1
|
Nakamura T, Tsuruta Y, Egi A, Tanaka H, Nishibayashi Y, Yoshizawa K. Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes. Inorg Chem 2025; 64:9124-9136. [PMID: 40253718 DOI: 10.1021/acs.inorgchem.5c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Homogeneous catalysts using a mononuclear molybdenum nitride (Mo≡N) complex bearing PCP-type pincer ligands allow nitrogen fixation under very mild conditions. The catalytic cycle involves three hydrogenation processes yielding an Mo-ammine complex [MoI(NH3)(PCP)] from the Mo-nitride complex [MoI(N)(PCP)]. We primarily focused on the first hydrogenation step, forming an Mo-imide complex [MoI(NH)(PCP)] since previous experimental and theoretical studies suggest that imide formation is the rate-limiting step in the catalytic cycle. The choice of protonating agent and reductant strongly influences the catalytic reactivity in imide formation. In this computational quantum chemical study, 2,4,6-collidinium (ColH+) was employed as the protonation agent, while metallocenes Cp2MII and decamethylmetallocenes Cp*2MII (M = V, Cr, Mn, Fe, Co, and Ni) were employed as reductants. The reaction of ColH+ with the metallocenes yields protonated metallocenes, where a cyclopentadienyl ring of the metallocenes is protonated. Protonated Cp*2CrII and Cp*2CoII are potential proton-coupled electron transfer (PCET) mediators to facilitate the imide formation of [MoI(N)(PCP)] with low activation free energies. The concerted reaction mechanism was compared with the stepwise reaction, where ColH+ directly protonates [MoI(N)(PCP)], followed by reduction with the decamethylmetallocenes. Furthermore, we analyzed how proton transfer and electron transfer are concerted in the reaction of the PCET mediators with [MoI(N)(PCP)] by tracing electronic states along the reaction coordinates.
Collapse
Affiliation(s)
- Taiji Nakamura
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tsuruta
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Yoshizawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Langford D, Rohr R, Bauroth S, Zahl A, Franke A, Ivanović-Burmazović I, Guldi DM. High-pressure pump-probe experiments reveal the mechanism of excited-state proton-coupled electron transfer and a shift from stepwise to concerted pathways. Nat Chem 2025:10.1038/s41557-025-01772-5. [PMID: 40114015 DOI: 10.1038/s41557-025-01772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Chemical energy conversion and storage in natural and artificial systems rely on proton-coupled electron transfer (PCET) processes. Concerted proton-electron transfer (CPET) can provide kinetic advantages over stepwise processes (electron transfer (ET)/proton transfer (PT) or PT/ET), so understanding how to distinguish and modulate these processes is important for their associated applications. Here, we examined PCET from the excited state of a ruthenium complex under high pressures. At lower buffer or quencher concentrations, a stepwise PT/ET mechanism was observed. With increasing pressure, PT slowed and ET sped up, indicating a merging of the two steps. In contrast, CPET at higher concentrations of buffer or quencher showed no pressure dependence of the reaction rate. This is because the simultaneous transfer of electrons and protons circumvents changes in charges and, consequently, in solvent electrostriction during the transition state. Our findings demonstrate that pressure can serve as a tool to monitor charge changes along PCET pathways, aiding in the identification of its mechanisms.
Collapse
Affiliation(s)
- Daniel Langford
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robin Rohr
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Bauroth
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Department of Chemistry, Ludwig-Maximilian-Universität München, Munich, Germany.
| | - Dirk M Guldi
- FAU Profile Center Solar, Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Onderko EL, Field MJ, Silakov A, Yosca TH, Green MT. Importance of the Ferryl Quintet State in Determining the Electronic Properties of P450 Compound I. J Am Chem Soc 2025; 147:9147-9158. [PMID: 40036067 DOI: 10.1021/jacs.4c11688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
We previously reported a selenolate-ligated P450 compound I intermediate (SeP450-I) to be more reactive toward C-H bonds than its thiolate-ligated counterpart. To gain insight into how the selenolate axial ligand influences the reactivity of compound I, we have investigated the electronic structure of the SeP450-I intermediate using variable temperature Mössbauer (VTM) spectroscopy. The VTM data indicate that electronic spin relaxation rates are significantly slower in SeP450-I than in P450-I. Analyses of these data provide Δ, the energy spacing between the two lowest electronic energy levels in compound I. This spacing is typically determined by the zero-field splitting of the ferryl moiety, D, and the exchange coupling, J, between the iron(IV)oxo unit and the ligand-based radical. However, the systems examined are antiferromagnetically coupled with |J/D| > 1. As a result, Δ ∼ (3/2) J, and measurements of Δ provide J (to within ∼5%). These measurements reveal that the sign and magnitude of J track with the reactivity of compound I toward C-H bonds. Efforts to analyze these and other data highlight the inadequacy of the standard ligand field model that is often used to explain the electronic properties of compound I. Additional analyses combining our data with state energies from a previous theoretical investigation support predictions of a low-lying quintet state within the iron(IV)oxo unit. We discuss these findings in light of computational studies that suggest that access to excited states, particularly those of a high-spin nature, can promote metal-oxo mediated C-H bond cleavage.
