1
|
Cheng Y, Wang X, Yang X, Zhang Y, You H. Impact of a single 8-oxoguanine lesion on Watson-Crick and Hoogsteen base pair hybridization in telomeric DNA quantified using single-molecule force spectroscopy. Nucleic Acids Res 2025; 53:gkaf508. [PMID: 40521660 PMCID: PMC12168069 DOI: 10.1093/nar/gkaf508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/11/2025] [Accepted: 05/30/2025] [Indexed: 06/19/2025] Open
Abstract
8-Oxoguanine (8-oxoG) is a common DNA oxidative lesion prevalent in telomeric regions. However, the impact of 8-oxoG modification on the Watson-Crick base pairing energy remains controversial, potentially due to the formation of partially folded intermediates. Here, we used single-molecule magnetic tweezers to characterize the mechanical stability and equilibrium folding/unfolding transitions of human telomeric hairpins containing a single 8-oxoG lesion at different positions. Our results reveal that fully folded hairpins with a centrally located 8-oxoG exhibit similar hybridization energy (ΔΔG ∼ 1 kBT) and folding/unfolding rates to the wild type. This provides valuable data for refining the energy contribution of 8-oxoG-C base pair. In contrast, a single 8-oxoG lesion near the unzipping termini (5'-end or 3'-end) significantly enhances end fraying and hinders the complete folding of the hairpin under force. A 5'-end 8-oxoG lesion increased the unfolding rates by a 130-fold compared to the wild type at 10.1 pN. These findings provide insights into the unzipping dynamics of DNA duplexes containing 8-oxoG lesions at replication and transcription forks. Furthermore, we observed that an 8-oxoG at 5'-end of telomeric G-quadruplexes (G4s) significantly decreases folding rates and folding free energy (from 5.9 kBT to 2.3 kBT), shedding light on the dynamics of G4s under oxidative stress.
Collapse
Affiliation(s)
- Yuanlei Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuyang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yashuo Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Aleksič S, Podbevšek P, Plavec J. Oxidative events in a double helix system promote the formation of kinetically trapped G-quadruplexes. Nucleic Acids Res 2025; 53:gkaf260. [PMID: 40183633 PMCID: PMC11969667 DOI: 10.1093/nar/gkaf260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Guanine-rich oligonucleotide sequences can adopt four-stranded G-quadruplex structures. These sequences are highly susceptible to oxidative damage due to the low redox potential of their constituent guanine nucleotides. Oxidative lesions of guanine residue exhibit perturbations in the position of hydrogen-bond donors and acceptors, which can impair the formation of G-quadruplexes. Here we studied the effect of guanine oxidation in model systems comprised of a G-rich as well as a complementary C-rich DNA strand to discern how oxidative damage can destabilize double-stranded DNA and promote G-quadruplex formation. Our data show that G-rich strands containing oxidative lesions can still adopt the G-quadruplex fold due to the presence of spare G-tracts, which rescue the damaged G-tracts via either full or partial replacement. However, most of the observed G-quadruplexes are kinetically trapped structures and the preferred equilibrium state of the two-stranded constructs is double-stranded DNA.
Collapse
Affiliation(s)
- Simon Aleksič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Zewail-Foote M, del Mundo IMA, Klattenhoff AW, Vasquez KM. Oxidative damage within alternative DNA structures results in aberrant mutagenic processing. Nucleic Acids Res 2025; 53:gkaf066. [PMID: 39950343 PMCID: PMC11826088 DOI: 10.1093/nar/gkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.
Collapse
Affiliation(s)
- Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, United States
| | - Imee M A del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Alex W Klattenhoff
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| |
Collapse
|
4
|
Yan X, Wang Q, Yang P, Liu Y, Liu B, Wang T, Qiu D, Wei S, Chen D, Zhou J, Liu C, Zhang X. Amplification Bias-Free Sequence-Generic Exponential Amplification Reaction. Anal Chem 2025; 97:2308-2317. [PMID: 39856581 DOI: 10.1021/acs.analchem.4c05633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Despite the unique advantage of the isothermal exponential amplification reaction (EXPAR) for the rapid detection of short nucleic acids, it severely suffers from the drawback of sequence-dependent amplification bias, mainly arising from the secondary structures of the EXPAR template under the commonly used reaction temperature (55 °C). As such, the limits of detection (LOD) for different target sequences may vary considerably from aM to nM. Here we report a sequence-generic exponential amplification reaction (SG-EXPAR) that eliminates sequence-dependent amplification bias and achieves similar amplification performance for different targets with generally sub-fM LODs. The assay innovatively employs a thermophilic nicking enzyme that allows SG-EXPAR to work efficiently at higher temperatures (60-70 °C) while eliminating the secondary structures of the templates, which is the basis for eliminating the amplification bias. Furthermore, we increased the probability of trigger/template binding through rational modification of the locked nucleic acids and template optimization, further ensuring the high amplification efficiency for various targets. According to these critical principles, we have developed an automated design platform that allows nonspecialists to obtain the optimal SG-EXPAR template for any desired sequence. The robust performance of the proposed methodology was demonstrated by quantifying microRNA, SARS-CoV-2, monkeypox virus, and HPV B19 at the 1 fM level without sequence screening. SG-EXPAR significantly expands the potential applications of EXPAR and facilitates the development of reliable point-of-care nucleic acid assays.
Collapse
Affiliation(s)
- Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Qingyuan Wang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, P. R. China
| | - Peiru Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
5
|
Podbevšek P, Plavec J. Enzymatic bypass of G-quadruplex structures containing oxidative lesions. Nucleic Acids Res 2025; 53:gkae1157. [PMID: 39673512 PMCID: PMC11724267 DOI: 10.1093/nar/gkae1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024] Open
Abstract
The function of many DNA processing enzymes involves sliding along the double helix or individual DNA strands. Stable secondary structures in the form of G-quadruplexes are difficult for such enzymes to bypass. We used a polymerase stop assay to determine which structural features of the human telomeric and the BCL2 promoter G-quadruplexes can stall progression of the Klenow fragment. Primer extension profiles revealed that G-quartets are effective roadblocks for the Klenow fragment, while auxiliary base pairs can be easily bypassed. Furthermore, we utilized 8-oxoguanine to simulate oxidative damage in G-rich regions and determine the effects on enzyme bypass. In rare cases, oxidative lesions reduce the level of G-quadruplex bypass. In general, however, oxidative lesions reduce G-quadruplex stability and facilitate bypassing of such G-rich regions, especially if the lesion persists in unfolding intermediates. Our findings using Klenow fragment can be extrapolated to other G-quadruplex forming sequences and enzymes that utilise a clamp-like structure to slide along DNA and are involved in processes such as gene expression regulation and telomere maintenance.
