1
|
Mao J, Jiang N, Darù A, Filatov AS, Burch JE, Hofmann J, Vornholt SM, Chapman KW, Anderson JS, Ferguson AL. Structure and Synthesizability of Iron-Sulfur Metal-Organic Frameworks. J Am Chem Soc 2025. [PMID: 40378053 DOI: 10.1021/jacs.4c16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Sulfur-based metal-organic frameworks (MOFs) and coordination polymers (CPs) are an emerging class of hybrid materials that have received growing attention due to their magnetic, conductive, and catalytic properties with potential applications in electrocatalysis and energy storage. In this work, we report a high-throughput virtual screening protocol to predict the synthesizability of candidate metal-sulfur MOFs/CPs by computing the thermodynamically stable structures resulting from a particular combination of metal cluster, linker, cation, and synthetic conditions. Free energies are computed by using all-atom classical mechanical thermodynamic integration. Low-free-energy structures are refined using ab initio density functional theory, and pair distribution functions and powder X-ray diffraction patterns are calculated to complement and guide experimental structure determination. We validate the computational approach by retrospective predictions of the stable structure produced by experimental syntheses, and a subsequent screen predicts Fe4S4-BDT-TPP as a new thermodynamically stable one-dimensional (1D) CP comprising a redox-active Fe4S4 cluster, a 1,4-benzenedithiolate (BDT) linker, and a tetraphenylphosphonium (TPP) countercation. This material is experimentally synthesized, and the 1D chain structure of the crystal is confirmed using microcrystal electron diffraction. The computational screening pipeline is generically transferable to neutral and ionic MOFs/CPs comprising arbitrary metal clusters, linkers, cations, and synthetic conditions, and we make it freely available as an open source tool to guide and accelerate the discovery and engineering of novel porous materials.
Collapse
Affiliation(s)
- Jianming Mao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jessica E Burch
- Rigaku Americas Corporation, The Woodlands, Texas 77381, United States
| | - Jan Hofmann
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Jana M, Hall MB, Darensbourg MY. A sulfur-templated Ni-Ni' coordination polymer that relies on a polarizable nickel nitrosyl hub. Dalton Trans 2025; 54:4927-4934. [PMID: 39688012 DOI: 10.1039/d4dt03174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The templating properties of a diaza-nickel-cis-dithiolate towards triphenylphosphine gold(I), yielding a transoid [Ni(N2S2)·2Au(PPh3)] complex (T. A. Pinder, S. K. Montalvo, A. M. Lunsford, C.-H. Hsieh, J. H. Reibenspies and M. Y. Darensbourg, Dalton Trans., 2014, 43, 138-144) suggested that a suitable analogue of d10-Au(I), i.e., {Ni(NO)}10, could generate a tetrahedral nickel node for a [Ni(N2S2)·2Ni(NO)(X)]n coordination polymer. Monomeric precursors, derived from Feltham's [(Ph3P)2Ni(NO)(Cl)] (R. D. Feltham, Inorg. Chem., 1964, 3, 116-119) produced the bidentate/sulfur-chelated [Ni(N2S2)·Ni(NO)(X)] species with loss of PPh3. Exchange of Cl- by azide, N3-, in the {Ni(NO)}10 synthon led to the balance of electrophilicity at Ni(NO) and non-covalent (H-bonding and van der Waals) interactions that stabilized the extended chain of bridging sulfurs, in transoid connectivities, between a square planar NiII and a tetrahedral Ni, the latter within the electronic and spin-delocalized {Ni(NO)}10 system. This study defines a new path that creates coordination polymers using metallodithiolates, the success of which, in this case, depends on the highly polarizable {Ni(NO)}10 unit.
Collapse
Affiliation(s)
- Manish Jana
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Michael B Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
3
|
Chang H, Chen L, Samolova E, Pan Y, Acosta KA, Lemmon CE, Gembicky M, Paesani F, Schimpf AM. Electroreduction-Driven Formation and Connectivity of Polyoxometalate Coordination Networks. Inorg Chem 2025; 64:1630-1636. [PMID: 39818816 PMCID: PMC11795523 DOI: 10.1021/acs.inorgchem.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
We present the synthesis of metal oxide coordination networks based on Preyssler-type polyoxoanions ([NaP5W30O110]14- and [NaP5MoW29O110]14-) bridged with metal-aquo complexes ([M(H2O)n]m+, Mm+ = Co2+, Ni2+, Zn2+, Y3+), induced by electrochemical reduction. Networks bridged with first-row transition metals are isostructural with a previously reported Co-bridged structure, while the Y3+-bridged structure is new. All networks feature an uncommon binding motif of the metal cation to the oxygen atoms at cap positions, which we hypothesize is due to increased electron density at the cap upon reduction. Oxidation of a Zn2+-bridged network resulted in a new structure in which Zn2+-Ocap bonds are lost, indicating the importance of reduction in the connectivity of these polyoxometalate-based coordination networks.