Collapse
Affiliation(s)
- Elizabeth L Onderko
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mackenzie J Field
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexey Silakov
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Timothy H Yosca
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
| | - Michael T Green
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Kaur S, Keshari K, Sauvan M, Velasco L, Arora P, Santra A, Charisiadis A, Ugale AD, Draksharapu A, Moonshiram D, Paria S. Synthesis and Reactivity of a Non-Heme μ-Oxodicobalt(IV) Complex. Chemistry 2025; 31:e202404536. [PMID: 39811926 DOI: 10.1002/chem.202404536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv. of m-chloroperbenzoic acid (m-CPBA) in acetonitrile at -40 °C resulted in the formation of a μ-oxodicobalt(IV) complex (2), which was characterized by an array of spectroscopic techniques, including X-ray absorption spectroscopy which revealed a short Co-Ooxo distance of 1.67 Å. Reactivity studies of 2 towards oxidation/oxygenation of hydrocarbon C-H bond and triphenylphosphine or thioanisole derivatives have been examined. UV-vis spectroscopy studies showed the appearance of clear isosbestic points during the oxidation of substrates together with a neat transformation of 2 to 1. Detailed kinetic investigations established that 2 follows a Concerted Proton-Electron Transfer (CPET) mechanism for hydrocarbon oxidation and has a weak electrophilic character. Catalytic behavior of 1 was noted towards the oxygen atom transfer reactions. This study showcases the spectroscopic investigation and reactivity studies of a CoIV(μ-O)CoIV moiety. Although the FeIV analog of such a core has been described before, the study describes the first example with a CoIV center.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Maxime Sauvan
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040, Madrid, Spain
| | - Pragya Arora
- Southern Laboratories - 208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Asterios Charisiadis
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Ashok D Ugale
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Apparao Draksharapu
- Southern Laboratories - 208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
5
|
Groff BD, Cattaneo M, Rinaolo KC, Mercado BQ, Mayer JM. Disentangling Driving Force Effects, Polar Effects, e-/H + Imbalance, and Other Influences on H-Atom Transfer Reactions. J Am Chem Soc 2025; 147:4766-4777. [PMID: 39883481 DOI: 10.1021/jacs.4c10596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Hydrogen atom transfer (HAT) reactions and their kinetic barriers ΔGHAT‡ are important in organic and inorganic chemistry. This study examines factors that influence ΔGHAT‡, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the ΔGPT° and ΔGHAT° can be independently varied, with different sets of Ru complexes primarily tuning either their pKas or their E°s. The ΔΔGHAT‡ are analyzed using multiple linear free energy relationships (LFERs), the first largely experimental study of its kind. The barriers vary most strongly with the overall driving force, ΔΔGHAT‡ = 0.28 × ΔΔGHAT°, but are also affected by HAT intrinsic barriers (λ), sterics, and the thermochemical e-/H+ imbalance of the reactions, |ΔGPT° - ΔGET°|. The latter is a small but significant effect, revealed only by comparing LFERs. The imbalance analysis is closely related to traditional explanations of polar effects, but it is quantitative: ΔGHAT‡ shifts by ∼4% with changes in |ΔGPT° - ΔGET°|. This is the same dependence as was observed for purely organic HAT from toluenes─a remarkable result because traditional explanations of organic polar effects, e.g., using X-H bond polarities, do not apply to the Ru complexes in which the e- and H+ are spatially separated. This work demonstrates the strong similarities between different kinds of HAT reactions when viewed through the lens of H+/e- (PCET) free energies. This lens also shows that ΔGHAT‡ are ∼10-fold more sensitive to changes in ΔGHAT° and λ than to the e-/H+ free-energy imbalance.
Collapse
Affiliation(s)
- Benjamin D Groff
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mauricio Cattaneo
- INQUINOA (CONICET-UNT), Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, T4000INI San Miguel de Tucumán, Argentina
| | - Katheryn C Rinaolo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Stroscio GD, Goldman N. Univariate Prediction of Hammett Parameters and Select Relative Reaction Rates Using Loewdin Atomic Charges. J Phys Chem A 2025; 129:356-366. [PMID: 39723568 DOI: 10.1021/acs.jpca.4c05805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Loewdin charges from density functional theory calculations were used here to obtain general, univariate linear correlations for the prediction of experimental Hammett parameters and relative reaction rates. While previous studies have established that Hirshfeld and CM5 charges perform strongly as univariate predictors, the near-ubiquitous Loewdin charges have not yet been evaluated. To this end, we assess the predictive capability of Loewdin charges for three chemical systems. First, we show that Loewdin charges outperform Hirshfeld and CM5 charges for Hammett parameter prediction. Second, we see that Loewdin charges generally perform comparably to Hirshfeld charges for predicting the relative rates of olefin cleavage by photoexcited nitroarenes. The single case of poor correlation, between relative rates and the Loewdin charges on nitrogen sites, is ameliorated when considering the net charge on the NO2 group. Third, we show that Loewdin, Hirshfeld, and CM5 charges all perform very well for generating correlations for relative reaction rates for C-H activation of 9-(4-X-phenyl)-9H-fluorene substrates by a transition metal catalyst. The equations generated throughout the study enable the prediction of Hammett parameters and relative reaction rates. These tools can accelerate synthetic and experimental studies by enabling the in silico prediction of uncharacterized chemical properties.
Collapse
Affiliation(s)
- Gautam D Stroscio
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
7
|
Ye D, Wu T, Puri A, Hebert DD, Siegler MA, Hendrich MP, Swart M, Garcia-Bosch I. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorg Chem 2024; 63:24453-24465. [PMID: 39680075 PMCID: PMC11688665 DOI: 10.1021/acs.inorgchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH]2- was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH]2- can be reversibly oxidized to [LNiOH]- and [LNiOH] at very negative reduction potentials (-1.13 and -0.39 V vs ferrocene, respectively). The oxidation of [LNiOH]2- to [LNiOH]- and [LNiOH] was accomplished using 1 and 2 equiv of ferrocenium, respectively. Spectroscopic and computational characterization suggest that [LNiOH]2-, [LNiOH]-, and [LNiOH] are all NiII species in which the redox-active ligand adopts different oxidation states (catecholate-like, semiquinone-like, and quinone-like, respectively). The NiOH species were found to promote H-atom abstraction from organic substrates, with [LNiOH]- acting as a 1H+/1e- oxidant and [LNiOH] as a 2H+/2e- oxidant. Thermochemical analysis indicated that [LNiOH] was capable of abstracting H atoms from stronger O-H bonds than [LNiOH]-. However, the greater thermochemical tendency of [LNiOH] reactivity toward H atoms did not align with the kinetics of the PCET reaction, where [LNiOH]- reacted with H-atom donors much faster than [LNiOH]. The unique stereoelectronic structure of [LNiOH]- (radical character combined with a basic NiOH core) might account for its enhanced PCET reactivity.