Collapse
Affiliation(s)
- Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Center of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Wang Y, Ma L, Wei S. Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study. ACS OMEGA 2024; 9:50730-50741. [PMID: 39741838 PMCID: PMC11683639 DOI: 10.1021/acsomega.4c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025]
Abstract
Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA•+) in both free and encumbered context by calculating the pK a value and mapping the energy profiles. The calculative pK a values of active protons in free 8-oxoA•+ follow the order: N7-H < N9-H < N6-H1< N6-H2, suggesting the preference of proton departure in free 8-oxoA•+. To further illustrate the preferred site and mechanism for 8-oxoA•+ deprotonation, energy profiles are constructed to distinguish the possibility from that of all active protons in both contexts. The results show distinctly that 8-oxoA•+ mainly suffers from the loss of proton from N9 due to the lowest energy barrier but deprotonates N7-H in real DNA as the connection of N9 and ribose. The energy barriers for the deprotonation of N7-H from 8-oxoA•+ in free and encumbered contexts are 1.5 and 1.3 kcal/mol, respectively, indicating a fast deprotonation reaction. It is more interestingly that the N9-H proton transfer (PT, toward N3) to adjacent water follows a stepwise fashion rather than a one-step approach as previously reported. Furthermore, the PT behavior of free N9-H toward O8 is dramatically influenced by base pairing T, where it is localized at neighboring water without further PT to adjacent water in free 8-oxoA•+ but migrated directly to adjacent water in the 8-oxoA•+:T base pair. And the deprotonation of N6-H2 in 8-oxoA•+:T is disturbed as the PT to O4 of the pairing T base is inhibited. It is warmly anticipated that these results could provide an in-depth perspective to understand the important role of 8-oxoA in mutation.
Collapse
Affiliation(s)
- Yinghui Wang
- College
of Science, Chang’an University, Xi’an 710064, China
| | - Lei Ma
- College
of Science, Chang’an University, Xi’an 710064, China
| | - Simin Wei
- State
Key Laboratory of Research & Development of Characteristic Qin
Medicine Resources (Cultivation), Co-Construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, Shaanxi University
of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
7
|
De Paepe L, Madder A, Cadoni E. Exploiting G-Quadruplex-DNA Damage as a Tool to Quantify Singlet Oxygen Production. SMALL METHODS 2024; 8:e2301570. [PMID: 38623961 DOI: 10.1002/smtd.202301570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Indexed: 04/17/2024]
Abstract
G-Quadruplexes (G4s) are highly dynamic and polymorphic nucleic acid structures that can adopt a variety of conformations. When exposed to oxidative conditions, more specifically singlet oxygen, the guanosine nucleobases can be oxidized, which in turn can affect the conformation and folding of the G4. Based on this peculiar phenomenon, it is rationalized that G4s can serve as quantification sensors for the production of singlet oxygen. Here, a method for determining the quantum yield of singlet oxygen generation for visible as well as UV-light excited photosensitizers, using a short G4 DNA sequence, readily available from common DNA companies, as a biological and water-soluble probe, is presented.
Collapse
Affiliation(s)
- Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| |
Collapse
|
8
|
He Z, Wu J, Li W, Du Y, Lu L. Investigation of G-Quadruplex DNA-Mediated Charge Transport for Exploring DNA Oxidative Damage in Telomeres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18950-18960. [PMID: 39177475 DOI: 10.1021/acs.langmuir.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The human telomeric DNA 3' single-stranded overhang comprises tandem repeats of the sequence d(TTAGGG), which can fold into the stable secondary structure G-quadruplex (G4) and is susceptible to oxidative damage due to the enrichment of G bases. 8-Oxoguanine (8-oxoG) formed in telomeric DNA destabilizes G4 secondary structures and then inhibits telomere functions such as the binding of G4 proteins and the regulation of the length of telomeres. In this work, we developed a G4-DNA self-assembled monolayer electrochemical sensing interface using copper-free click chemistry based on the reaction of dibenzocyclooctyl with azide, resulting in a high yield of DNA tethers with order and homogeneity surfaces, that is more suitable for G-quadruplex DNA charge transport (CT) research. At high DNA coverage density surfaces, G-quadruplex DNA is 4 times more conductive than double-stranded DNA owing to the well-stacked aromatic rings of G-quartets acting as good charge transfer channels. The effect of telomeric oxidative damage on G-quadruplex-mediated CT is investigated. The accommodation of 8-oxoG at G sites originally in the syn or anti conformation around the glycosyl bond in the nonsubstituted hTel G-quadruplex causes structural perturbation and a conformational shift, which disrupts the π-stack, affecting the charge transfer and attenuating the electrochemical signal. The current intensity was found to correlate with the amount of 8-oxodG, and the detection limit was estimated to be approximately one lesion in 286 DNA bases, which can be converted into 64.7 fmol on the basis of the total surface DNA coverage. The improved G4-DNA order and homogeneity sensing interface represent a major step forward in this regard, providing a reliable and controlled electrochemical platform for the accurate measurement and diagnosis of G4-DNA oxidative damage.