Collapse
Affiliation(s)
- Haeun Chang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Linfeng Chen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erika Samolova
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Yuanhui Pan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Kody A. Acosta
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Carl E. Lemmon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Milan Gembicky
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alina M. Schimpf
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Shen Y, Cui M, Li G, Stefanczyk O, Funakoshi N, Otake T, Takaishi S, Yamashita M, Ohkoshi SI. Diamagnetic Carrier-Doping-Induced Continuous Electronic and Magnetic Crossover in One-Dimensional Coordination Polymers. J Am Chem Soc 2024; 146:35367-35376. [PMID: 39668390 DOI: 10.1021/jacs.4c14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The potential to introduce tunable electrical conductivity and molecular magnetism through carrier doping in metal-organic coordination polymers is particularly promising for nanoelectronics applications. Precise control of the doping level is essential for determining the electronic and magnetic properties. In this study, we present a series of one-dimensional coordination polymers, {(HNEt3)0.5[CuxCo(1-x)(L)]}n (HNEt3 = triethylammonium, L = 1,2,4,5-tetrakis(methanesulfonamido)benzene), doped with diamagnetic Cu1+ carriers. Through comprehensive characterization of the structural, optical, and magnetic properties, we observed continuous electronic and magnetic crossover as the doping level was gradually increased. When x < 0.5, the doped compounds exhibit ferromagnetic insulating behavior with very high energy barriers (Ueff up to 560 K) and excellent slow relaxation of magnetization. At x = 0.5, {(HNEt3)0.5[Cu0.5Co0.5(L)]}n functions as a paramagnetic semiconductor at high temperatures and a single-molecule magnet at low temperatures. When x > 0.5, the doped compounds act as diluted antiferromagnetic semiconductors with narrow band gaps (Ea = 0.2 eV). The emergence of such rich electronic and magnetic crossovers is ascribed to the cooperation of the strong electron-donating ability of the ligand and the pronounced crystal-field effects. Our findings indicate that one-dimensional (1D) coordination polymers are promising for the design of novel low-dimensional magnetic semiconductors.
Collapse
Affiliation(s)
- Yongbing Shen
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Mengxing Cui
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuto Funakoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Tomu Otake
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Jiang N, Darù A, Kunstelj Š, Vitillo JG, Czaikowski ME, Filatov AS, Wuttig A, Gagliardi L, Anderson JS. Catalytic, Spectroscopic, and Theoretical Studies of Fe 4S 4-Based Coordination Polymers as Heterogenous Coupled Proton-Electron Transfer Mediators for Electrocatalysis. J Am Chem Soc 2024; 146:12243-12252. [PMID: 38651361 DOI: 10.1021/jacs.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.
Collapse
Affiliation(s)
- Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Špela Kunstelj
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Como 22100, Italy
| | - Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
- Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago,Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| |
Collapse
|
6
|
Hsu MC, Lin RY, Sun TY, Huang YX, Li MS, Li YH, Chen HL, Shieh M. Inorganic-organic hybrid Cu-dipyridyl semiconducting polymers based on the redox-active cluster [SFe 3(CO) 9] 2-: filling the gap in iron carbonyl chalcogenide polymers. Dalton Trans 2024; 53:7303-7314. [PMID: 38587832 DOI: 10.1039/d4dt00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The construction of sulfur-incorporated cluster-based coordination polymers was limited and underexplored due to the lack of efficient synthetic routes. Herein, we report facile mechanochemical ways toward a new series of SFe3(CO)9-based dipyridyl-Cu polymers by three-component reactions of [Et4N]2[SFe3(CO)9] ([Et4N]2[1]) and [Cu(MeCN)4][BF4] with conjugated or conjugation-interrupted dipyridyl ligands, 1,2-bis(4-pyridyl)ethylene (bpee), 1,2-bis(4-pyridyl)ethane (bpea), 4,4'-dipyridyl (dpy), or 1,3-bis(4-pyridyl)propane (bpp), respectively. X-ray analysis showed that bpee-containing 2D polymers demonstrated unique SFe3(CO)9 cluster-armed and cluster-one-armed coordination modes via the hypervalent μ5-S atom. These S-Fe-Cu polymers could undergo flexible structural transformations with the change of cluster bonding modes by grinding with stoichiometric amounts of dipyridyls or 1/[Cu(MeCN)4]+. They exhibited semiconducting behaviors with low energy gaps of 1.55-1.79 eV and good electrical conductivities of 3.26 × 10-8-1.48 × 10-6 S cm-1, tuned by the SFe3(CO)9 cluster bonding modes accompanied by secondary interactions in the solid state. The electron transport efficiency of these polymers was further elucidated by solid-state packing, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), density of states (DOS), and crystal orbital Hamilton population (COHP) analysis. Finally, the solid-state electrochemistry of these polymers demonstrated redox-active behaviors with cathodically-shifted patterns compared to that of [Et4N]2[1], showing that their efficient electron communication was effectively enhanced by introducing 1 and dipyridyls as hybrid ligands into Cu+-containing networks.
Collapse
Affiliation(s)
- Ming-Chi Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Ru Yan Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Tzu-Yen Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Yu-Xin Huang
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Min-Sian Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Yu-Huei Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| | - Hui-Lung Chen
- Department of Chemistry and Institute of Applied Chemistry, Chinese Culture University, Taipei 111396, Taiwan, Republic of China.
| | - Minghuey Shieh
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China.
| |
Collapse
|
7
|
Batool S, Langer M, Myakala SN, Heiland M, Eder D, Streb C, Cherevan A. Thiomolybdate Clusters: From Homogeneous Catalysis to Heterogenization and Active Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305730. [PMID: 37899494 PMCID: PMC11475511 DOI: 10.1002/adma.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.
