1
|
Baker RG, Reichl KD, Smith MJ, Ricca M, Mickelberg MA, Porco JA. Substrate- and Reagent-Controlled Dimerization of Vinyl para-Quinone Methides. J Org Chem 2025; 90:5871-5889. [PMID: 40257254 DOI: 10.1021/acs.joc.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Substrate and reagent-controlled dimerization of vinyl para-quinone methides (VPQMs) is reported. When subjected to Brønsted acidic conditions, VPQM dimerization occurs via a formal 1,8-addition to provide griffipavixanthone (GPX)-type congeners. Under optimized Lewis acidic conditions, a change in regioselectivity affords limonene-containing dimers by a 1,6-addition/cyclization process. This divergent reactivity has been explored on several substrates of differing complexity, providing access to analogues of the natural product griffipavixanthone (GPX) as well as a range of novel, substituted limonene dimers.
Collapse
Affiliation(s)
- Ryan G Baker
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Kyle D Reichl
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Michael J Smith
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Michael Ricca
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Margaret A Mickelberg
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Brion A, Martini V, Lombard M, Retailleau P, Della Ca' N, Neuville L, Masson G. Phenolic Dienes as Highly Selective Dienophiles in the Asymmetric Organocatalyzed Three-Component Vinylogous Povarov Reaction. J Org Chem 2024; 89:12298-12306. [PMID: 39152912 DOI: 10.1021/acs.joc.4c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Our study presents a novel enantioselective route for the synthesis of 1,2,3,4-tetrahydroquinolines via a chiral phosphoric acid-catalyzed three-component Povarov reaction, employing phenolic dienes as dienophiles. This approach produces a diverse array of 2,3,4-trisubstituted tetrahydroquinolines, each featuring a styryl group at position 4, in high yields with excellent regio-, diastereo-, and enantioselectivities (>95:5 dr and up to >99% ee).
Collapse
Affiliation(s)
- Aurélien Brion
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Vittoria Martini
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nicola Della Ca'
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| |
Collapse
|
5
|
Wang C, Lin J, Huang H, Ye C, Bao H. Regio- and Diastereoselective Radical Dimerization Reactions for the Construction of Benzo[ f]isoindole Dimers. Org Lett 2024; 26:2580-2584. [PMID: 38526484 DOI: 10.1021/acs.orglett.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Jingyi Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haiyang Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| |
Collapse
|
6
|
Ou-Yang T, Zhang Y, Luo HZ, Liu Y, Ma SC. Novel compounds discovery approach based on UPLC-QTOF-MS/MS chemical profile reveals birch bark extract anti-inflammatory, -oxidative, and -proliferative effects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116148. [PMID: 36634723 DOI: 10.1016/j.jep.2023.116148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Betula pendula subsp. Mandshurica (Regel) Ashburner & McAll. Cortex (birch bark) is a globally traditional medicine for treating multiple inflammatory diseases. Its records are included in the Compendium of Materia Medica and other ancient medical literatures. However, uncovering its chemical profile and exploring novel biologically active compounds from birch bark remains a significant challenge. AIM OF THE STUDY To uncover the anti-inflammatory, -oxidative, and -proliferative mechanisms and potentially effective compounds of birch bark extract by combing chemical profiling, isolation, identification, together with in vivo, in vitro, and silico evaluation. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) was used to obtain the chemical profile of birch bark extract. The new compounds were obtained via column chromatography and analyzed using X-ray diffraction and electronic circular dichroism for absolute configuration confirmation. The zebrafish caudal fin inflammation-induced model, qPCR, and Western blot analysis were used to explore the effects and underlying mechanisms of birch bark extract. In vitro cytotoxicity assays and kinases screening conducted to gain preliminary insight into the anti-proliferative effects of birch bark extract and its isolated compounds. In addition, in-silico molecular docking was performed to investigate the putative mechanism. RESULTS UPLC-QTOF-MS/MS chemical profiles revealed 105 compounds in birch bark extract, with 80 of these were first reported in B. pendula subsp. Mandshurica cortex. We selected five compounds speculated as novel and isolated three ones (one triterpenoid derivative and two lupine series triterpenoids) for further analysis. Birch bark extract exerted antioxidative and anti-inflammatory effects on zebrafish, as shown by the downregulated reactive oxygen species levels and COX-2α, IL-1β, and TNF-α expression, which occurred through NF-ĸB signaling pathway activation. The in vitro anti-proliferative effects of birch bark extract and compound 44 were also unveiled. Moreover, the putative anti-tumor mechanism of compound 44 was revealed using kinase screening and in-silico molecular docking. CONCLUSIONS This study provided a predictable chemical profile and demonstrated the pharmacological effects of birch bark extract, elucidated the mechanism of this traditional Chinese medicine and suggested it as a novel anti-cancer candidate.