Collapse
Affiliation(s)
- Zhangjin He
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Wei Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yuying Du
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
9
|
Ji J, Sharma A, Pokhrel P, Karna D, Pandey S, Zheng YR, Mao H. Dynamic Structures and Fast Transition Kinetics of Oxidized G-Quadruplexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400485. [PMID: 38678502 PMCID: PMC11357892 DOI: 10.1002/smll.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Indexed: 05/01/2024]
Abstract
8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation. Single-molecule mechanical unfolding reveals that 8-oxoG sequence formed more diverse and flexible structures with faster folding/unfolding transition kinetics, which facilitates the Pt(II) ligand to bind the best-fit structures with positive cooperativity. These findings offer new understanding on structures and properties of oxidized G-rich species in crowded environments. They also provide insights into the design of better ligands to target oxidized G-rich structures formed under oxidative cell stress.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Arpit Sharma
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
He Z, Wang Z, Lu L, Wang X, Guo G. Enhanced recognition of G-quadruplex DNA oxidative damage based on DNA-mediated charge transfer. Bioelectrochemistry 2024; 158:108714. [PMID: 38653106 DOI: 10.1016/j.bioelechem.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
G-quadruplex (G4) DNA is present in human telomere oligonucleotide sequences. Oxidative damage to telomeric DNA accelerates telomere shortening, which is strongly associated with aging and cancer. Most of the current analyses on oxidative DNA damage are based on ds-DNA. Here, we developed a electrochemiluminescence (ECL) probe for enhanced recognition of oxidative damage in G4-DNA based on DNA-mediated charge transfer (CT), which could specifically recognize damaged sites depending on the position of 8-oxoguanine (8-oxoG). First, a uniform G4-DNA monolayer interface was fabricated; the G4-DNA mediated CT properties were examined using an iridium(III) complex [Ir(ppy)2(pip)]PF6 stacked with G4-DNA as an indicator. The results showed that G4-DNA with 8-oxoG attenuated DNA CT. The topological effects of oxidative damage at different sites of G4-DNA and their effects on DNA CT were revealed. The sensing platform was also used for the sensitive and quantitative detection of 8-oxoG in G4-DNA, with a detection limit of 28.9 fmol. Overall, these findings present a sensitive platform to study G4-DNA structural and stability changes caused by oxidative damage as well as the specific and quantitative detection of oxidation sites. The different damage sites in the G-quadruplex could provide detailed clues for understanding the function of G4-associated telomere functional enzymes.
Collapse
Affiliation(s)
- Zhangjin He
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, PR China
| | - Ziqi Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, PR China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
11
|
Yao M, Zhang YQ. [Clinical application of photobiomodulation in trauma repair and medical aesthetics]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:307-313. [PMID: 38664024 DOI: 10.3760/cma.j.cn501225-20240203-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In recent years, with the deepening of researches on the molecular biological mechanisms of photobiomodulation (PBM), PBM has gradually been applied in clinical practice, providing effective treatment methods and approaches for various diseases. Compared with traditional photothermal therapy, PBM has the characteristics of good therapeutic effect, almost no adverse reaction, and simple operation, and its clinical efficacy is becoming increasingly significant. This article provides a detailed explanation on the mechanism of PBM, its application characteristics and development trends in trauma repair and medical aesthetics, in order to provide a theoretical basis for the extensively clinical application of this therapy.
Collapse
Affiliation(s)
- M Yao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Y Q Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
12
|
Johnson S, Paul T, Sanford S, Schnable BL, Detwiler A, Thosar S, Van Houten B, Myong S, Opresko P. BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Res 2024; 52:1763-1778. [PMID: 38153143 PMCID: PMC10939409 DOI: 10.1093/nar/gkad1209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.
Collapse
Affiliation(s)
- Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| |
Collapse
|
13
|
Neupane A, Chariker JH, Rouchka EC. Analysis of Nucleotide Variations in Human G-Quadruplex Forming Regions Associated with Disease States. Genes (Basel) 2023; 14:2125. [PMID: 38136947 PMCID: PMC10742762 DOI: 10.3390/genes14122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
While the role of G quadruplex (G4) structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on the alteration of the G4 secondary structure. A total of 37,515 G4 SNVs in the COSMIC database and 2378 in CLINVAR were identified. Of those, 7236 COSMIC (19.3%) and 457 (19%) of the CLINVAR variants result in G4 loss, while 2728 (COSMIC) and 129 (CLINVAR) SNVs gain a G4 structure. The remaining variants potentially affect the folding energy without affecting the presence of a G4. Analysis of mutational patterns in the G4 structure shows a higher selective pressure (3-fold) in the coding region on the template strand compared to the reverse strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter, and enhancer regions across strands.
Collapse
Affiliation(s)
- Aryan Neupane
- School of Graduate and Interdisciplinary Studies, University of Louisville, Louisville, KY 40292, USA;
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA;
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
14
|
Rao LS, Hao L, Liu LY, Zeng YL, Liang BB, Liu W, Mao ZW. Detection and tracking of cytoplasmic G-quadruplexes in live cells. Chem Commun (Camb) 2023; 59:13348-13351. [PMID: 37872783 DOI: 10.1039/d3cc03043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A TTPP probe was developed to distinguish G-quadruplexes (G4s) from other nucleic acid topologies through longer fluorescence lifetimes and higher quantum yields. In fluorescence lifetime imaging microscopy, TTPP enabled the visualization of cytoplasmic G4s in live cells, and showed the potential to detect cell apoptosis and ferroptosis by tracking cytoplasmic G4s.
Collapse
Affiliation(s)
- Lu-Si Rao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liang Hao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liu-Yi Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - You-Liang Zeng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bing-Bing Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Fleming AM, Omaga CA, Burrows CJ. NEIL3 promoter G-quadruplex with oxidatively modified bases shows magnesium-dependent folding that stalls polymerase bypass. Biochimie 2023; 214:156-166. [PMID: 37437684 PMCID: PMC10592359 DOI: 10.1016/j.biochi.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Oxidative stress unleashes reactive species capable of oxidizing 2'-deoxyguanosine (G) nucleotides in G-rich sequences of the genome, such as the potential G-quadruplex forming sequencing (PQS) in the NEIL3 gene promoter. Oxidative modification of G yields 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) that can be further oxidized to hydantoin products. Herein, OG was synthesized into the NEIL3 PQS that was allowed to fold to a G-quadruplex (G4) in K+ ion solutions with varying amounts of Mg2+ in the physiological range. The Mg2+ dependency in the oxidatively modified NEIL3 G4 to stall a replicative DNA polymerase was evaluated. The polymerase was found to stall at the G4 or OG, as well as continue to full-length extension with dependency on the location of the modification and the concentration of Mg2+. To provide some clarity on these findings, OG or the hydantoins were synthesized in model NEIL3 G4 folding sequences at the positions of the polymerase study. The model G4 sequences were allowed to fold in K+ ion solutions with varying levels of Mg2+ to identify how the presence of the divalent metal impacted G4 folding depending on the location of the modification. The presence of Mg2+ either caused the transition of the NEIL3 G4 folds from an antiparallel to parallel orientation of the strands or had no impact. Structural models are proposed to understand the findings using the literature as a guide. The biological significance of the results is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Carla A Omaga
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA.