Collapse
Affiliation(s)
- Samar Batool
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Marcel Langer
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | | | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Dominik Eder
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐1455128MainzGermany
| | - Alexey Cherevan
- Institute of Materials ChemistryTU WienGetreidemarkt 9/BC/02Vienna1060Austria
| |
Collapse
|
8
|
Kadota K, Chen T, Gormley EL, Hendon CH, Dincă M, Brozek CK. Electrically conductive [Fe 4S 4]-based organometallic polymers. Chem Sci 2023; 14:11410-11416. [PMID: 37886097 PMCID: PMC10599474 DOI: 10.1039/d3sc02195e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Tailoring the molecular components of hybrid organic-inorganic materials enables precise control over their electronic properties. Designing electrically conductive coordination materials, e.g. metal-organic frameworks (MOFs), has relied on single-metal nodes because the metal-oxo clusters present in the vast majority of MOFs are not suitable for electrical conduction due to their localized electron orbitals. Therefore, the development of metal-cluster nodes with delocalized bonding would greatly expand the structural and electrochemical tunability of conductive materials. Whereas the cuboidal [Fe4S4] cluster is a ubiquitous cofactor for electron transport in biological systems, few electrically conductive artificial materials employ the [Fe4S4] cluster as a building unit due to the lack of suitable bridging linkers. In this work, we bridge the [Fe4S4] clusters with ditopic N-heterocyclic carbene (NHC) linkers through charge-delocalized Fe-C bonds that enhance electronic communication between the clusters. [Fe4S4Cl2(ditopic NHC)] exhibits a high electrical conductivity of 1 mS cm-1 at 25 °C, surpassing the conductivity of related but less covalent materials. These results highlight that synthetic control over individual bonds is critical to the design of long-range behavior in semiconductors.
Collapse
Affiliation(s)
- Kentaro Kadota
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Eoghan L Gormley
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
9
|
Chen X, Sun YF, Wu X, Shi S, Wang Z, Zhang J, Fang WH, Huang W. Breaking the Trade-Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High-Performance Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306260. [PMID: 37660306 DOI: 10.1002/adma.202306260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics. The molecule features a central Ce(III) core connected with eight Al atoms through sixteen bridging hydroxyls and eight 3-aminophenyl peripheries. The incorporation of this macrocycle in polymer dielectrics results in an up to sevenfold increase in dielectric constants and up to 89% reduction in dielectric loss at low frequencies. Moreover, the leakage-current densities decrease, and the breakdown strengths are improved by 63%. Relying on the above merits, FETs bearing cluster-doped polymer dielectrics give near three-orders source-drain current increments while maintaining low-level leakage/off currents, resulting in much higher charge-carrier mobilities (up to 2.45 cm2 V-1 s-1 ) and on/off ratios. This cluster-doping strategy is generalizable and shows great promise for ultralow-power photoelectric synapses and neuromorphic retinas. This work successfully breaks the trade-off between dielectric constant and loss and offers a unique design for polymer composite dielectrics.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi-Fan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Bostelaar TM, Brown AC, Sridharan A, Suess DLM. A general method for metallocluster site-differentiation. NATURE SYNTHESIS 2023; 2:740-748. [PMID: 39055685 PMCID: PMC11271975 DOI: 10.1038/s44160-023-00286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 07/27/2024]
Abstract
The deployment of metalloclusters in applications such as catalysis and materials synthesis requires robust methods for site-differentiation: the conversion of clusters with symmetric ligand spheres to those with unsymmetrical ligand spheres. However, imparting precise patterns of site-differentiation is challenging because, compared with mononuclear complexes, the ligands bound to clusters exert limited spatial and electronic influence on one another. Here, we report a method that employs sterically encumbering ligands to bind to only a subset of a cluster's coordination sites. Specifically, we show that homoleptic, phosphine-ligated Fe-S clusters undergo ligand substitution with N-heterocyclic carbenes (NHCs) to give heteroleptic clusters in which the resultant clusters' site-differentiation patterns are encoded by the steric profile of the incoming NHC. This method affords access to every site-differentiation pattern for cuboidal [Fe4S4] clusters and can be extended to other cluster types, particularly in the stereoselective synthesis of site-differentiated Chevrel-type [Fe6S8] clusters.
Collapse
Affiliation(s)
- Trever M Bostelaar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arun Sridharan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Zhang Y, Zhao X, Qin Y, Li X, Chang Y, Shi Z, Song M, Sun W, Xiao J, Li Z, Qing G. Order-order assembly transition-driven polyamines detection based on iron-sulfur complexes. Commun Chem 2023; 6:146. [PMID: 37420027 PMCID: PMC10328931 DOI: 10.1038/s42004-023-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Innovative modes of response can greatly push forward chemical sensing processes and subsequently improve sensing performance. Classical chemical sensing modes seldom involve the transition of a delicate molecular assembly during the response. Here, we display a sensing mode for polyamine detection based on an order-order transition of iron-sulfur complexes upon their assembly. Strong validation proves that the unique order-order transition of the assemblies is the driving force of the response, in which the polyamine captures the metal ion of the iron-sulfur complex, leading it to decompose into a metal-polyamine product, accompanied by an order-order transition of the assemblies. This mechanism makes the detection process more intuitive and selective, and remarkably improves the detection efficiency, achieving excellent polyamines specificity, second-level response, convenient visual detection, and good recyclability of the sensing system. Furthermore, this paper also provides opportunities for the further application of the iron-sulfur platform in environment-related fields.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiangyu Zhao
- Sixth Laboratory, Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, 96 Nankai Road, Dalian, 116045, P. R. China
| | - Yue Qin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaopei Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yongxin Chang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mengyuan Song
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenjing Sun
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jie Xiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zan Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan, 430200, P. R. China.