Collapse
Affiliation(s)
- Ting Ou-Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yi Zhang
- Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, Jiangxi, 341000, PR China
| | - Heng-Zhen Luo
- Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou, Jiangxi, 341000, PR China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Shuang-Cheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, PR China.
| |
Collapse
|
7
|
Woldegiorgis AG, Muhammad S, Lin X. Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xufeng Lin
- Zhejiang University Department of Chemistry 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
8
|
Phang YL, Liu S, Zheng C, Xu H. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep 2022; 39:1766-1802. [PMID: 35762867 DOI: 10.1039/d1np00077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.
Collapse
Affiliation(s)
- Yee Lin Phang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Song Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Wang LL, Yu Q, Zhang W, Yang S, Peng L, Zhang L, Li XN, Gagosz F, Kirschning A. Asymmetric Total Synthesis of Antibiotic Elansolid A. J Am Chem Soc 2022; 144:6871-6881. [PMID: 35410472 DOI: 10.1021/jacs.2c01133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elansolid A is a structurally complex polyketide macrolactone natural product that exhibits promising antibacterial properties. Its challenging asymmetric total synthesis was achieved by a convergent strategy, in which the tetrahydroindane core of the molecule and an eastern vinyl iodide moiety were combined as the main fragments. The central tetrahydroindane motif was constructed with high stereoselectivity by a bioinspired intramolecular Diels-Alder cycloaddition, generating four stereogenic centers in a single step. The stereocontrol of this key step could be achieved by virtue of a 1,3-allylic strain generated by the temporary introduction of a steric-directing iodine substituent on the substrate. The formation of the macrolactone motif that completes the synthesis was achieved via two different retrosynthetic disconnections, namely, a Suzuki-Miyaura cross-coupling or an alternative Mukaiyama esterification reaction.
Collapse
Affiliation(s)
- Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Qi Yu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuai Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Lin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
10
|
Wang N, Wu Z, Wang J, Ullah N, Lu Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem Soc Rev 2021; 50:9766-9793. [PMID: 34286704 DOI: 10.1039/d0cs01124j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The past two decades have witnessed remarkable growth of asymmetric organocatalysis, which is now a firmly established synthetic tool, serving as a powerful platform for the production of chiral molecules. Ring structures are ubiquitous in organic compounds, and, in the context of natural product synthesis, strategic construction of ring motifs is often crucial, fundamentally impacting the eventual fate of the whole synthetic plan. In this review, we provide a comprehensive and updated summary of asymmetric organocatalytic annulation reactions; in particular, the application of these annulation strategies in natural product synthesis will be highlighted.