| |
Collapse
|
16
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
17
|
Xiao Y, Yi H, Zhu J, Chen S, Wang G, Liao Y, Lei Y, Chen L, Zhang X, Ye F. Evaluation of DNA adduct damage using G-quadruplex-based DNAzyme. Bioact Mater 2023; 23:45-52. [PMID: 36406255 PMCID: PMC9650010 DOI: 10.1016/j.bioactmat.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
Abstract
Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development. However, due to the lack of practical analytical methods for DNA adduct analysis, the safety evaluation of drug and industry chemicals was severely limited. Here, we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals. Among 18 structural variants of G4 DNAzyme, EA2 DNAzyme exhibits an obvious DNA damaging effect of styrene oxide (SO) due to its unstable structure. The covalent binding of SO to DNAzyme disrupts the Hoogsteen hydrogen bonding sites of G-plane guanines and affects the formation of the G4 quadruplex. DNA damage chemicals reduce the peroxidase activity of the G4 DNAzyme to monitor the DNA adduct damage by disrupting the structural integrity of the G4 DNAzyme. Our method for genotoxic assessment of pharmaceutical candidates and industrial chemicals can elucidate the complex chemical pathways leading to toxicity, predict toxic effects of chemicals, and evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jingzhi Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Liyin Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Farag M, Messaoudi C, Mouawad L. ASC-G4, an algorithm to calculate advanced structural characteristics of G-quadruplexes. Nucleic Acids Res 2023; 51:2087-2107. [PMID: 36794725 PMCID: PMC10018348 DOI: 10.1093/nar/gkad060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
ASC-G4 is an algorithm for the calculation of the advanced structural characteristics of G-quadruplexes (G4). It allows the unambiguous determination of the intramolecular G4 topology, based on the oriented strand numbering. It also resolves the ambiguity in the determination of the guanine glycosidic configuration. With this algorithm, we showed that the use of the C3' or C5' atoms to calculate the groove width in G4 is more appropriate than the P atoms and that the groove width does not always reflect the space available within the groove. For the latter, the minimum groove width is more appropriate. The application of ASC-G4 to 207 G4 structures guided the choices made for the calculations. A website based on ASC-G4 (http://tiny.cc/ASC-G4) was created, where the user uploads his G4 structure and gets its topology, the types of its loops and their lengths, the presence of snapbacks and bulges, the distribution of guanines in the tetrads and strands, the glycosidic configuration of these guanines, their rise, the groove widths, the minimum groove widths, the tilt and twist angles, the backbone dihedral angles, etc. It also provides a large number of atom-atom and atom-plane distances that are relevant to evaluating the quality of the structure.
Collapse
Affiliation(s)
- Marc Farag
- Chemistry and Modeling for the Biology of Cancer, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, CS 90030, 91401 Orsay Cedex, France
| | - Cédric Messaoudi
- Multimodal Imaging Center, CNRS UMS2016, INSERM US43, Institut Curie, PSL Research University, Université Paris-Saclay, CS 90030, 91401 Orsay Cedex, France
| | - Liliane Mouawad
- To whom correspondence should be addressed. Tel: +33 1 69 86 71 51;
| |
Collapse
|
19
|
Kharel P, Singhal NK, Mahendran T, West N, Croos B, Rana J, Smith L, Freeman E, Chattopadhyay A, McDonough J, Basu S. NAT8L mRNA oxidation is linked to neurodegeneration in multiple sclerosis. Cell Chem Biol 2023; 30:308-320.e5. [PMID: 36882060 DOI: 10.1016/j.chembiol.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
RNA oxidation has been implicated in neurodegeneration, but the underlying mechanism for such effects is unclear. Extensive RNA oxidation occurs within the neurons in multiple sclerosis (MS) brains. Here, we identified selectively oxidized mRNAs in neuronal cells that pertained to neuropathological pathways. N-acetyl aspartate transferase 8 like (NAT8L) is one such transcript, whose translation product enzymatically synthesizes N-acetyl aspartic acid (NAA), a neuronal metabolite important for myelin synthesis. We reasoned that impediment of translation of an oxidized NAT8L mRNA will result in a reduction in its cognate protein, thus lowering the NAA level. This hypothesis is supported by our studies on cells, an animal model, and postmortem human MS brain. Reduced brain NAA level hampers myelin integrity making neuronal axons more susceptible to damage, which contributes to MS neurodegeneration. Overall, this work provides a framework for a mechanistic understanding of the link between RNA oxidation and neurodegeneration.
Collapse
Affiliation(s)
- Prakash Kharel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - Thulasi Mahendran
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Brintha Croos
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Joram Rana
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Lindsey Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Ernest Freeman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
20
|
Gillard M, Bonnet H, Lartia R, Yacoub H, Dejeu J, Defrancq E, Elias B. Luminescent Ruthenium(II) Complexes Used for the Detection of 8-Oxoguanine in the Human Telomeric Sequence. Bioconjug Chem 2023; 34:414-421. [PMID: 36689988 DOI: 10.1021/acs.bioconjchem.2c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Detecting cancer at the early stage of the disease is crucial to keep the best chance for successful treatment. The recent development of genomic screening, a methodology that is addressed to asymptomatic patients presumably at risk of carcinogenesis, has stimulated the quest for new tools able to signal the level of risk. Carcinogenesis has been associated to chronic oxidative stress exceeding the antioxidant defenses and leading to critical genome alteration levels. The telomeric regions are presumably the most exposed to oxidative stress due to their high concentration of guanine (i.e., the easiest oxidizable nucleic base). Accumulation of 8-oxoguanine in telomeres, thus oxidative lesions, was reportedly associated with telomeric crisis and carcinogenesis. In this study, we report on the capacity of Ru(II) polyazaaromatic complexes to photoprobe 8-oxoguanine into the human telomeric sequence with the view of developing new tools for cancer risk screening.