| |
Collapse
|
12
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Ritchhart A, Filatov AS, Jeon IR, Anderson JS. Structure and Magnetic Properties of Pseudo-1D Chromium Thiolate Coordination Polymers. Inorg Chem 2023; 62:2817-2825. [PMID: 36728752 DOI: 10.1021/acs.inorgchem.2c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis, structure, and magnetic properties of two novel, pseudo-one-dimensional (1D) chromium thiolate coordination polymers (CPs), CrBTT and Cr2BDT3, are reported. The structures of these materials were determined using X-ray powder diffraction revealing highly symmetric 1D chains embedded within a CP framework. The magnetic coupling of this chain system was measured by SQUID magnetometry, revealing a switch from antiferromagnetic to ferromagnetic behavior dictated by the angular geometrical constraints within the CP scaffold consistent with the Goodenough-Kanamori-Anderson rules. Intrachain magnetic coupling constants JNN of -32.0 and +5.7 K were found for CrBTT and Cr2BDT3, respectively, using the 1D Bonner-Fisher model of magnetism. The band structure of these materials has also been examined by optical spectroscopy and density functional theory calculations revealing semiconducting behavior. Our findings here demonstrate how CP scaffolds can support idealized low-dimensional structural motifs and dictate magnetic interactions through tuning of geometry and inter-spin couplings.
Collapse
Affiliation(s)
- Andrew Ritchhart
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Ie-Rang Jeon
- Université de Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, 35042Rennes, France
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
14
|
Keshavarz F, Rezaei N, Barbiellini B. First-Principles Perspective on Gas Adsorption by [Fe 4S 4]-Based Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:389-394. [PMID: 36579674 PMCID: PMC9835974 DOI: 10.1021/acs.langmuir.2c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
[Fe4S4] or [4S-4Fe] clusters are responsible for storing and transferring electrons in key cellular processes and interact with their microenvironment to modulate their oxidation and magnetic states. Therefore, these clusters are ideal for the metal node of chemically and electromagnetically tunable metal-organic frameworks (MOFs). To examine the adsorption-based applications of [Fe4S4]-based MOFs, we used density functional theory calculations and studied the adsorption of CO2, CH4, H2O, H2, N2, NO2, O2, and SO2 onto [Fe4S4]0, [Fe4S4]2+, and two 1D MOF models with the carboxylate and 1,4-benzenedithiolate organic linkers. Our reaction kinetics and thermodynamics results indicated that MOF formation promotes the oxidative and hydrolytic stability of the [Fe4S4] clusters but decreases their adsorption efficiency. Our study suggests the potential industrial applications of these [Fe4S4]-based MOFs because of their limited capacity to adsorb CO2, CH4, H2O, H2, N2, O2, and SO2 and high selectivity for NO2 adsorption.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department
of Physics, School of Engineering Science, LUT University, Yliopistonkatu 34, FI-53850 Lappeenranta, Finland
| | - Nima Rezaei
- Department
of Separation Science, School of Engineering Science, LUT University, Yliopistonkatu
34, FI-53850 Lappeenranta, Finland
| | - Bernardo Barbiellini
- Department
of Physics, School of Engineering Science, LUT University, Yliopistonkatu 34, FI-53850 Lappeenranta, Finland
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Yang L, Liu J. Amorphous chalcogels with local crystallinity. Nat Commun 2022; 13:7875. [PMID: 36564371 PMCID: PMC9789093 DOI: 10.1038/s41467-022-35387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lijun Yang
- grid.458500.c0000 0004 1806 7609Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 China
| | - Jian Liu
- grid.458500.c0000 0004 1806 7609Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 China
| |
Collapse
|
16
|
Shang S, Du C, Liu Y, Liu M, Wang X, Gao W, Zou Y, Dong J, Liu Y, Chen J. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nat Commun 2022; 13:7599. [PMID: 36494377 PMCID: PMC9734122 DOI: 10.1038/s41467-022-35315-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Conductive metal-organic frameworks (MOFs) have performed well in the fields of energy and catalysis, among which two-dimensional (2D) and three-dimensional (3D) MOFs are well-known. Here, we have synthesized a one-dimensional (1D) conductive metal-organic framework (MOF) in which hexacoordinated 1,5-Diamino-4,8-dihydroxy-9,10-anthraceneedione (DDA) ligands are connected by double Cu ions, resulting in nanoribbon layers with 1D π-d conjugated nanoribbon plane and out-of-plane π-π stacking, which facilitates charge transport along two dimensions. The DDA-Cu as a highly conductive n-type MOF has high crystalline quality with a conductivity of ~ 9.4 S·m-1, which is at least two orders of magnitude higher than that of conventional 1D MOFs. Its electrical band gap (Eg) and exciton binding energy (Eb) are approximately 0.49 eV and 0.3 eV, respectively. When utilized as electrode material in a supercapacitor, the DDA-Cu exhibits good charge storage capacity and cycle stability. Meanwhile, as thse active semiconductor layer, it successfully simulates the artificial visual perception system with excellent bending resistance and air stability as a MOF-based flexible optoelectronic synaptic case. The controllable preparation of high-quality 1D DDA-Cu MOF may enable new architectural designs and various applications in the future.
