilane as the reductant. This protocol provides a facile access to N-alkyl-2-aminobenzophenones that are versatile intermediates in organic synthesis. A wide range of olefins and anthranils are compatible in this transformation, delivering the desired amines in useful to excellent yields (38 examples, up to 92% yield). The utility of this protocol is exhibited in the late-stage functionalization of drug molecules and the valuable derivatives of the obtained amination products.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Cui
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinhong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Minwei She
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
18
|
Gao Y, Yang S, Huo Y, Chen Q, Li X, Hu XQ. NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Simin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
19
|
Jeon J, Lee C, Park I, Hong S. Regio- and Stereoselective Functionalization Enabled by Bidentate Directing Groups. CHEM REC 2021; 21:3613-3627. [PMID: 34086390 DOI: 10.1002/tcr.202100117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Chelation-assisted C-H bond and alkene functionalization using bidentate directing groups offers an elegant and versatile approach to overcome regiocontrol issues by allowing the catalyst to come into close proximity with the targeted sites. In this personal account, we highlight our recent works in developing regio- and stereocontrolled functionalizations through transition-metal catalysis enabled by bidentate directing groups. We classify our results into two categories: (1) regioselective alkene functionalization using bidentate directing groups, and (2) asymmetric C-H functionalization using chiral bidentate directing groups. Furthermore, density functional theory studies to elucidate the origin of the regio- and stereoselectivity exerted by bidentate directing groups are discussed.
Collapse
Affiliation(s)
- Jinwon Jeon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
20
|
Chen H, Li Y, Liu S, Xiong Q, Bai R, Wei D, Lan Y. On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|
22
|
Wu F, Wu X. Copper‐Catalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
23
|
Wu FP, Wu XF. Copper-Catalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angew Chem Int Ed Engl 2021; 60:11730-11734. [PMID: 33694252 DOI: 10.1002/anie.202102197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Indexed: 12/15/2022]
Abstract
CuH and CuBpin are versatile catalysts and intermediates in organic chemistry. However, studies that involve both CuH and CuBpin in the same reaction is still rarely reported due to their high reactivity. Now, a study on CuH- and CuBpin-catalyzed borylative methylation of alkyl iodides with CO as the C1 source is reported. Various one carbon prolongated alkyl boranes (RCH2 Bpin and RCH(Bpin)2 ) were produced in moderate to good yields from the corresponding alkyl iodides (RI). In this cooperative system, CuH reacts with alkyl iodide faster than CuBpin.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
24
|
Du YD, Chen BH, Shu W. Direct Access to Primary Amines from Alkenes by Selective Metal-Free Hydroamination. Angew Chem Int Ed Engl 2021; 60:9875-9880. [PMID: 33539628 DOI: 10.1002/anie.202016679] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Direct and selective synthesis of primary amines from easily available precursors is attractive yet challenging. Herein, we report the rapid synthesis of primary amines from alkenes via metal-free regioselective hydroamination at room temperature. Ammonium carbonate was used as ammonia surrogate for the first time, allowing for efficient conversion of terminal and internal alkenes into linear, α-branched, and α-tertiary primary amines under mild conditions. This method provides a straightforward and powerful approach to a wide spectrum of advanced, highly functionalized primary amines which are of particular interest in pharmaceutical chemistry and other areas.