Collapse
Affiliation(s)
- Martin Gillard
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Hugues Bonnet
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Rémy Lartia
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Hiba Yacoub
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France.,CNRS UMR-6174, FEMTO-ST Institute, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes (UGA), CS 40700, 38058 Grenoble, France
| | - Benjamin Elias
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Neupane A, Chariker JH, Rouchka EC. Analysis of nucleotide variations in human g-quadruplex forming regions associated with disease states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526341. [PMID: 36778288 PMCID: PMC9915501 DOI: 10.1101/2023.01.30.526341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While the role of G4 G quadruplex structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on alteration of G4 secondary structure. 37,515 G4 SNVs in the COSMIC database and 2,115 in CLINVAR were identified. Of those, 7,236 COSMIC (19.3%) and 416 (18%) of the CLINVAR variants result in G4 loss, while 2,728 (COSMIC) and 112 (CLINVAR) SNVs gain a G4 structure. The gene ontology term "GnRH (Gonadotropin-releasing hormone) secretion" is enriched in 21 genes in this pathway that have a G4 destabilizing SNV. Analysis of mutational patterns in the G4 structure show a higher selective pressure (3-fold) in the coding region on the template strand compared to the non-template strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter and enhancer regions across strands. Using GO and pathway enrichment, genes with SNVs for G4 forming propensity in the coding region are enriched for Regulation of Ras protein signal transduction and Src homology 3 (SH3) domain binding.
Collapse
Affiliation(s)
- Aryan Neupane
- School of Graduate and Interdisciplinary Studies, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, 40292, United States of America
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky, 40292, United States of America
| | - Eric C. Rouchka
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky, 40292, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky 40292, United States of America
| |
Collapse
|
22
|
Gorini F, Ambrosio S, Lania L, Majello B, Amente S. The Intertwined Role of 8-oxodG and G4 in Transcription Regulation. Int J Mol Sci 2023; 24:ijms24032031. [PMID: 36768357 PMCID: PMC9916577 DOI: 10.3390/ijms24032031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
23
|
DNA Base Excision Repair Intermediates Influence Duplex-Quadruplex Equilibrium. Molecules 2023; 28:molecules28030970. [PMID: 36770637 PMCID: PMC9920732 DOI: 10.3390/molecules28030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Collapse
|
24
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
25
|
Li G, Ling M, Yu K, Yang W, Liu Q, He L, Cai X, Zhong M, Mai Z, Sun R, Xiao Y, Yu Z, Wang X. Synergetic delivery of artesunate and isosorbide 5-mononitrate with reduction-sensitive polymer nanoparticles for ovarian cancer chemotherapy. J Nanobiotechnology 2022; 20:471. [PMID: 36335352 PMCID: PMC9636721 DOI: 10.1186/s12951-022-01676-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Ovarian cancer is a highly fatal gynecologic malignancy worldwide. Chemotherapy remains the primary modality both for primary and maintenance treatments of ovarian cancer. However, the progress in developing chemotherapeutic agents for ovarian cancer has been slow in the past 20 years. Thus, new and effective chemotherapeutic drugs are urgently needed for ovarian cancer treatment. A reduction-responsive synergetic delivery strategy (PSSP@ART-ISMN) with co-delivery of artesunate and isosorbide 5-mononitrate was investigated in this research study. PSSP@ART-ISMN had various effects on tumor cells, such as (i) inducing the production of reactive oxygen species (ROS), which contributes to mitochondrial damage; (ii) providing nitric oxide and ROS for the tumor cells, which further react to generate highly toxic reactive nitrogen species (RNS) and cause DNA damage; and (iii) arresting cell cycle at the G0/G1 phase and inducing apoptosis. PSSP@ART-ISMN also demonstrated excellent antitumor activity with good biocompatibility in vivo. Taken together, the results of this work provide a potential delivery strategy for chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Guang Li
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Mingjian Ling
- Southern Medical University Shenzhen Stomatology Hospital (Pingshan), Shenzhen, 518000 China
| | - Kunyi Yu
- grid.513392.fShenzhen Longhua District Central Hospital, Shenzhen, 518110 China
| | - Wei Yang
- grid.417404.20000 0004 1771 3058Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
| | - Qiwen Liu
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Lijuan He
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Xuzi Cai
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Min Zhong
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Ziyi Mai
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Rui Sun
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515 China
| | - Yuanling Xiao
- grid.417404.20000 0004 1771 3058Department of Gynecology, Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Zhiqiang Yu
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018 China
| | - Xuefeng Wang
- grid.413107.0Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| |
Collapse
|
26
|
Abstract
![]()
Oxidation of a guanine nucleotide in DNA yields an 8-oxoguanine
nucleotide (oxoG) and is a mutagenic event in the genome.
Due to different arrangements of hydrogen-bond donors and acceptors, oxoG can affect the secondary structure of nucleic acids. We
have investigated base pairing preferences of oxoG in the
core of a tetrahelical G-quadruplex structure, adopted by analogues
of d(TG4T). Using spectroscopic methods, we have shown
that G-quartets can be fully substituted with oxoG nucleobases
to form an oxoG-quartet with a revamped hydrogen-bonding
scheme. While an oxoG-quartet can be incorporated into
the G-quadruplex core without distorting the phosphodiester backbone,
larger dimensions of the central cavity change the cation localization
and exchange properties.