Collapse
Affiliation(s)
- Shengcong Shang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Changsheng Du
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Youxing Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Minghui Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xinyu Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Wenqiang Gao
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Ye Zou
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jichen Dong
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yunqi Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jianyi Chen
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|
17
|
Wang RT, Fu MM, Fu L, Dong GY. Two water-stable Zn(II) complexes for highly sensitive sensing of Cr2O72− ions and levofloxacin. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Alves L, Chen L, Lemmon CE, Gembicky M, Xu M, Schimpf AM. PEG-Infiltrated Polyoxometalate Frameworks with Flexible Form-Factors. ACS MATERIALS LETTERS 2022; 4:1937-1943. [PMID: 36213253 PMCID: PMC9533303 DOI: 10.1021/acsmaterialslett.2c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
We present the synthesis of metal oxide frameworks composed of the Preyssler anion, [NaP5W30O110]14-, bridged with transition-metal cations and infiltrated with polyethylene glycol. The frameworks can be dissolved in water to form freestanding rigid or flexible films or gels. Powder X-ray diffraction shows that all form-factors maintain the short-range order of the original crystals. Raman spectroscopy reveals that, similar to hydrogels, the macroscopic mechanical properties of these composites are dependent on the water content and the extent of hydrogen-bonding within the water network. The understanding gained from these studies facilitates solution-phase processing of polyoxometalate frameworks into flexible form factors.
Collapse
Affiliation(s)
- Liana
S. Alves
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Linfeng Chen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Carl E. Lemmon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Milan Gembicky
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Mingjie Xu
- Irvine
Materials Research Institute, University
of California, Irvine, California 92697, United States
| | - Alina M. Schimpf
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Kamakura Y, Yasuda S, Hosokawa N, Nishioka S, Hongo S, Yokoi T, Tanaka D, Maeda K. Selective CO 2-to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shuhei Yasuda
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Naoki Hosokawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunta Nishioka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Sawa Hongo
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiyuki Yokoi
- Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Akram R, Akhtar J, Khan HR, Akhtar M, Malik MA, Revaprasdu N, AlGhamdi Y, Bhatti MH. Synthesis of nanostructures of binary/ternary phase iron sulfide/selenide by hot injection route and their application as photocatalysts for degradation of red S3B dye. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Gillen JH, Moore CA, Vuong M, Shajahan J, Anstey MR, Alston JR, Bejger CM. Synthesis and disassembly of an organometallic polymer comprising redox-active Co 4S 4 clusters and Janus biscarbene linkers. Chem Commun (Camb) 2022; 58:4885-4888. [PMID: 35352711 DOI: 10.1039/d2cc00953f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we show for the first time that main-chain organometallic polymers (MCOPs) can be prepared from Janus N-heterocyclic carbene (NHC) linkers and polynuclear cluster nodes. The crosslinked framework Co4S4-MCOP is synthesized via ligand displacement reactions and undergoes reversible electron transfer in the solid state. Discrete molecular cluster species can be excised from the framework by digesting the solid in solutions of excess monocarbene. Finally, we demonstrate a synthetic route to monodisperse framework particles via coordination modulation.
Collapse
Affiliation(s)
- Jonathan H Gillen
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Connor A Moore
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - My Vuong
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Juvairia Shajahan
- The Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | | | - Jeffrey R Alston
- The Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | - Christopher M Bejger
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
22
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Mitchell B, Krajewski SM, Kephart JA, Rogers D, Kaminsky W, Velian A. Redox-Switchable Allosteric Effects in Molecular Clusters. JACS AU 2022; 2:92-96. [PMID: 35098225 PMCID: PMC8790731 DOI: 10.1021/jacsau.1c00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate that allosteric effects and redox state changes can be harnessed to create a switch that selectively and reversibly regulates the coordination chemistry of a single site on the surface of a molecular cluster. This redox-switchable allostery is employed as a guiding force to assemble the molecular clusters Zn3Co6Se8L'6 (L' = Ph2PN(H)Tol, Ph = phenyl, Tol = 4-tolyl) into materials of predetermined dimensionality (1- or 2-D) and to encode them with emissive properties. This work paves the path to program the assembly and function of inorganic clusters into stimuli-responsive, atomically precise materials.
Collapse
|
24
|
Cadmium(II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: Crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Du S, Cui M, He Z. Approach toward Iron(II) Coordination Polymers Based on Chain Motifs with Thiolate or Mixed Thiolate/Carboxylate Bridges: Structures and Magnetic Properties. Inorg Chem 2021; 60:19053-19061. [PMID: 34889601 DOI: 10.1021/acs.inorgchem.1c02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for iron-sulfur-based coordination polymers (CPs) has become an attractive field in recent years. Here we demonstrate how it is possible to synthesize new iron-sulfur-based CPs by solvothermal reactions of [CpFe(CO)2]2 (Cp = cyclopentadienyl) with two positional isomeric ligands 6-mercaptonicotinic acid (6-H2mna) and 2-mercaptoisonicotinic acid (2-H2mina) in different mixed-solvent systems. The reactions afforded, in moderate yields, a variety of desired CPs, namely, [Fe(6-Hmna)2] (1), [Fe3(6-Hmna)2(6-mna)2] (2), [Fe2(6-mna)2]·H2O (3), and [Fe(2 mina)(H2O)] (4 and 5). The structures of these compounds have been characterized by single-crystal X-ray diffraction, which reveals that they all contain 1D chain motifs of iron held together in different ways by thiolate or mixed thiolate/carboxylate bridges. These chains are further connected through the ligand backbones to form 3D networks of 1-3 and 5 and a 2D sheet of 4. Moreover, magnetic investigations indicate that both 1 and 4 display canted antiferromagnetic behavior with weak ferromagnetism, while 2 and 5 possess short-range antiferromagnetic order at ∼20 K. CP 3 exhibits paramagnetic behavior down to 2 K with strong spin frustration.