Collapse
Affiliation(s)
- Daniel Ye
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ankita Puri
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David D. Hebert
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Michael P. Hendrich
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciències), IQCC, 17004 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Isaac Garcia-Bosch
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Li S, Hu C, Leo Liu L, Wu L. Selective Hydroboration of C-C Single Bonds without Transition-Metal Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412368. [PMID: 39090033 DOI: 10.1002/anie.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar-X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C-C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N-H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C-C bonds in cyclopropanes.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
9
|
Kametani Y, Shiota Y. Mechanistic studies of NO x reduction reactions involving copper complexes: encouragement of DFT calculations. Dalton Trans 2024; 53:19081-19087. [PMID: 39530191 DOI: 10.1039/d4dt02420f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The reduction of nitrogen oxides (NOx), which is mainly mediated by metalloenzymes and metal complexes, is a critical process in the nitrogen cycle and environmental remediation. This Frontier article highlights the importance of density functional theory (DFT) calculations to gain mechanistic insights into nitrite (NO2-) and nitric oxide (NO) reduction reactions facilitated by copper complexes by focusing on two key processes: the reduction of NO2- to NO by a monocopper complex, with special emphasis on the concerted proton-electron transfer, and the reduction of NO to N2O by a dicopper complex, which involves N-N bond formation, N2O2 isomerization, and N-O bond cleavage. These findings underscore the utility of DFT calculations in unraveling complicated reaction mechanisms and offer a foundation for future research aimed at improving the reactivity of transition metal complexes in NOx reduction reactions.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Singh P, Lomax MJA, Opalade AA, Nguyen BB, Srnec M, Jackson TA. Basicity of Mn III-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions. Inorg Chem 2024; 63:21941-21953. [PMID: 39498631 DOI: 10.1021/acs.inorgchem.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Several manganese-dependent enzymes utilize MnIII-hydroxo units in concerted proton-electron transfer (CPET) reactions. We recently demonstrated that hydrogen bonding to the hydroxo ligand in the synthetic [MnIII(OH)(PaPy2N)]+ complex increased rates of CPET reactions compared to the [MnIII(OH)(PaPy2Q)]+ complex that lacks a hydrogen bond. In this work, we determine the effect of hydrogen bonding on the basicity of the hydroxo ligand and evaluate the corresponding effect on CPET reactions. Both [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ react with strong acids to yield MnIII-aqua complexes [MnIII(OH2)(PaPy2Q)]2+ and [MnIII(OH2)(PaPy2N)]2+, for which we determined pKa values of 7.6 and 13.1, respectively. Reactions of the MnIII-aqua complexes with one-electron reductants yielded estimates of reduction potentials, which were combined with pKa values to give O-H bond dissociation free energies (BDFEs) of 77 and 85 kcal mol-1 for the MnII-aqua complexes [MnII(OH2)(PaPy2Q)]+ and [MnII(OH2)(PaPy2N)]+. Using these BDFEs, we performed an analysis of the thermodynamic driving force for phenol oxidation by these complexes and observed the unexpected result that slower rates are associated with more asynchronous CPET. In addition, reactions of acidic phenols with the MnIII-hydroxo complexes show rates that deviate from the thermodynamic trends, consistent with a change in mechanism from CPET to proton transfer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Brandon B Nguyen
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Erdivan B, Calikyilmaz E, Bilgin S, Erdali AD, Gul DN, Ercan KE, Türkmen YE, Ozensoy E. Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C-H Activation: Catalyst Design Principles and Insights into Reaction Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60151-60165. [PMID: 39450826 PMCID: PMC11551905 DOI: 10.1021/acsami.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
A precious metal-free bimetallic FexMn1-x(OH)y hydroxide catalyst was developed that is capable of catalyzing aerobic C-H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na+ promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C-H activation performance as a function of the electronic, surface chemical, and crystal structure of FexMn1-x(OH)y bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, 1H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic FexMn1-x(OH)y hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe3+ and Mn3+ cationic sites (with minor contributions from Fe2+ and Mn2+ sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na+ species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe3+ and Mn3+ cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C-H bond (kH/kD = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C-H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.
Collapse
Affiliation(s)
- Beyzanur Erdivan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Eylul Calikyilmaz
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Suay Bilgin
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Ayse Dilay Erdali
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Damla Nur Gul
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Kerem Emre Ercan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- Roketsan
Inc., Elmadag, 06780 Ankara, Türkiye
| | - Yunus Emre Türkmen
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| | - Emrah Ozensoy
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| |
Collapse
|
12
|
Son YJ, Kim D, Park JW, Ko K, Yu Y, Hwang SJ. Heteromultimetallic Platform for Enhanced C-H Bond Activation: Aluminum-Incorporated Dicopper Complex Mimicking Cu-ZSM-5 Structure and Oxidative Reactivity. J Am Chem Soc 2024; 146:29810-29823. [PMID: 39420644 DOI: 10.1021/jacs.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic complexes have sparked interest across various chemical disciplines, driving advancements in research. Recent advancements in this field have shed light on complex reactions in metalloenzymes and unveiled new chemical transformations. Two primary types of bimetallic platforms have emerged: (1) systems where both metals actively participate in reactivity, and (2) systems where one metal mediates the reaction while the other regulates reactivity. This study introduces a novel multinucleating ligand platform capable of integrating both types of bimetallic systems. To demonstrate the significance of this platform, we synthesized a unique dicopper complex incorporating aluminum in its coordination environment. This complex serves as the first structural model for the active site in copper-based zeolites, highlighting the role of aluminum in hydrogen atom abstraction reactivity. Comparative studies of oxidative C-H bond activation revealed that the inclusion of aluminum significantly alters the thermodynamic driving force (by -11 kcal mol-1) for bond activation and modifies the proton-coupled electron-transfer reaction mechanism, resulting in a 14-fold rate increase. Both computational and experimental data support the high modularity of this multinucleating ligand platform, offering a new approach to fine-tune the reactivity of bimetallic complexes.
Collapse
Affiliation(s)
- Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Wan Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwangwook Ko
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeongjun Yu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Wen X, Ma Y, Chen J, Wang B. A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA. Org Biomol Chem 2024; 22:5729-5733. [PMID: 38932595 DOI: 10.1039/d4ob00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We report herein a synthetically useful catalytic system for aliphatic C-H oxidation with a mononuclear nonheme cobalt(II) complex and m-chloroperbenzoic acid (m-CPBA). Preliminary mechanistic studies suggest that a high-valent cobalt-oxygen species (e.g., cobalt(IV)-oxo or cobalt(III)-oxyl) is the oxidant that effects C-H oxidation via a rate-determining hydrogen atom abstraction (HAA) step.
Collapse
Affiliation(s)
- Xiang Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yidong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
14
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Kaur L, Mandal D. A density functional theory analysis of the C-H activation reactivity of iron(IV)-oxo complexes with an 'O' substituted tetramethylcyclam macrocycle. Dalton Trans 2024; 53:7527-7535. [PMID: 38597582 DOI: 10.1039/d4dt00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this article, we present a meticulous computational study to foresee the effect of an oxygen-rich macrocycle on the reactivity for C-H activation. For this study, a widely studied nonheme Fe(IV)O molecule with a TMC (1,4,8,11-tetramethyl 1,4,8,11-tetraazacyclotetradecane) macrocycle that is equatorially attached to four nitrogen atoms (designated as N4) and acetonitrile as an axial ligand has been taken into account. For the goal of hetero-substitution, step-by-step replacement of the N4 framework with O atoms, i.e., N4, N3O1, N2O2, N1O3, and O4 systems, has been considered, and dihydroanthracene (DHA) has been used as the substrate. In order to neutralise the system and prevent the self-interaction error in DFT, triflate counterions have also been included in the calculations. The study of the energetics of these C-H bond activation reactions and the potential energy surfaces mapped therefore reveal that the initial hydrogen abstraction, which is the rate-determining step, follows the two-state reactivity (TSR) pattern, which means that the originally excited quintet state falls lower in the transition state and the product. The reaction follows the hydrogen atom transfer (HAT) mechanism, as indicated by the spin density studies. The results revealed a fascinating reactivity order, in which the reactivity increases with the enrichment of the oxygen atom in the equatorial position, namely the order follows N4 < N3O1 < N2O2 < N1O3 < O4. The impacts of oxygen substitution on quantum mechanical tunneling and the H/D kinetic isotope effect have also been investigated. When analysing the causes of this reactivity pattern, a number of variables have been identified, including the reactant-like transition structure, spin density distribution, distortion energy, and energies of the electron acceptor orbital, i.e., the energy of the LUMO (σ*z2), which validate the obtained outcome. Our results also show very good agreement with earlier combined experimental and theoretical studies considering TMC and TMCO-type complexes. The DFT predictions reported here will undoubtedly encourage experimental research in this biomimetic field, as they provide an alternative with higher reactivity in which heteroatoms can be substituted for the traditional nitrogen atom.