Collapse
Affiliation(s)
- Simon Aleksič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Miclot T, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy. Chemistry 2022; 28:e202201824. [PMID: 35791808 PMCID: PMC9804223 DOI: 10.1002/chem.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly,Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance
| | | | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | - Antonio Monari
- Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance,Université Paris Cité and CNRS, ITODYS75006ParisFrance
| |
Collapse
|
28
|
Miclot T, Hognon C, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. Never Cared for What They Do: High Structural Stability of Guanine-Quadruplexes in the Presence of Strand-Break Damage. Molecules 2022; 27:3256. [PMID: 35630732 PMCID: PMC9146567 DOI: 10.3390/molecules27103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
29
|
Wang KB, Liu Y, Li Y, Dickerhoff J, Li J, Yang MH, Yang D, Kong LY. Oxidative Damage Induces a Vacancy G-Quadruplex That Binds Guanine Metabolites: Solution Structure of a cGMP Fill-in Vacancy G-Quadruplex in the Oxidized BLM Gene Promoter. J Am Chem Soc 2022; 144:6361-6372. [PMID: 35352895 PMCID: PMC9904417 DOI: 10.1021/jacs.2c00435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Guanine (G)-oxidation to 8-oxo-7,8-dihydroguanine (OG) by reactive oxygen species in genomic DNA has been implicated with various human diseases. G-quadruplex (G4)-forming sequences in gene promoters are highly susceptible to G-oxidation, which can subsequently cause gene activation. However, the underlying G4 structural changes that result from OG modifications remain poorly understood. Herein, we investigate the effect of G-oxidation on the BLM gene promoter G4. For the first time, we show that OG can induce a G-vacancy-containing G4 (vG4), which can be filled in and stabilized by guanine metabolites and derivatives. We determined the NMR solution structure of the cGMP-fill-in oxidized BLM promoter vG4. This is the first complex structure of an OG-induced vG4 from a human gene promoter sequence with a filled-in guanine metabolite. The high-resolution structure elucidates the structural features of the specific 5'-end cGMP-fill-in for the OG-induced vG4. Interestingly, the OG is removed from the G-core and becomes part of the 3'-end capping structure. A series of guanine metabolites and derivatives are evaluated for fill-in activity to the oxidation-induced vG4. Significantly, cellular guanine metabolites, such as cGMP and GTP, can bind and stabilize the OG-induced vG4, suggesting their potential regulatory role in response to oxidative damage in physiological and pathological processes. Our work thus provides exciting insights into how oxidative damage and cellular metabolites may work together through a G4-based epigenetic feature for gene regulation. Furthermore, the NMR structure can guide the rational design of small-molecule inhibitors that specifically target the oxidation-induced vG4s.
Collapse
Affiliation(s)
| | | | - Yipu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
30
|
PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3618806. [PMID: 35419163 PMCID: PMC9001082 DOI: 10.1155/2022/3618806] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5 exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response, resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches in treatment of asthma.
Collapse
|
31
|
Balanikas E, Martinez-Fernandez L, Baldacchino G, Markovitsi D. Electron Holes in G-Quadruplexes: The Role of Adenine Ending Groups. Int J Mol Sci 2021; 22:ijms222413436. [PMID: 34948235 PMCID: PMC8704496 DOI: 10.3390/ijms222413436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3' or 5' ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300-500 nm spectral domain.
Collapse
Affiliation(s)
- Evangelos Balanikas
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Lara Martinez-Fernandez
- Departamento de Química, Modúlo 13, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (L.M.-F.); or (D.M.)
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
- Correspondence: (L.M.-F.); or (D.M.)
| |
Collapse
|
32
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Zhou W, Cheng Y, Song B, Hao J, Miao W, Jia G, Li C. Cationic Porphyrin-Mediated G-Quadruplex DNA Oxidative Damage: Regulated by the Initial Interplay between DNA and TMPyP4. Biochemistry 2021; 60:3707-3713. [PMID: 34757721 DOI: 10.1021/acs.biochem.1c00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-quadruplex (G4) ligand-induced DNA damage has been involved in many physiological functions of cells. Herein, cationic porphyrin (TMPyP4)-mediated DNA oxidation damage was investigated aiming at mitochondrial G4 DNA (mt9438) and its structural analogue of the thrombin-binding aptamer (TBA). TMPyP4 is found to stabilize TBA G4 but destabilize mt9438. For two resulting DNA-TMPyP4 assemblies, the distinct light-induced singlet oxygen (1O2) generation and the subsequent DNA damage were found. For mt9438-TMPyP4, a slower 1O2-induced DNA damage takes place and results in the formation of DNA aggregation. In contrast, 1O2 tends to promote DNA unfolding in a relatively faster rate for TBA-TMPyP4. Despite of such distinct DNA damage behavior, UV resonance Raman spectra reveal that for both mt9438-TMPyP4 and TBA-TMPyP4 the DNA damage commonly stems from the guanine-specific oxidation. Our results clearly indicate that the ligand-mediated DNA damage is strongly dependent on the initial interplay between DNA and the ligand.
Collapse
Affiliation(s)
- Wenqin Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
34
|
An J, Yin M, Yin J, Wu S, Selby CP, Yang Y, Sancar A, Xu GL, Qian M, Hu J. Genome-wide analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine at single-nucleotide resolution unveils reduced occurrence of oxidative damage at G-quadruplex sites. Nucleic Acids Res 2021; 49:12252-12267. [PMID: 34788860 PMCID: PMC8643665 DOI: 10.1093/nar/gkab1022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (OG), one of the most common oxidative DNA damages, causes genome instability and is associated with cancer, neurological diseases and aging. In addition, OG and its repair intermediates can regulate gene transcription, and thus play a role in sensing cellular oxidative stress. However, the lack of methods to precisely map OG has hindered the study of its biological roles. Here, we developed a single-nucleotide resolution OG-sequencing method, named CLAPS-seq (Chemical Labeling And Polymerase Stalling Sequencing), to measure the genome-wide distribution of both exogenous and endogenous OGs with high specificity. Our data identified decreased OG occurrence at G-quadruplexes (G4s), in association with underrepresentation of OGs in promoters which have high GC content. Furthermore, we discovered that potential quadruplex sequences (PQSs) were hotspots of OGs, implying a role of non-G4-PQSs in OG-mediated oxidative stress response.