Collapse
Affiliation(s)
- Yi-Dan Du
- Shenzhen Grubbs Institute, Department of Chemistry, and, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Bi-Hong Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
25
|
Lyu X, Zhang J, Kim D, Seo S, Chang S. Merging NiH Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation of Alkynes. J Am Chem Soc 2021; 143:5867-5877. [DOI: 10.1021/jacs.1c01138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiang Lyu
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jianbo Zhang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
26
|
Feng S, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. J Am Chem Soc 2021; 143:4935-4941. [PMID: 33761252 PMCID: PMC8058699 DOI: 10.1021/jacs.1c01880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the antiplatelet drug indobufen.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Du Y, Chen B, Shu W. Direct Access to Primary Amines from Alkenes by Selective Metal‐Free Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi‐Dan Du
- Shenzhen Grubbs Institute Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Bi‐Hong Chen
- Shenzhen Grubbs Institute Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
28
|
Ouadoudi O, Kaehler T, Bolte M, Lerner HW, Wagner M. One tool to bring them all: Au-catalyzed synthesis of B,O- and B,N-doped PAHs from boronic and borinic acids. Chem Sci 2021; 12:5898-5909. [PMID: 34168815 PMCID: PMC8179653 DOI: 10.1039/d1sc00543j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The isoelectronic replacement of C[double bond, length as m-dash]C bonds with -B[double bond, length as m-dash]N+ bonds in polycyclic aromatic hydrocarbons (PAHs) is a widely used tool to prepare novel optoelectronic materials. Far less well explored are corresponding B,O-doped PAHs, although they have a similarly high application potential. We herein report on the modular synthesis of B,N- and B,O-doped PAHs through the [Au(PPh3)NTf2]-catalyzed 6-endo-dig cyclization of BN-H and BO-H bonds across suitably positioned C[triple bond, length as m-dash]C bonds in the key step. Readily available, easy-to-handle o-alkynylaryl boronic and borinic acids serve as starting materials, which are either cyclized directly or first converted into the corresponding aminoboranes and then cyclized. The reaction even tolerates bulky mesityl substituents on boron, which later kinetically protect the formed B,N/O-PAHs from hydrolysis or oxidation. Our approach is also applicable for the synthesis of rare doubly B,N/O-doped PAHs. Specifically, we prepared 1,2-B,E-naphthalenes and -anthracenes, 1,5-B2-2,6-E2-anthracenes (E = N, O) as well as B,O2-containing and unprecedented B,N,O-containing phenalenyls. Selected examples of these compounds have been structurally characterized by X-ray crystallography; their optoelectronic properties have been studied by cyclic voltammetry, electron spectroscopy, and quantum-chemical calculations. Using a new unsubstituted (B,O)2-perylene as the substrate for late-stage functionalization, we finally show that the introduction of two pinacolatoboryl (Bpin) substituents is possible in high yield and with perfect regioselectivity via an Ir-catalyzed C-H borylation approach.
Collapse
Affiliation(s)
- Omar Ouadoudi
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Tanja Kaehler
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| |
Collapse
|
29
|
Yu T, Li P. One-Step Access to Primary Amines from Alkenes and Ammonium Carbonate by One-Step Metal-Free Catalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ma S, Hill CK, Olen CL, Hartwig JF. Ruthenium-Catalyzed Hydroamination of Unactivated Terminal Alkenes with Stoichiometric Amounts of Alkene and an Ammonia Surrogate by Sequential Oxidation and Reduction. J Am Chem Soc 2020; 143:359-368. [DOI: 10.1021/jacs.0c11043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher K. Hill
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Casey L. Olen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Makai S, Falk E, Morandi B. Direct Synthesis of Unprotected 2-Azidoamines from Alkenes via an Iron-Catalyzed Difunctionalization Reaction. J Am Chem Soc 2020; 142:21548-21555. [DOI: 10.1021/jacs.0c11025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Szabolcs Makai
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Eric Falk
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Jeon J, Lee C, Seo H, Hong S. NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. J Am Chem Soc 2020; 142:20470-20480. [PMID: 33205955 DOI: 10.1021/jacs.0c10333] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reported herein is a modular, NiH-catalyzed system capable of proximal-selective hydroamination of unactivated alkenes with diverse amine sources. The key to the successful implementation of this approach is the promotion of NiH insertion into even highly substituted olefins via coordination of the bidentate directing group to the nickel complex. A wide range of primary and secondary amines can be installed in both internal and terminal unactivated alkenes with excellent regiocontrol under the optimized reaction conditions. This protocol is flexible and general for the preparation of a variety of valuable β- and γ-amino acid building blocks that would otherwise be difficult to synthesize. The utility of this transformation was further demonstrated by the site-selective late-stage modification of complex and medicinally relevant molecules. Combined experimental and computational studies illuminate the detailed reaction mechanism.