Collapse
Affiliation(s)
- Lovleen Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
16
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Tepaske MA, Fitterer A, Verplancke H, Delony D, Neben MC, de Bruin B, Holthausen MC, Schneider S. C-H Bond Activation by Iridium(III) and Iridium(IV) Oxo Complexes. Angew Chem Int Ed Engl 2024; 63:e202316729. [PMID: 38116899 DOI: 10.1002/anie.202316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Oxidation of an iridium(III) oxo precursor enabled the structural, spectroscopic, and quantum-chemical characterization of the first well-defined iridium(IV) oxo complex. Side-by-side examination of the proton-coupled electron transfer thermochemistry revealed similar driving forces for the isostructural oxo complexes in two redox states due to compensating contributions from H+ and e- transfer. However, C-H activation of dihydroanthracene revealed significant hydrogen tunneling for the distinctly more basic iridium(III) oxo complex. Our findings complement the growing body of data that relate tunneling to ground state properties as predictors for the selectivity of C-H bond activation.
Collapse
Affiliation(s)
- Martijn A Tepaske
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Arnd Fitterer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Daniel Delony
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Marc C Neben
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| |
Collapse
|
18
|
Kumar R, Ansari A, Comba P, Rajaraman G. Rebound or Cage Escape? The Role of the Rebound Barrier for the Reactivity of Non-Heme High-Valent Fe IV =O Species. Chemistry 2024; 30:e202303300. [PMID: 37929771 DOI: 10.1002/chem.202303300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Owing to their high reactivity and selectivity, variations in the spin ground state and a range of possible pathways, high-valent FeIV =O species are popular models with potential bioinspired applications. An interesting example of a structure-reactivity pattern is the detailed study with five nonheme amine-pyridine pentadentate ligand FeIV =O species, including N4py: [(L1 )FeIV =O]2+ (1), bntpen: [(L2 )FeIV =O]2+ (2), py2 tacn: [(L3 )FeIV =O]2+ (3), and two isomeric bispidine derivatives: [(L4 )FeIV =O]2+ (4) and [(L5 )FeIV =O]2+ (5). In this set, the order of increasing reactivity in the hydroxylation of cyclohexane differs from that with cyclohexadiene as substrate. A comprehensive DFT, ab initio CASSCF/NEVPT2 and DLPNO-CCSD(T) study is presented to untangle the observed patterns. These are well reproduced when both activation barriers for the C-H abstraction and the OH rebound are taken into account. An MO, NBO and deformation energy analysis reveals the importance of π(pyr) → π*xz (FeIII -OH) electron donation for weakening the FeIII -OH bond and thus reducing the rebound barrier. This requires that pyridine rings are oriented perpendicularly to the FeIII -OH bond and this is a subtle but crucial point in ligand design for non-heme iron alkane hydroxylation.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Haryana, 123031, India
| | - Peter Comba
- Institute of Inorganic Chemistry &, Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120, Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| |
Collapse
|
19
|
Yang J, Tripodi GL, Derks MTGM, Seo MS, Lee YM, Southwell KW, Shearer J, Roithová J, Nam W. Generation, Spectroscopic Characterization, and Computational Analysis of a Six-Coordinate Cobalt(III)-Imidyl Complex with an Unusual S = 3/2 Ground State that Promotes N-Group and Hydrogen Atom-Transfer Reactions with Exogenous Substrates. J Am Chem Soc 2023; 145:26106-26121. [PMID: 37997643 PMCID: PMC11175169 DOI: 10.1021/jacs.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kβ XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Guilherme L. Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kendal W. Southwell
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Groff BD, Koronkiewicz B, Mayer JM. Polar Effects in Hydrogen Atom Transfer Reactions from a Proton-Coupled Electron Transfer (PCET) Perspective: Abstractions from Toluenes. J Org Chem 2023; 88:16259-16269. [PMID: 37978890 PMCID: PMC10841608 DOI: 10.1021/acs.joc.3c01748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rate constants for hydrogen atom transfer (HAT) reactions of substituted toluenes with tert-butyl, tert-butoxy, and tert-butylperoxyl radicals are reanalyzed here using the free energies of related proton transfer (PT) and electron transfer (ET) reactions, calculated from an extensive set of compiled or estimated pKa and E° values. The Eyring activation energies ΔGHAT‡ do not correlate with the relatively constant ΔG°HAT, but do correlate close-to-linearly with ΔG°PT and ΔG°ET. The slopes of correlations are similar for the three radicals except that the tBu• barriers shift in the opposite direction from the oxyl radical barriers─a clear example of the qualitative "polar effect" in HAT reactions. When cast quantitatively in free energy terms (ΔGHAT‡ vs ΔG°PT/ET), this effect is very small, only 5-10% of the typical Bell-Evans-Polanyi (BEP) effect of changing ΔG°HAT. This analysis also highlights connections between polar effects and the concepts of "asynchronous" or "imbalanced" HAT reactions in which the PT and ET components of ΔG°HAT contribute differently to the barrier. Finally, these observations are discussed in light of the traditional explanations of polar effects and the potential for a rubric that could predict the extent to which contra-thermodynamic selectivity may be achieved in HAT reactions.
Collapse
Affiliation(s)
- Benjamin D. Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brian Koronkiewicz
- Current Address: Johns Hopkins University Applied Physics Laboratory, 11091 Johns Hopkins Rd, Laurel, MD 20723
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Chen T, Dong H, Yu Y, Chen J, Xu J, Sun Y, Guan X. Neutral Phenolic Contaminants Are Not Necessarily More Resistant to Permanganate Oxidation Than Their Dissociated Counterparts: Importance of Proton-Coupled Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17620-17628. [PMID: 37902719 DOI: 10.1021/acs.est.3c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Despite decades of research on phenols oxidation by permanganate, there are still considerable uncertainties regarding the mechanisms accounting for the unexpected parabolic pH-dependent oxidation rate. Herein, the pH effect on phenols oxidation was reinvestigated experimentally and theoretically by highlighting the previously unappreciated proton transfer. The results revealed that the oxidation of protonated phenols occurred via proton-coupled electron transfer (PCET) pathways, which can switch from ETPT (electron transfer followed by proton transfer) to CEPT (concerted electron-proton transfer) or PTET (proton transfer followed by electron transfer) with an increase in pH. A PCET-based model was thus established, and it could fit the kinetic data of phenols oxidation by permanganate well. In contrast with what was previously thought, both the simulating results and the density functional theory calculation indicated the rate of CEPT reaction of protonated phenols with OH- as the proton acceptor was much higher than that of deprotonated phenols, which could account for the pH-rate profiles for phenols oxidation. Analysis of the quantitative structure-activity relationships among the modeled rate constants, Hammett constants, and pKa values of phenols further supports the idea that the oxidation of protonated phenols is dominated by PCET. This study improves our understanding of permanganate oxidation and suggests a new pattern of reactivity that may be applicable to other systems.