Collapse
Affiliation(s)
- Jiao An
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mengdie Yin
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayong Yin
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Sizhong Wu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
36
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
37
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021; 11:1284. [PMID: 34572497 PMCID: PMC8472537 DOI: 10.3390/biom11091284] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| |
Collapse
|
39
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
40
|
Ultrafast excited state dynamics and light-switching of [Ru(phen) 2(dppz)] 2+ in G-quadruplex DNA. Commun Chem 2021; 4:68. [PMID: 36697709 PMCID: PMC9814642 DOI: 10.1038/s42004-021-00507-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
The triplet metal to ligand charge transfer (3MLCT) luminescence of ruthenium (II) polypyridyl complexes offers attractive imaging properties, specifically towards the development of sensitive and structure-specific DNA probes. However, rapidly-deactivating dark state formation may compete with 3MLCT luminescence depending on different DNA structures. In this work, by combining femtosecond and nanosecond pump-probe spectroscopy, the 3MLCT relaxation dynamics of [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline, dppz = dipyridophenazine) in two iconic G-quadruplexes has been scrutinized. The binding modes of stacking of dppz ligand on the terminal G-quartet fully and partially are clearly identified based on the biexponential decay dynamics of the 3MLCT luminescence at 620 nm. Interestingly, the inhibited dark state channel in ds-DNA is open in G-quadruplex, featuring an ultrafast picosecond depopulation process from 3MLCT to a dark state. The dark state formation rates are found to be sensitive to the content of water molecules in local G-quadruplex structures, indicating different patterns of bound water. The unique excited state dynamics of [Ru(phen)2(dppz)]2+ in G-quadruplex is deciphered, providing mechanistic basis for the rational design of photoactive ruthenium metal complexes in biological applications.
Collapse
|
41
|
Miclot T, Corbier C, Terenzi A, Hognon C, Grandemange S, Barone G, Monari A. Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions*. Chemistry 2021; 27:8865-8874. [PMID: 33871121 DOI: 10.1002/chem.202100993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 01/13/2023]
Abstract
Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Camille Corbier
- Université de Lorraine and CNRS, CRAN UMR 7039, 54000, Nancy, France
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
42
|
Bielskutė S, Plavec J, Podbevšek P. Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Res 2021; 49:2346-2356. [PMID: 33638996 PMCID: PMC7913773 DOI: 10.1093/nar/gkab057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Misregulation of BCL2 expression has been observed with many diseases and is associated with cellular exposure to reactive oxygen species. A region upstream of the P1 promoter in the human BCL2 gene plays a major role in regulating transcription. This G/C-rich region is highly polymorphic and capable of forming G-quadruplex structures. Herein we report that an oxidative event simulated with an 8-oxo-7,8-dihydroguanine (oxoG) substitution within a long G-tract results in a reduction of structural polymorphism. Surprisingly, oxoG within a 25-nt construct boosts thermal stability of the resulting G-quadruplex. This is achieved by distinct hydrogen bonding properties of oxoG, which facilitate formation of an antiparallel basket-type G-quadruplex with a three G-quartet core and a G·oxoG·C base triad. While oxoG has previously been considered detrimental for G-quadruplex formation, its stabilizing effect within a promoter described in this study suggests a potential novel regulatory role of oxidative stress in general and specifically in BCL2 gene transcription.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Kumari N, Raghavan SC. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj 2021; 1865:129857. [PMID: 33508382 DOI: 10.1016/j.bbagen.2021.129857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND DNA, the genetic material of most of the organisms, is the crucial element of life. Integrity of DNA needs to be maintained for transmission of genetic material from one generation to another. All organisms are constantly challenged by the environmental conditions which can lead to the induction of DNA damage. Ionizing radiation (IR) has been known to induce DNA damage and IR sensitivity varies among different organisms. The causes for differential radiosensitivity among various organisms have not been studied in great detail. SCOPE OF REVIEW We discuss DNA secondary structure formation, GC content of the genome, role of G-quadruplex formation, and its relationship with radiosensitivity of the genome. MAJOR CONCLUSION In Deinococcus radiodurans, the bacterium that exhibits maximum radio resistance, multiple G-quadruplex forming motifs are reported. In human cells, G-quadruplex formation led to differential radiosensitivity. In this article, we have discussed, the role of secondary DNA structure formation like G-quadruplex in shielding the genome from radiation and its implications in understanding evolution of radio protective effect of an organism. We also discuss role of GC content and its correlation with radio resistance. GENERAL SIGNIFICANCE This review provides an insight into the role of G-quadruplexes in providing differential radiosensitivity at different site of the genome and in different organisms. It further discusses the possibility of higher GC content contributing towards reduced radiosensitivity in different organisms, evolution of radiosensitivity, and regulation of multiple cellular processes.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
44
|
Edwards AD, Marecki JC, Byrd AK, Gao J, Raney K. G-Quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Res 2021; 49:416-431. [PMID: 33313902 PMCID: PMC7797039 DOI: 10.1093/nar/gkaa1172] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
G-Quadruplexes are non-B form DNA structures present at regulatory regions in the genome, such as promoters of proto-oncogenes and telomeres. The prominence in such sites suggests G-quadruplexes serve an important regulatory role in the cell. Indeed, oxidized G-quadruplexes found at regulatory sites are regarded as epigenetic elements and are associated with an interlinking of DNA repair and transcription. PARP-1 binds damaged DNA and non-B form DNA, where it covalently modifies repair enzymes or chromatin-associated proteins respectively with poly(ADP-ribose) (PAR). PAR serves as a signal in regulation of transcription, chromatin remodeling, and DNA repair. PARP-1 is known to bind G-quadruplexes with stimulation of enzymatic activity. We show that PARP-1 binds several G-quadruplex structures with nanomolar affinities, but only a subset promote PARP-1 activity. The G-quadruplex forming sequence found in the proto-oncogene c-KIT promoter stimulates enzymatic activity of PARP-1. The loop-forming characteristics of the c-KIT G-quadruplex sequence regulate PARP-1 catalytic activity, whereas eliminating these loop features reduces PARP-1 activity. Oxidized G-quadruplexes that have been suggested to form unique, looped structures stimulate PARP-1 activity. Our results support a functional interaction between PARP-1 and G-quadruplexes. PARP-1 enzymatic activation by G-quadruplexes is dependent on the loop features and the presence of oxidative damage.