Collapse
Affiliation(s)
- Jinwon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Huiyeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| |
Collapse
|
33
|
Guo S, Zhu J, Buchwald SL. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-Controlled Reversal of Hydrocupration Regiochemistry. Angew Chem Int Ed Engl 2020; 59:20841-20845. [PMID: 32598506 DOI: 10.1002/anie.202007005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Indexed: 11/08/2022]
Abstract
A Cu-catalyzed enantioselective hydroamination of α,β-unsaturated carbonyl compounds for the synthesis of β-amino acid derivatives was achieved through ligand-controlled reversal of the hydrocupration regioselectivity. While the hydrocupration of α,β-unsaturated carbonyl compounds to form α-cuprated species has been extensively investigated, we report herein that, in the presence of an appropriate ancillary chiral ligand, the opposite regiochemistry can be observed for cinnamic acid derivatives, leading to the delivery of the copper to the β-position. This copper can react with an electrophilic aminating reagent, 1,2-benzisoxazole, to provide enantioenriched β-amino acid derivatives, which are important building blocks for the synthesis of natural products and bioactive small molecules.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiaqi Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Guo S, Zhu J, Buchwald SL. Enantioselective Synthesis of β‐Amino Acid Derivatives Enabled by Ligand‐Controlled Reversal of Hydrocupration Regiochemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Guo
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Jiaqi Zhu
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
35
|
Wu L, Zhang Y, Chen C, Wu L, Wang Y. Copper-Catalyzed Asymmetric Hydroamination of Styrenes with
piv
ZPhos as Ligand. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A copper-catalyzed hydroamination of styrenes using
piv
ZPhos as ligand is reported. Enantioselectivities up to 94% are achieved under optimized conditions with aryl and heteroaryl styrenes. A variety of electrophilic O-benzoylhydroxylamines are well tolerated.
Collapse
Affiliation(s)
- Linglin Wu
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc
| | - Yongda Zhang
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc
| | | | | | | |
Collapse
|
36
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
37
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020; 59:21064-21071. [DOI: 10.1002/anie.202008247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
38
|
Gu X, Ma P, Liu P, Wang R, Li X, Zheng Z. Visible-light-driven Hydroamination of Alkynes over a New Type of Activated Carbon Immobilized Cu2+ Photocatalyst. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0166-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Affiliation(s)
- Linlin Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
40
|
Chen J, Shen X, Lu Z. Cobalt-Catalyzed Markovnikov Selective Sequential Hydrogenation/Hydrohydrazidation of Aliphatic Terminal Alkynes. J Am Chem Soc 2020; 142:14455-14460. [PMID: 32787242 DOI: 10.1021/jacs.0c07258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Nishino S, Hirano K, Miura M. Cu‐Catalyzed Reductive
gem
‐Difunctionalization of Terminal Alkynes via Hydrosilylation/Hydroamination Cascade: Concise Synthesis of α‐Aminosilanes. Chemistry 2020; 26:8725-8728. [DOI: 10.1002/chem.202001799] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Soshi Nishino
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
42
|
Park S, Jeong J, Fujita KI, Yamamoto A, Yoshida H. Anti-Markovnikov Hydroamination of Alkenes with Aqueous Ammonia by Metal-Loaded Titanium Oxide Photocatalyst. J Am Chem Soc 2020; 142:12708-12714. [DOI: 10.1021/jacs.0c04598] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soyeong Park
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Jaeyoung Jeong
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-ichi Fujita
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 606-8501, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
43
|
Liu RY, Buchwald SL. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Acc Chem Res 2020; 53:1229-1243. [PMID: 32401530 DOI: 10.1021/acs.accounts.0c00164] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In organic synthesis, ligand-modified copper(I) hydride (CuH) complexes have become well-known reagents and catalysts for selective reduction, particularly toward Michael acceptors and carbonyl compounds. Recently, our group and others have found that these hydride complexes undergo migratory insertion (hydrocupration) with relatively unactivated and electronically unpolarized olefins, producing alkylcopper intermediates that can be leveraged to forge a variety of useful bonds. The resulting formal hydrofunctionalization reactions have formed the basis for a resurgence of research in CuH catalysis. This Account chronicles the development of this concept in our research group, highlighting its origin in the context of asymmetric hydroamination, evolution to more general C-X bond-forming reactions, and applications in the addition of olefin-derived nucleophiles to carbonyl derivatives.Hydroamination, the formal insertion of an olefin into the N-H bond of an amine, is a process of significant academic and industrial interest, due to its potential to transform widely available alkenes and alkynes into valuable complex amines. We developed a polarity-reversed strategy for catalytic enantioselective hydroamination relying on the reaction of olefins with CuH to generate chiral organocopper intermediates, which are intercepted by electrophilic amine reagents. By engineering the auxiliary ligand, amine electrophile, and reaction conditions, the scope of this method has since been extended to include many types of olefins, including challenging internal olefins. Further, the scope of amine reagents has been expanded to enable the synthesis of primary, secondary, and tertiary amines as well as amides, N-alkylated heterocycles, and anilines. All of these reactions exhibit high regio- and stereoselectivity and, due to the mild conditions required, excellent tolerance for heterocycles and polar functional groups.Though the generation of alkylcopper species from olefins was originally devised as a means to solve the hydroamination problem, we soon found that these intermediates could react efficiently with an unexpectedly broad range of electrophiles, including alkyl halides, silicon reagents, arylpalladium species, heterocycles, and carbonyl derivatives. The general ability of olefins to function as precursors for nucleophilic intermediates has proved particularly advantageous in carbonyl addition reactions because it overcomes many of the disadvantages associated with traditional organometallic reagents. By removing the need for pregeneration of the nucleophile in a separate operation, CuH-catalyzed addition reactions of olefin-derived nucleophiles feature improved step economy, enhanced functional group tolerance, and the potential for catalyst control over regio- and stereoselectivity. Following this paradigm, feedstock olefins such as allene, butadiene, and styrene have been employed as reagents for asymmetric alkylation of ketones, imines, and aldehydes.