Collapse
Affiliation(s)
- Tiansheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yanghai Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jihong Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Singh P, Lee Y, Mayfield JR, Singh R, Denler MC, Jones SD, Day VW, Nordlander E, Jackson TA. Enhanced Understanding of Structure-Function Relationships for Oxomanganese(IV) Complexes. Inorg Chem 2023; 62:18357-18374. [PMID: 37314463 DOI: 10.1021/acs.inorgchem.3c00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of manganese(II) and oxomanganese(IV) complexes supported by neutral, pentadentate ligands with varied equatorial ligand-field strength (N3pyQ, N2py2I, and N4pyMe2) were synthesized and then characterized using structural and spectroscopic methods. On the basis of electronic absorption spectroscopy, the [MnIV(O)(N4pyMe2)]2+ complex has the weakest equatorial ligand field among a set of similar MnIV-oxo species. In contrast, [MnIV(O)(N2py2I)]2+ shows the strongest equatorial ligand-field strength for this same series. We examined the influence of these changes in electronic structure on the reactivity of the oxomanganese(IV) complexes using hydrocarbons and thioanisole as substrates. The [MnIV(O)(N3pyQ)]2+ complex, which contains one quinoline and three pyridine donors in the equatorial plane, ranks among the fastest MnIV-oxo complexes in C-H bond and thioanisole oxidation. While a weak equatorial ligand field has been associated with high reactivity, the [MnIV(O)(N4pyMe2)]2+ complex is only a modest oxidant. Buried volume plots suggest that steric factors dampen the reactivity of this complex. Trends in reactivity were examined using density functional theory (DFT)-computed bond dissociation free energies (BDFEs) of the MnIIIO-H and MnIV ═ O bonds. We observe an excellent correlation between MnIV═O BDFEs and rates of thioanisole oxidation, but more scatter is observed between hydrocarbon oxidation rates and the MnIIIO-H BDFEs.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shannon D Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
23
|
Schneider JE, Anderson JS. Reconciling Imbalanced and Nonadiabatic Reactivity in Transition Metal-Oxo-Mediated Concerted Proton Electron Transfer (CPET). J Phys Chem Lett 2023; 14:9548-9555. [PMID: 37856336 DOI: 10.1021/acs.jpclett.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Zars E, Pick L, Swain A, Bhunia M, Carroll PJ, Munz D, Meyer K, Mindiola DJ. Iron-Catalyzed Intermolecular C-H Amination Assisted by an Isolated Iron-Imido Radical Intermediate. Angew Chem Int Ed Engl 2023:e202311749. [PMID: 37815099 DOI: 10.1002/anie.202311749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Lisa Pick
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Abinash Swain
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| |
Collapse
|
25
|
Li M, Li H, Ling C, Shang H, Wang H, Zhao S, Liang C, Mao C, Guo F, Zhou B, Ai Z, Zhang L. Highly selective synthesis of surface Fe IV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc Natl Acad Sci U S A 2023; 120:e2304562120. [PMID: 37695890 PMCID: PMC10515137 DOI: 10.1073/pnas.2304562120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/05/2023] [Indexed: 09/13/2023] Open
Abstract
High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
26
|
Kametani Y, Ikeda K, Yoshizawa K, Shiota Y. Mechanistic Study of Reduction of Nitrite to NO by the Copper(II) Complex: Different Concerted Proton-Electron Transfer Reactivity between Nitrite and Nitro Complexes. Inorg Chem 2023; 62:13765-13774. [PMID: 37590095 DOI: 10.1021/acs.inorgchem.3c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The literature contains numerous reports of copper complexes for nitrite (NO2-) reduction. However, details of how protons and electrons arrive and how nitric oxide (NO) is released remain unknown. The influence of the coordination mode of nitrite on reactivity is also under debate. Kundu and co-workers have reported nitrite reduction by a copper(II) complex [J. Am. Chem. Soc. 2020, 142, 1726-1730]. In their report, the copper(II) complex reduced nitrite using a phenol derivative as a reductant, resulting in NO, a hydroxyl copper(II) complex, and the corresponding biphenol. Also, the involvement of proton-coupled electron transfer was proposed by mechanistic studies. Herein, density functional theory calculations were performed to determine a mechanism for reduction of nitrite by a copper(II) complex. As a result of geometry optimization of an initial complex, two possible structures were obtained: Cu-ONO and Cu-NO2. Two possible reaction pathways initiated from Cu-ONO or Cu-NO2 were then considered. The calculation results indicated that the Cu-ONO pathway is energetically favorable. When changes in the electronic structure were considered, both pathways were found to involve concerted proton-electron transfer (CPET). In addition, an intrinsic reaction coordinate analysis revealed that the two pathways were achieved by different types of CPET. Furthermore, an intrinsic bond orbital analysis clearly indicated that, in the Cu-ONO pathway, the chemical events involved proceeded concertedly yet asynchronously.
Collapse
Affiliation(s)
- Yohei Kametani
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kei Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Groff BD, Cattaneo M, Coste SC, Pressley CA, Mercado BQ, Mayer JM. Independent Tuning of the p Ka or the E1/2 in a Family of Ruthenium Pyridine-Imidazole Complexes. Inorg Chem 2023; 62:10031-10038. [PMID: 37326619 PMCID: PMC10734561 DOI: 10.1021/acs.inorgchem.3c01241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two series of RuII(acac)2(py-imH) complexes have been prepared, one with changes to the acac ligands and the other with substitutions to the imidazole. The proton-coupled electron transfer (PCET) thermochemistry of the complexes has been studied in acetonitrile, revealing that the acac substitutions almost exclusively affect the redox potentials of the complex (|ΔE1/2| ≫ |ΔpKa|·0.059 V) while the changes to the imidazole primarily affect its acidity (|ΔpKa|·0.059 V ≫ |ΔE1/2|). This decoupling is supported by DFT calculations, which show that the acac substitutions primarily affect the Ru-centered t2g orbitals, while changes to the py-imH ligand primarily affect the ligand-centered π orbitals. More broadly, the decoupling stems from the physical separation of the electron and proton within the complex and highlights a clear design strategy to separately tune the redox and acid/base properties of H atom donor/acceptor molecules.