Collapse
Affiliation(s)
- Shaowu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P. R. China
| | - Meiyan Cui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhangzhen He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
26
|
Wakiya T, Kamakura Y, Shibahara H, Ogasawara K, Saeki A, Nishikubo R, Inokuchi A, Yoshikawa H, Tanaka D. Machine-Learning-Assisted Selective Synthesis of a Semiconductive Silver Thiolate Coordination Polymer with Segregated Paths for Holes and Electrons. Angew Chem Int Ed Engl 2021; 60:23217-23224. [PMID: 34431599 DOI: 10.1002/anie.202110629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/29/2022]
Abstract
Coordination polymers (CPs) with infinite metal-sulfur bond networks have unique electrical conductivities and optical properties. However, the development of new (-M-S-)n -structured CPs is hindered by difficulties with their crystallization. Herein, we describe the use of machine learning to optimize the synthesis of trithiocyanuric acid (H3 ttc)-based semiconductive CPs with infinite Ag-S bond networks, report three CP crystal structures, and reveal that isomer selectivity is mainly determined by proton concentration in the reaction medium. One of the CPs, [Ag2 Httc]n , features a 3D-extended infinite Ag-S bond network with 1D columns of stacked triazine rings, which, according to first-principle calculations, provide separate paths for holes and electrons. Time-resolved microwave conductivity experiments show that [Ag2 Httc]n is highly photoconductive (φΣμmax =1.6×10-4 cm2 V-1 s-1 ). Thus, our method promotes the discovery of novel CPs with selective topologies that are difficult to crystallize.
Collapse
Affiliation(s)
- Takuma Wakiya
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hiroki Shibahara
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kazuyoshi Ogasawara
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Nishikubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Inokuchi
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JST PRESTO, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
27
|
Wakiya T, Kamakura Y, Shibahara H, Ogasawara K, Saeki A, Nishikubo R, Inokuchi A, Yoshikawa H, Tanaka D. Machine‐Learning‐Assisted Selective Synthesis of a Semiconductive Silver Thiolate Coordination Polymer with Segregated Paths for Holes and Electrons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takuma Wakiya
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Yoshinobu Kamakura
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Hiroki Shibahara
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Kazuyoshi Ogasawara
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ryosuke Nishikubo
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Akihiro Inokuchi
- Department of Informatics School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Daisuke Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JST PRESTO 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
28
|
Kamakura Y, Fujisawa S, Takahashi K, Toshima H, Nakatani Y, Yoshikawa H, Saeki A, Ogasawara K, Tanaka D. Redox-Active Tin Metal-Organic Framework with a Thiolate-Based Ligand. Inorg Chem 2021; 60:12691-12695. [PMID: 34402610 DOI: 10.1021/acs.inorgchem.1c01725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) and coordination polymers composed of thiolates as coordinating functional groups are interesting materials with unique optical and electronical properties. Herein, we report the preparation of KGF-4 and KGF-10, two Sn-MOF crystal structures with bonds between Sn and thiolate. KGF-10 was isolated as a pure phase and found to exhibit redox properties and a semiconducting band structure, as confirmed by first-principles (density functional theory) calculations.
Collapse
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Satoshi Fujisawa
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Koki Takahashi
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroki Toshima
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yuka Nakatani
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Ogasawara
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.,JST PRESTO, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
29
|
Salinas O, Xie J, Papoular RJ, Horwitz NE, Elkaim E, Filatov AS, Anderson JS. Steric and electronic effects of ligand substitution on redox-active Fe 4S 4-based coordination polymers. Dalton Trans 2021; 50:10798-10805. [PMID: 34287442 DOI: 10.1039/d1dt01652k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the notable advantages of molecular materials is the ability to precisely tune structure, properties, and function via molecular substitutions. While many studies have demonstrated this principle with classic carboxylate-based coordination polymers, there are comparatively fewer examples where systematic changes to sulfur-based coordination polymers have been investigated. Here we present such a study on 1D coordination chains of redox-active Fe4S4 clusters linked by methylated 1,4-benzene-dithiolates. A series of new Fe4S4-based coordination polymers were synthesized with either 2,5-dimethyl-1,4-benzenedithiol (DMBDT) or 2,3,5,6-tetramethyl-1,4-benzenedithiol (TMBDT). The structures of these compounds have been characterized based on synchrotron X-ray powder diffraction while their chemical and physical properties have been characterized by techniques including X-ray photoelectron spectroscopy, cyclic voltammetry and UV-visible spectroscopy. Methylation results in the general trend of increasing electron-richness in the series, but the tetramethyl version exhibits unexpected properties arising from steric constraints. All these results highlight how substitutions on organic linkers can modulate electronic factors to fine-tune the electronic structures of metal-organic materials.