Collapse
Affiliation(s)
- Richard Y. Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Kojima Y, Takata T, Hirano K, Miura M. Synthesis of gem-Difluoroalkenes by Copper-catalyzed Regioselective Hydrodefluorination of 1-Trifluoromethylalkenes. CHEM LETT 2020. [DOI: 10.1246/cl.200163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuaki Takata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
46
|
Yang Q, Li S, Wang J(J. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2
H
‐Chromenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 P. R. China
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Sifeng Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
47
|
Feng S, Hao H, Liu P, Buchwald SL. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catal 2020; 10:282-291. [PMID: 33664986 DOI: 10.1021/acscatal.9b04871] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amine-substituted cyclobutanes and cyclopropanes are important substructures in biologically active compounds. Moreover, many of the cycloalkane units bear multiple substituents and stereocenters. Therefore, synthetic methods that produce polysubstituted aminocyclobutanes and aminocyclopropanes in a highly diastereo- and enantioselective manner are of importance. Herein, we describe the diastereo- and enantioselective synthesis of various types of polysubstituted aminocyclobutanes and aminocyclopropanes through CuH-catalyzed hydroamination of 1-substituted cyclobutenes and cyclopropenes. These strained trisubstituted alkenes exhibit much higher reactivity compared to their unstrained analogues in the initial hydrocupration step of the reaction. Moreover, an interesting reversal of regioselectivity was observed in the hydroamination of 1-aryl-substituted cyclobutenes compared to the cyclopropene analogues. The origins of the enhanced reactivity of strained trisubstituted alkenes as well as the differences in the regio- and enantioselectivity between reactions with cyclobutenes and cyclopropenes were investigated computationally.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hua Hao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Wu L, Zatolochnaya O, Qu B, Wu L, Wells LA, Kozlowski MC, Senanayake CH, Song JJ, Zhang Y. Cu-Catalyzed Asymmetric Aminoboration of E-Vinylarenes with pivZPhos as the Ligand. Org Lett 2019; 21:8952-8956. [PMID: 31647668 DOI: 10.1021/acs.orglett.9b03328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Cu-catalyzed enantioselective aminoboration of E-vinylarenes with pivZPhos as a ligand is reported. Enantioenriched aminoborates are prepared with excellent regio- and enantioselectivities up to >99:1 er under the optimized conditions. The utility of the current method was further established by rapid conversion of an adduct to a chiral benzo[f][1,4]oxazepine. A model for the stereochemistry of the asymmetric aminoboration process, which agrees with the experimental outcomes, was generated by computational analysis of the systems.
Collapse
Affiliation(s)
- Linglin Wu
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Olga Zatolochnaya
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Bo Qu
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Ling Wu
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Lucille A Wells
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Marisa C Kozlowski
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Chris H Senanayake
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Jinhua J Song
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| | - Yongda Zhang
- Department of Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , P.O. Box 368, Ridgefield , Connecticut 06877-0368 , United States
| |
Collapse
|
49
|
Abstract
Asymmetric synthesis of γ-amino alcohols from unprotected allylic alcohols by a copper-catalyzed hydroamination strategy has been developed. Using easily accessible starting materials, a range of chiral 1,3-amino alcohols were prepared with excellent regio- and enantioselectivity. Further, this protocol provided an efficient one-step method for the enantioselective synthesis of γ-amino alcohols in an intermolecular manner.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
50
|
Xiong Y, Zhang G. Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov Hydroamination of Alkenes. Org Lett 2019; 21:7873-7877. [DOI: 10.1021/acs.orglett.9b02863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Xiong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence
in Molecular Synthesis, University of Chinese Academy of Sciences,
Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence
in Molecular Synthesis, University of Chinese Academy of Sciences,
Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|