Collapse
Affiliation(s)
- Benjamin D Groff
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mauricio Cattaneo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Chloe A Pressley
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Heim P, Spedalotto G, Lovisari M, Gericke R, O'Brien J, Farquhar ER, McDonald AR. Synthesis and Characterization of a Masked Terminal Nickel-Oxide Complex. Chemistry 2023; 29:e202203840. [PMID: 36696360 PMCID: PMC10101870 DOI: 10.1002/chem.202203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In exploring terminal nickel-oxo complexes, postulated to be the active oxidant in natural and non-natural oxidation reactions, we report the synthesis of the pseudo-trigonal bipyramidal NiII complexes (K)[NiII (LPh )(DMF)] (1[DMF]) and (NMe4 )2 [NiII (LPh )(OAc)] (1[OAc]) (LPh =2,2',2''-nitrilo-tris-(N-phenylacetamide); DMF=N,N-dimethylformamide; - OAc=acetate). Both complexes were characterized using NMR, FTIR, ESI-MS, and X-ray crystallography, showing the LPh ligand to bind in a tetradentate fashion, together with an ancillary donor. The reaction of 1[OAc] with peroxyphenyl acetic acid (PPAA) resulted in the formation of [(LPh )NiIII -O-H⋅⋅⋅OAc]2- , 2, that displays many of the characteristics of a terminal Ni=O species. 2 was characterized by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a NiII -phenolate complex 3 (through aromatic electrophilic substitution) that was characterized by NMR, FTIR, ESI-MS, and X-ray crystallography. 2 was capable of hydroxylation of hydrocarbons and epoxidation of olefins, as well as oxygen atom transfer oxidation of phosphines at exceptional rates. While the oxo-wall remains standing, this complex represents an excellent example of a masked metal-oxide that displays all of the properties expected of the ever elusive terminal M=O beyond the oxo-wall.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - John O'Brien
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
29
|
Zhao N, Goetz MK, Schneider JE, Anderson JS. Testing the Limits of Imbalanced CPET Reactivity: Mechanistic Crossover in H-Atom Abstraction by Co(III)-Oxo Complexes. J Am Chem Soc 2023; 145:5664-5673. [PMID: 36867838 PMCID: PMC10023487 DOI: 10.1021/jacs.2c10553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Bower JK, Reese MS, Mazin IM, Zarnitsa LM, Cypcar AD, Moore CE, Sokolov AY, Zhang S. C(sp 3)-H cyanation by a formal copper(iii) cyanide complex. Chem Sci 2023; 14:1301-1307. [PMID: 36756315 PMCID: PMC9891353 DOI: 10.1039/d2sc06573h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
High-valent metal oxo complexes are prototypical intermediates for the activation and hydroxylation of alkyl C-H bonds. Substituting the oxo ligand with other functional groups offers the opportunity for additional C-H functionalization beyond C-O bond formation. However, few species aside from metal oxo complexes have been reported to both activate and functionalize alkyl C-H bonds. We herein report the first example of an isolated copper(iii) cyanide complex (LCuIIICN) and its C-H cyanation reactivity. We found that the redox potential (E ox) of substrates, instead of C-H bond dissociation energy, is a key determinant of the rate of PCET, suggesting an oxidative asynchronous CPET or ETPT mechanism. Among substrates with the same BDEs, those with low redox potentials transfer H atoms up to a million-fold faster. Capitalizing on this mechanistic insight, we found that LCuIIICN is highly selective for cyanation of amines, which is predisposed to oxidative asynchronous or stepwise transfer of H+/e-. Our study demonstrates that the asynchronous effect of PCET is an appealing tool for controlling the selectivity of C-H functionalization.
Collapse
Affiliation(s)
- Jamey K. Bower
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Maxwell S. Reese
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Ilia M. Mazin
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Lina M. Zarnitsa
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Andrew D. Cypcar
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University100 W. 18 AveColumbusOH43210USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
31
|
Maldonado-Domínguez M, Srnec M. Quantifiable polarity match effect on C-H bond cleavage reactivity and its limits in reaction design. Dalton Trans 2023; 52:1399-1412. [PMID: 36644790 DOI: 10.1039/d2dt04018b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When oxidants favour cleaving a strong C-H bond at the expense of weaker ones, which are otherwise inherently preferred due to their favourable reaction energy, reactivity factors such as the polarity match effect are often invoked. Polarity match follows the intuition of electrophilic (nucleophilic) oxidants reacting faster with nucleophilic (electrophilic) C-H bonds. Nevertheless, this concept is purely qualitative and is best suited for a posteriori rationalization of experimental observations. Here, we propose and inspect two methods to quantify polar effects in C-H cleavage reactions, one by computation via the difference of atomic charges (Δq) of reacting atoms, and one amenable to experimental measurement through asynchronicity factors, η. By their application to three case studies, we observe that both Δq and η faithfully capture the notion of polarity match. The polarity match model, however, proves insufficient as a predictor of H-atom abstraction reactivity and we discourage its use as a standalone variable in reaction design. Besides this caveat, η and Δq (through its mapping on η) allow the implementation of polarity match into a Marcus-type model of reactivity, alleviating its shortcomings and making reaction planning feasible.
Collapse
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| |
Collapse
|
32
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
33
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
34
|
Maldonado-Domínguez M, Srnec M. H-Atom Abstraction Reactivity through the Lens of Asynchronicity and Frustration with Their Counteracting Effects on Barriers. Inorg Chem 2022; 61:18811-18822. [DOI: 10.1021/acs.inorgchem.2c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| |
Collapse
|
35
|
Agarwal RG, Mayer JM. Coverage-Dependent Rate-Driving Force Relationships: Hydrogen Transfer from Cerium Oxide Nanoparticle Colloids. J Am Chem Soc 2022; 144:20699-20709. [DOI: 10.1021/jacs.2c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rishi G. Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| |
Collapse
|
36
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 PMCID: PMC11891864 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
37
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Qian J, Comito RJ. Site-Isolated Main-Group Tris(2-pyridyl)borate Complexes by Pyridine Substitution and Their Ring-Opening Polymerization Catalysis. Inorg Chem 2022; 61:10852-10862. [PMID: 35776081 DOI: 10.1021/acs.inorgchem.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tris(2-pyridyl)borates are an emerging class of scorpionate ligands, distinguished as exceptionally robust and electron-donating. However, the rapid formation of inert homoleptic complexes with divalent metals has so far limited their catalytic utility. We report site-isolating tris(2-pyridyl)borate ligands, bearing isopropyl, tert-butyl, and mesityl substituents at the pyridine 6-position to suppress the formation of inert homoleptic complexes. These ligands form the first 1:1 complexes between tris(2-pyridyl)borates and Mg2+, Zn2+, or Ca2+, with isopropyl-substituted TpyiPrH showing the most generality. Single-crystal X-ray diffraction analysis of the resulting complexes and comparison to density functional theory (DFT) models showed geometric distortions driven by steric repulsion between the pyridine 6-substituents and the hexamethyldisilazide (HMDS-, -N(SiMe3)2) anion. We show that this steric profile is a feature of the six-membered pyridine ring and contrasts with more established tris(pyrazolyl)borate and tris(imidazoline)borate scorpionate complexes. TpyiPrMg(HMDS) (1) and its zinc analogue are moderately active for the controlled polymerization of l-lactide, ε-caprolactone, and trimethylene carbonate. Furthermore, 1 gives controlled polymerization under more demanding melt-phase polymerization conditions at 100 °C, and block copolymerization of ε-caprolactone and trimethylene carbonate. These results will enable useful catalysis and coordination chemistry studies with tris(2-pyridyl)borates, and characterizes their structural complementarity to more familiar scorpionate ligands.