Collapse
Affiliation(s)
- Andrea D Edwards
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
45
|
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Lesion Recognition and Cleavage of Damage-Containing Quadruplexes and Bulged Structures by DNA Glycosylases. Front Cell Dev Biol 2020; 8:595687. [PMID: 33330484 PMCID: PMC7734321 DOI: 10.3389/fcell.2020.595687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Human telomeres as well as more than 40% of human genes near the promoter regions have been found to contain the sequence that may form a G-quadruplex structure. Other non-canonical DNA structures comprising bulges, hairpins, or bubbles may have a functionally important role during transcription, replication, or recombination. The guanine-rich regions of DNA are hotspots of oxidation that forms 7,8-dihydro-8-oxoguanine, thymine glycol, and abasic sites: the lesions that are handled by the base excision repair pathway. Nonetheless, the features of DNA repair processes in non-canonical DNA structures are still poorly understood. Therefore, in this work, a comparative analysis of the efficiency of the removal of a damaged nucleotide from various G-quadruplexes and bulged structures was performed using endonuclease VIII-like 1 (NEIL1), human 8-oxoguanine-DNA glycosylase (OGG1), endonuclease III (NTH1), and prokaryotic formamidopyrimidine-DNA glycosylase (Fpg), and endonuclease VIII (Nei). All the tested enzymes were able to cleave damage-containing bulged DNA structures, indicating their important role in the repair process when single-stranded DNA and intermediate non–B-form structures such as bubbles and bulges are formed. Nevertheless, our results suggest that the ability to cleave damaged quadruplexes is an intrinsic feature of members of the H2tH structural family, suggesting that these enzymes can participate in the modulation of processes controlled by the formation of quadruplex structures in genomic DNA.
Collapse
Affiliation(s)
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
46
|
Summart R, Thaichana P, Supan J, Meepowpan P, Lee TR, Tuntiwechapikul W. Superiority of an Asymmetric Perylene Diimide in Terms of Hydrosolubility, G-Quadruplex Binding, Cellular Uptake, and Telomerase Inhibition in Prostate Cancer Cells. ACS OMEGA 2020; 5:29733-29745. [PMID: 33251409 PMCID: PMC7689663 DOI: 10.1021/acsomega.0c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Perylene diimide (PDI) derivatives have been studied as G-quadruplex ligands that suppress telomerase activity by facilitating G-quadruplex formation of telomeric DNA and the hTERT promoter. PIPER, the prototypical PDI, reduces telomerase activity in lung and prostate cancer cells, leading to telomere shortening and cellular senescence of these cells. However, PIPER suffers from poor hydrosolubility and the propensity to aggregate at neutral pH. In this report, we synthesized a new asymmetric PDI, aPDI-PHis, which maintains one N-ethyl piperidine side chain of PIPER and has histidine as another side chain. The results show that aPDI-PHis is superior to its symmetric counterparts, PIPER and PDI-His, in terms of hydrosolubility, G-quadruplex binding, cellular uptake, and telomerase inhibition in prostate cancer cells. These results suggest that one N-ethyl piperidine side chain of PDI is sufficient for G-quadruplex binding, while another side chain can be tuned to elicit desirable properties. These findings might lead to better PDIs for use as anticancer drugs.
Collapse
Affiliation(s)
- Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Jutharat Supan
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
- . Tel: +66-53-945323.
Fax: +66-53-894031
| |
Collapse
|
47
|
Zhang Y, El Omari K, Duman R, Liu S, Haider S, Wagner A, Parkinson GN, Wei D. Native de novo structural determinations of non-canonical nucleic acid motifs by X-ray crystallography at long wavelengths. Nucleic Acids Res 2020; 48:9886-9898. [PMID: 32453431 PMCID: PMC7515729 DOI: 10.1093/nar/gkaa439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
Obtaining phase information remains a formidable challenge for nucleic acid structure determination. The introduction of an X-ray synchrotron beamline designed to be tunable to long wavelengths at Diamond Light Source has opened the possibility to native de novo structure determinations by the use of intrinsic scattering elements. This provides opportunities to overcome the limitations of introducing modifying nucleotides, often required to derive phasing information. In this paper, we build on established methods to generate new tools for nucleic acid structure determinations. We report on the use of (i) native intrinsic potassium single-wavelength anomalous dispersion methods (K-SAD), (ii) use of anomalous scattering elements integral to the crystallization buffer (extrinsic cobalt and intrinsic potassium ions), (iii) extrinsic bromine and intrinsic phosphorus SAD to solve complex nucleic acid structures. Using the reported methods we solved the structures of (i) Pseudorabies virus (PRV) RNA G-quadruplex and ligand complex, (ii) PRV DNA G-quadruplex, and (iii) an i-motif of human telomeric sequence. Our results highlight the utility of using intrinsic scattering as a pathway to solve and determine non-canonical nucleic acid motifs and reveal the variability of topology, influence of ligand binding, and glycosidic angle rearrangements seen between RNA and DNA G-quadruplexes of the same sequence.
Collapse
Affiliation(s)
- Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Sisi Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
Xi H, Juhas M, Zhang Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens Bioelectron 2020; 167:112494. [PMID: 32791468 PMCID: PMC7403137 DOI: 10.1016/j.bios.2020.112494] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine rich DNA or RNA. The conformation and function of G-quadruplex are determined by a number of factors, including the number and polarity of nucleotide strands, the type of cations and the binding targets. Recent studies led to the discovery of additional advantageous attributes of G-quadruplex with the potential to be used in novel biosensors, such as improved ligand binding and unique folding properties. G-quadruplex based biosensor can detect various substances, such as metal ions, organic macromolecules, proteins and nucleic acids with improved affinity and specificity compared to standard biosensors. The recently developed G-quadruplex based biosensors include electrochemical and optical biosensors. A novel G-quadruplex based biosensors also show better performance and broader applications in the detection of a wide spectrum of pathogens, including SARS-CoV-2, the causative agent of COVID-19 disease. This review highlights the latest developments in the field of G-quadruplex based biosensors, with particular focus on the G-quadruplex sequences and recent applications and the potential of G-quadruplex based biosensors in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hui Xi
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
49
|
Lenarčič Živković M, Rozman J, Plavec J. Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop. Molecules 2020; 25:E4867. [PMID: 33096904 PMCID: PMC7588008 DOI: 10.3390/molecules25204867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).
Collapse
Affiliation(s)
- Martina Lenarčič Živković
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jan Rozman
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
50
|
Zhao J, Zhai Q. Recent advances in the development of ligands specifically targeting telomeric multimeric G-quadruplexes. Bioorg Chem 2020; 103:104229. [DOI: 10.1016/j.bioorg.2020.104229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|