Collapse
Affiliation(s)
- Omar Salinas
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | - Jiaze Xie
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | - Robert J Papoular
- Leon Brillouin Laboratory, French Alternative Energies and Atomic Energy Commission Saclay Institute of Matter and Radiation, IRAMIS/CEA-Saclay, Gif-sur-Yvette, Île-de-France, France
| | - Noah E Horwitz
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| | | | | | - John S Anderson
- Chemistry, The University of Chicago, Chicago, Illinois, United States.
| |
Collapse
|
30
|
Kamakura Y, Sakura C, Saeki A, Masaoka S, Fukui A, Kiriya D, Ogasawara K, Yoshikawa H, Tanaka D. Photoconductive Coordination Polymer with a Lead-Sulfur Two-Dimensional Coordination Sheet Structure. Inorg Chem 2021; 60:5436-5441. [PMID: 33830746 DOI: 10.1021/acs.inorgchem.0c03801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Coordination polymers with metal-sulfur (M-S) bonds in their nodes have interesting optical properties and can be used as photocatalysts for water splitting. A wide range of inorganic-organic hybrid materials with M-S bonds have been prepared in recent years. However, there is a dearth of structural information because of their low crystallinity, which has hampered the understanding of their underlying chemistry and physics. Thus, we conducted a structural study of a novel, highly crystalline coordination polymer with M-S bonds. Theoretical calculations were performed to elucidate its photoconductivity mechanism. The photoconductive, three-dimensional coordination polymer [Pb(tadt)]n (denoted as KGF-9; tadt = 1,3,4-thiadiazole-2,5-dithiolate) was synthesized and confirmed to have a three-dimensional structure containing a two-dimensional Pb-S framework by single-crystal X-ray diffraction. We also performed diffuse-reflectance ultraviolet-visible-near-infrared spectroscopy, time-resolved microwave conductivity, and photoelectron yield spectroscopy measurements on the bulk powder samples, as well as first-principles calculations. Additionally, direct-current photoconductivity measurements were conducted on a single-crystal sample.
Collapse
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chinatsu Sakura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akito Fukui
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599- 8531, Japan
| | - Daisuke Kiriya
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599- 8531, Japan
| | - Kazuyoshi Ogasawara
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
- Japan Science and Technology Agency (JST) PRESTO, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
31
|
Kamakura Y, Tanaka D. Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. CHEM LETT 2021. [DOI: 10.1246/cl.200777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
- JST PRESTO, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
32
|
Bazyakina NL, Makarov VM, Ketkov SY, Bogomyakov AS, Rumyantcev RV, Ovcharenko VI, Fedushkin IL. Metal-Organic Frameworks Derived from Calcium and Strontium Complexes of a Redox-Active Ligand. Inorg Chem 2021; 60:3238-3248. [PMID: 33587624 DOI: 10.1021/acs.inorgchem.0c03647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of monomeric [(dpp-Bian)M(thf)4] (M = Ca (1a), Sr (1b); dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 4,4'-bipyridyl (4,4'-bipy) proceed with electron transfer from dpp-Bian2- to 4,4'-bipy0 to afford calcium and strontium complexes containing simultaneously radical-anionic dpp-Bian- and 4,4'-bipy- ligands. In tetrahydrofuran (thf) the reactions result in 1D coordination polymers [{(dpp-Bian)M(4,4'-bipy)(thf)2}·4thf]n (M = Ca (2a), Sr (2b)), while in a thf/benzene mixture the reaction between 1a and 4,4'-bipy affords the 2D metal-organic framework [{(dpp-Bian)Ca(4,4'-bipy)2}·2thf·2C6H6]n (3). The structures of compounds 2a,b and 3 have been determined by single-crystal X-ray analyses. The presence of the ligand-localized unpaired electrons allows the use of ESR spectroscopy for characterization of the compounds 2a,b and 3. DFT calculations of model calcium complexes with the dpp-Bian, 4,4'-bipy, and thf ligands confirm the energetically favorable open-shell configurations of the molecules bearing the 4,4'-bipy fragments. The magnetic susceptibility measurements confirm the presence of two unpaired electrons per monomeric unit in 2a,b and 3. The thermal stability of compounds 2a,b and 3 was studied by thermogravimetric analysis (TGA). To the best of our knowledge, 3 is the first MOF simultaneously containing two different paramagnetic bridging ligands inside the framework.