Collapse
Affiliation(s)
- Jin Qian
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Robert J Comito
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
39
|
Zhou A, Cao X, Chen H, Sun D, Zhao Y, Nam W, Wang Y. The chameleon-like nature of elusive cobalt-oxygen intermediates in C-H bond activation reactions. Dalton Trans 2022; 51:4317-4323. [PMID: 35212349 DOI: 10.1039/d2dt00224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valence metal-oxo (M-O, M = Fe, Mn, etc.) species are well-known reaction intermediates that are responsible for a wide range of pivotal oxygenation reactions and water oxidation reactions in metalloenzymes. Although extensive efforts have been devoted to synthesizing and identifying such complexes in biomimetic studies, the structure-function relationship and related reaction mechanisms of these reaction intermediates remain elusive, especially for the cobalt-oxygen species. In the present manuscript, the calculated results demonstrate that the tetraamido macrocycle ligated cobalt complex, Co(O)(TAML) (1), behaves like a chameleon: the electronic structure varies from a cobalt(III)-oxyl species to a cobalt(IV)-oxo species when a Lewis acid Sc3+ salt coordinates or an acidic hydrocarbon attacks 1. The dichotomous correlation between the reaction rates of C-H bond activation by 1 and the bond dissociation energy (BDE) vs. the acidity (pKa) was rationalized for the first time by different reaction mechanisms: for normal C-H bond activation, the Co(III)-oxyl species directly activates the C-H bond via a hydrogen atom transfer (HAT) mechanism, whereas for acidic C-H bond activation, the Co(III)-oxyl species evolves to a Co(IV)-oxo species to increase the basicity of the oxygen to activate the acidic C-H bond, via a novel PCET(PT) mechanism (proton-coupled electron transfer with a PT(proton-transfer)-like transition state). These theoretical findings will enrich the knowledge of biomimetic metal-oxygen chemistry.
Collapse
Affiliation(s)
- Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuanyu Cao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
40
|
Hayashi E, Tamura T, Aihara T, Kamata K, Hara M. Base-Assisted Aerobic C-H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg 6MnO 8 Nanoparticle Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6528-6537. [PMID: 35080862 DOI: 10.1021/acsami.1c20080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takatoshi Tamura
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
41
|
Ghosh I, Chakraborty B, Bera A, Paul S, Paine TK. Selective oxygenation of C-H and CC bonds with H 2O 2 by high-spin cobalt(II)-carboxylate complexes. Dalton Trans 2022; 51:2480-2492. [PMID: 35050271 DOI: 10.1039/d1dt02235k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four cobalt(II)-carboxylate complexes [(6-Me3-TPA)CoII(benzoate)](BPh4) (1), [(6-Me3-TPA)CoII(benzilate)](ClO4) (2), [(6-Me3-TPA)CoII(mandelate)](BPh4) (3), and [(6-Me3-TPA)CoII(MPA)](BPh4) (4) (HMPA = 2-methoxy-2-phenylacetic acid) of the 6-Me3-TPA (tris((6-methylpyridin-2-yl)methyl)amine) ligand were isolated to investigate their ability in H2O2-dependent selective oxygenation of C-H and CC bonds. All six-coordinate complexes contain a high-spin cobalt(II) center. While the cobalt(II) complexes are inert toward dioxygen, each of these complexes reacts readily with hydrogen peroxide to form a diamagnetic cobalt(III) species, which decays with time leading to the oxidation of the methyl groups on the pyridine rings of the supporting ligand. Intramolecular ligand oxidation by the cobalt-based oxidant is partially inhibited in the presence of external substrates, and the substrates are converted to their corresponding oxidized products. Kinetic studies and labelling experiments indicate the involvement of a metal-based oxidant in affecting the chemo- and stereo-selective catalytic oxygenation of aliphatic C-H bonds and epoxidation of alkenes. An electrophilic cobalt-oxygen species that exhibits a kinetic isotope effect (KIE) value of 5.3 in toluene oxidation by 1 is proposed as the active oxidant. Among the complexes, the cobalt(II)-benzoate (1) and cobalt(II)-MPA (4) complexes display better catalytic activity compared to their α-hydroxy analogues (2 and 3). Catalytic studies with the cobalt(II)-acetonitrile complex [(6-Me3-TPA)CoII(CH3CN)2](ClO4)2 (5) in the presence and absence of externally added benzoate support the role of the carboxylate co-ligand in oxidation reactions. The proposed catalytic reaction involves a carboxylate-bridged dicobalt complex in the activation of H2O2 followed by the oxidation of substrates by a metal-based oxidant.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata - 700 009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
42
|
Léonard NG, Chantarojsiri T, Ziller JW, Yang JY. Cationic Effects on the Net Hydrogen Atom Bond Dissociation Free Energy of High-Valent Manganese Imido Complexes. J Am Chem Soc 2022; 144:1503-1508. [PMID: 35041788 PMCID: PMC9118977 DOI: 10.1021/jacs.1c09583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. Similar fields can be generated in molecular systems using charged functionalities. Manganese(V) salen nitrido complexes (salen = N,N'-ethylenebis(salicylideneaminato)) appended with a crown ether unit containing Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), or Eu3+ (1-Eu) cation were investigated to determine the effect of charge on pKa, E1/2, and the net bond dissociation free energy (BDFE) of N-H bonds. The series, which includes the manganese(V) salen nitrido without an appended crown, spans 4 units of charge. Bounds for the pKa values of the transient imido complexes were used with the Mn(VI/V) reduction potentials to calculate the N-H BDFEs of the imidos in acetonitrile. Despite a span of >700 mV and >9 pKa units across the series, the hydrogen atom BDFE only spans ∼6 kcal/mol (between 73 and 79 kcal/mol). These results suggest that the incorporation of cationic functionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa values while minimally affecting the BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer pathways.