Collapse
Affiliation(s)
- Nengzhong Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | | | | | | | | |
Collapse
|
11
|
Li T, Song J, Wang L, Lei T, Jiang S, Wang F. A simple and efficient total synthesis of anticancer indole alkaloids TMC-205 and its analogues. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Wang L, Lei T, Wang F, Jiang S, Yan G. Total synthesis of indiacen A using a practical one-pot reaction: Promoted by a key waste product, and its utility in natural products synthesis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Sun J, Yang H, Tang W. Recent advances in total syntheses of complex dimeric natural products. Chem Soc Rev 2021; 50:2320-2336. [PMID: 33470268 DOI: 10.1039/d0cs00220h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dimeric natural products are a collection of molecules with diverse molecular architectures and significant bio-activities. In this tutorial review, total synthesis of complex dimeric natural products accomplished in recent years are summarized and various dimerization strategies are discussed. By highlighting the selected representative examples, this review aims to demonstrate the recent tactics of dimerization which is an important process integrated into the whole synthetic sequences of dimeric natural products, provide insights on structural and chemical properties of monomers and dimers of related natural products, and promote further technological advances in organic synthesis and biological studies of complex dimeric natural products.
Collapse
Affiliation(s)
- Jiawei Sun
- State Key Laboratory of Bio-Organic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | |
Collapse
|
14
|
Tang Z, Lu L, Xia Z. Anti-Tumor Xanthones from Garcinia nujiangensis Suppress Proliferation, and Induce Apoptosis via PARP, PI3K/AKT/mTOR, and MAPK/ERK Signaling Pathways in Human Ovarian Cancers Cells. Drug Des Devel Ther 2020; 14:3965-3976. [PMID: 33061301 PMCID: PMC7524179 DOI: 10.2147/dddt.s258811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a serious public health concern in the world. It is important to develop novel drugs to inhibit OC. PURPOSE This study investigated the isolation, elucidation, efficiency, molecular docking, and pharmaceutical mechanisms of xanthones isolated from Garcinia nujiangensis. METHODS Xanthones were isolated, and purified by different chromatography, including silica gel, reversed-phase silica gel (ODS-C18), and semipreparative HPLC, then identified by analysis of their spectral data. Three xanthones were estimated for their efficiency on the human OC cells HEY and ES-2. 2 was found to be the most potent cytotoxic xanthones of those tested. Further, its mechanisms of action were explored by molecular docking, cell apoptosis, and Western blotting analysis. RESULTS Bioassay-guided fractionation of the fruits of Garcinia nujiangensis led to the separation of a new xanthone named nujiangexanthone G (1) and two known xanthones. Among these, isojacareubin (2) exhibited the most potent cytotoxic compound against the HEY and ES-2 cell lines. The analysis of Western blot suggested that 2 inhibited OC via regulating the PARP, PI3K/AKT/mTOR, and ERK/MAPK signal pathways in the HEY cell lines. CONCLUSION In conclusion, isojacareubin (2) might be a potential drug for the treatment of OC.
Collapse
Affiliation(s)
- Zhongyan Tang
- Department of Emergency and Critical Care Medicine, Jin Shan Hospital, Fudan University, Shanghai201508, People’s Republic of China
| | - Lihua Lu
- Department of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200030, People’s Republic of China
| | - Zhengxiang Xia
- Department of Pharmacy, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai200072, People’s Republic of China
| |
Collapse
|
15
|
Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Cross-dehydrogenative coupling enables enantioselective access to CF 3-substituted all-carbon quaternary stereocenters. Chem Sci 2020; 11:2414-2419. [PMID: 34084405 PMCID: PMC8157275 DOI: 10.1039/c9sc05894j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
A cross-dehydrogenative coupling strategy for enantioselective access to acyclic CF3-substituted all-carbon quaternary stereocenters has been established. By using catalytic DDQ with MnO2 as an inexpensive terminal oxidant, asymmetric cross coupling of racemic δ-CF3-substituted phenols with indoles proceeded smoothly, providing CF3-bearing all-carbon quaternary stereocenters with excellent chemo- and enantioselectivities. The generality of the strategy is further demonstrated by efficient construction of all-carbon quaternary stereocenters bearing other polyfluoroalkyl and perfluoroalkyl groups such as CF2Cl, C2F5, and C3F7.
Collapse
Affiliation(s)
- Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Ying Mao
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|