Collapse
Affiliation(s)
- Natalia L Bazyakina
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Valentin M Makarov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Sergey Yu Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3a, Novosibirsk, 630090 Russian Federation
| | - Roman V Rumyantcev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| | - Victor I Ovcharenko
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3a, Novosibirsk, 630090 Russian Federation
| | - Igor L Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation
| |
Collapse
|
33
|
Li J, Tan Y, Cao C, Wang ZK, Niu Z, Song YL, Lang JP. One-dimensional and two-dimensional coordination polymers from cluster modular construction. CrystEngComm 2021. [DOI: 10.1039/d1ce00206f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster module construction of W/Cu/S cluster-based coordination polymers and their third-order NLO properties were investigated.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yi Tan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Chen Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Zhi-Kang Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Zheng Niu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Ying-Lin Song
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|
34
|
Kephart JA, Romero CG, Tseng CC, Anderton KJ, Yankowitz M, Kaminsky W, Velian A. Hierarchical nanosheets built from superatomic clusters: properties, exfoliation and single-crystal-to-single-crystal intercalation. Chem Sci 2020; 11:10744-10751. [PMID: 34094327 PMCID: PMC8162370 DOI: 10.1039/d0sc03506h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 12/23/2022] Open
Abstract
Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co3(py)3Co6Se8L6 (py = pyridine, L = Ph2PN(Tol)), and ditopic linkers. Post-synthetically, the 3D crystals can be mechanically exfoliated into ultrathin flakes (8 to 60 nm), or intercalated with the redox-active guest tetracyanoethylene in a single-crystal-to-single-crystal transformation. Extensive characterization, including by single crystal X-ray diffraction, reveals how intrinsic features of the nanocluster, such as its structure, chirality, redox-activity and magnetic profile, predetermine key properties of the emerging 2D structures. Within the nanosheets, the strict and unusual stereoselectivity of the nanocluster's Co edges for the low symmetry (α,α,β) isomer gives rise to in-plane structural anisotropy, while the helically chiral nanoclusters self-organize into alternating Δ- and Λ-homochiral rows. The nanocluster's high-spin Co edges, and its rich redox profile make the nanosheets both magnetically and electrochemically active, as revealed by solid state magnetic and cyclic voltammetry studies. The length and flexibility of the ditopic linker was varied, and found to have a secondary effect on the structure and stacking of the nanosheets within the 3D crystals. With these results we introduce a deterministic and versatile synthetic entry to programmable functionality and symmetry in 2D superatomic crystals.
Collapse
Affiliation(s)
- Jonathan A Kephart
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Catherine G Romero
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Chun-Chih Tseng
- Department of Physics, University of Washington Seattle Washington 98195 USA
| | - Kevin J Anderton
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - Matthew Yankowitz
- Department of Physics, University of Washington Seattle Washington 98195 USA
- Department of Materials Science and Engineering, University of Washington Seattle Washington 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| |
Collapse
|
35
|
Xie J, Wang L, Anderson JS. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem Sci 2020; 11:8350-8372. [PMID: 34123098 PMCID: PMC8163426 DOI: 10.1039/d0sc03429k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
While metal-oxygen clusters are widely used as secondary building units in the construction of coordination polymers or metal-organic frameworks, multimetallic nodes with heavier chalcogenide atoms (S, Se, and Te) are comparatively untapped. The lower electronegativity of heavy chalcogenides means that transition metal clusters of these elements generally exhibit enhanced coupling, delocalization, and redox-flexibility. Leveraging these features in coordination polymers provides these materials with extraordinary properties in catalysis, conductivity, magnetism, and photoactivity. In this perspective, we summarize common transition metal heavy chalcogenide building blocks including polynuclear metal nodes with organothiolate/selenolate or anionic heavy chalcogenide atoms. Based on recent discoveries, we also outline potential challenges and opportunities for applications in this field.
Collapse
Affiliation(s)
- Jiaze Xie
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Lei Wang
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
36
|
Deng X, Hu JY, Luo J, Liao WM, He J. Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Top Curr Chem (Cham) 2020; 378:27. [DOI: 10.1007/s41061-020-0289-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
|
37
|
Xie J, Boyn JN, Filatov AS, McNeece AJ, Mazziotti DA, Anderson JS. Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chem Sci 2019; 11:1066-1078. [PMID: 34084362 PMCID: PMC8145528 DOI: 10.1039/c9sc04381k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we report that capping the molecule TTFtt (TTFtt = tetrathiafulvalene-2,3,6,7-tetrathiolate) with dialkyl tin groups enables the isolation of a stable series of redox congeners and facile transmetalation to Ni and Pd. TTFtt has been proposed as an attractive building block for molecular materials for two decades as it combines the redox chemistry of TTF and dithiolene units. TTFttH4, however, is inherently unstable and the incorporation of TTFtt units into complexes or materials typically proceeds through the in situ generation of the tetraanion TTFtt4-. Capping of TTFtt4- with Bu2Sn2+ units dramatically improves the stability of the TTFtt moiety and furthermore enables the isolation of a redox series where the TTF core carries the formal charges of 0, +1, and +2. All of these redox congeners show efficient and clean transmetalation to Ni and Pd resulting in an analogous series of bimetallic complexes capped by 1,2-bis(diphenylphosphino)ethane (dppe) ligands. Furthermore, by using the same transmetalation method, we synthesized analogous palladium complexes capped by 1,1'-bis(diphenylphosphino)ferrocene (dppf) which had been previously reported. All of these species have been thoroughly characterized through a systematic survey of chemical and electronic properties by techniques including cyclic voltammetry (CV), ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR), electron paramagnetic resonance spectroscopy (EPR), nuclear magnetic resonance spectroscopy (NMR) and X-ray diffraction (XRD). These detailed synthetic and spectroscopic studies highlight important differences between the transmetalation strategy presented here and previously reported synthetic methods for the installation of TTFtt. In addition, the utility of this stabilization strategy can be illustrated by the observation of unusual TTF radical-radical packing in the solid state and dimerization in the solution state. Theoretical calculations based on variational 2-electron reduced density matrix methods have been used to investigate these unusual interactions and illustrate fundamentally different levels of covalency and overlap depending on the orientations of the TTF cores. Taken together, this work demonstrates that tin-capped TTFtt units are ideal reagents for the installation of redox-tunable TTFtt ligands enabling the generation of entirely new geometric and electronic structures.
Collapse
Affiliation(s)
- Jiaze Xie
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Jan-Niklas Boyn
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - David A Mazziotti
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - John S Anderson
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|