Collapse
Affiliation(s)
- Nadia G Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
43
|
Beagan DM, Cabelof AC. Recent advances in metal-mediated nitrogen oxyanion reduction using reductively borylated and silylated N-heterocycles. Dalton Trans 2022; 51:2203-2213. [PMID: 35044399 DOI: 10.1039/d1dt03740d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of nitrogen oxyanions is critical for the remediation of eutrophication caused by anthropogenic perturbations to the natural nitrogen cycle. There are many approaches to nitrogen oxyanion reduction, and here we report our advances in reductive deoxygenation using pre-reduced N-heterocycles. We show examples of nitrogen oxyanion reduction using Cr, Fe, Co, Ni, and Zn, and we evaluate the role of metal choice, number of coordinated oxyanions, and ancillary ligands on the reductive transformations. We report the experimental challenges faced and provide an outlook on new directions to repurpose nitrogen oxyanions into value-added products.
Collapse
Affiliation(s)
- Daniel M Beagan
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Alyssa C Cabelof
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
44
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
45
|
Tyburski R, Hammarström L. Strategies for switching the mechanism of proton-coupled electron transfer reactions illustrated by mechanistic zone diagrams. Chem Sci 2022; 13:290-301. [PMID: 35059179 PMCID: PMC8694376 DOI: 10.1039/d1sc05230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis. However, determination and tuning of the PCET mechanism is often non-trivial. Here, we apply mechanistic zone diagrams to illustrate the competition between concerted and stepwise PCET-mechanisms in the oxidation of 4-methoxyphenol by Ru(bpy)33+-derivatives in the presence of substituted pyridine bases. These diagrams show the dominating mechanism as a function of driving force for electron and proton transfer (ΔG0ET and ΔG0PT) respectively [Tyburski et al., J. Am. Chem. Soc., 2021, 143, 560]. Within this framework, we demonstrate strategies for mechanistic tuning, namely balancing of ΔG0ET and ΔG0PT, steric hindrance of the proton-transfer coordinate, and isotope substitution. Sterically hindered pyridine bases gave larger reorganization energy for concerted PCET, resulting in a shift towards a step-wise electron first-mechanism in the zone diagrams. For cases when sufficiently strong oxidants are used, substitution of protons for deuterons leads to a switch from concerted electron–proton transfer (CEPT) to an electron transfer limited (ETPTlim) mechanism. We thereby, for the first time, provide direct experimental evidence, that the vibronic coupling strength affects the switching point between CEPT and ETPTlim, i.e. at what driving force one or the other mechanism starts dominating. Implications for solar fuel catalysis are discussed. The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis.![]()
Collapse
Affiliation(s)
- Robin Tyburski
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| |
Collapse
|
46
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
47
|
Goetz MK, Schneider JE, Filatov AS, Jesse KA, Anderson JS. Enzyme-Like Hydroxylation of Aliphatic C-H Bonds From an Isolable Co-Oxo Complex. J Am Chem Soc 2021; 143:20849-20862. [PMID: 34856101 DOI: 10.1021/jacs.1c09280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.
Collapse
Affiliation(s)
- McKenna K Goetz
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)-Fluoride-Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021; 60:26281-26286. [PMID: 34582619 PMCID: PMC9298026 DOI: 10.1002/anie.202112683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/08/2023]
Abstract
We anticipate high-valent metal-fluoride species will be highly effective hydrogen atom transfer (HAT) oxidants because of the magnitude of the H-F bond (in the product) that drives HAT oxidation. We prepared a dimeric FeIII (F)-F-FeIII (F) complex (1) by reacting [FeII (NCCH3 )2 (TPA)](ClO4 )2 (TPA=tris(2-pyridylmethyl)amine) with difluoro(phenyl)-λ3 -iodane (difluoroiodobenzene). 1 was a sluggish oxidant, however, it was readily activated by reaction with Lewis or Brønsted acids to yield a monomeric [FeIII (TPA)(F)(X)]+ complex (2) where X=F/OTf. 1 and 2 were characterized using NMR, EPR, UV/Vis, and FT-IR spectroscopies and mass spectrometry. 2 was a remarkably reactive FeIII reagent for oxidative C-H activation, demonstrating reaction rates for hydrocarbon HAT comparable to the most reactive FeIII and FeIV oxidants.
Collapse
Affiliation(s)
- Chakadola Panda
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Lorna M. Doyle
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Robert Gericke
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V.Institute of Resource EcologyBautzner Landstrasse 40001328DresdenGermany
| | - Aidan R. McDonald
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| |
Collapse
|
49
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)−Fluoride‐Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chakadola Panda
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Lorna M. Doyle
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Robert Gericke
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V. Institute of Resource Ecology Bautzner Landstrasse 400 01328 Dresden Germany
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| |
Collapse
|
50
|
Yang J, Dong HT, Seo MS, Larson VA, Lee YM, Shearer J, Lehnert N, Nam W. The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)-Oxo Complex. J Am Chem Soc 2021; 143:16943-16959. [PMID: 34609879 DOI: 10.1021/jacs.1c04919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, we report the preparation, spectroscopic and theoretical characterization, and reactivity studies of a Co(IV)-oxo complex bearing an N4-macrocyclic coligand, 12-TBC (12-TBC = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane). On the basis of the ligand and the structure of the Co(II) precursor, [CoII(12-TBC)(CF3SO3)2], one would assume that this species corresponds to a tetragonal Co(IV)-oxo complex, but the spectroscopic data do not support this notion. Co K-edge XAS data show that the treatment of the Co(II) precursor with iodosylbenzene (PhIO) as an oxidant at -40 °C in the presence of a proton source leads to a distinct shift in the Co K-edge, in agreement with the formation of a Co(IV) intermediate. The presence of the oxo group is further demonstrated by resonance Raman (rRaman) spectroscopy. Interestingly, the EPR data of this complex show a high degree of rhombicity, indicating structural distortion. This is further supported by the EXAFS data. Using DFT calculations, a structural model is developed for this complex with a ligand-protonated structure that features a Co═O···HN hydrogen bond and a four-coordinate Co center in a seesaw-shaped coordination geometry. Magnetic circular dichroism (MCD) spectroscopy further supports this finding. The hydrogen bond leads to an interesting polarization of the Co-oxo π-bonds, where one O(p) lone-pair is stabilized and leads to a regular Co(d) interaction, whereas the other π-bond shows an inverted ligand field. The reactivity of this complex in hydrogen atom and oxygen atom transfer reactions is discussed as well.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|