1
|
Heel SV, Juen F, Bartosik K, Micura R, Kreutz C, Breuker K. Resolving the intricate binding of neomycin B to multiple binding motifs of a neomycin-sensing riboswitch aptamer by native top-down mass spectrometry and NMR spectroscopy. Nucleic Acids Res 2024; 52:4691-4701. [PMID: 38567725 PMCID: PMC11077050 DOI: 10.1093/nar/gkae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Gross S, Herren S, Gysin M, Rominski A, Roditscheff A, Risch M, Imkamp F, Crich D, Hobbie SN. In vitro susceptibility of Neisseria gonorrhoeae to netilmicin and etimicin in comparison to gentamicin and other aminoglycosides. Eur J Clin Microbiol Infect Dis 2024; 43:821-828. [PMID: 38388739 PMCID: PMC11108870 DOI: 10.1007/s10096-024-04782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Single doses of gentamicin have demonstrated clinical efficacy in the treatment of urogenital gonorrhea, but lower cure rates for oropharyngeal and anorectal gonorrhea. Formulations selectively enriched in specific gentamicin C congeners have been proposed as a less toxic alternative to gentamicin, potentially permitting higher dosing to result in increased plasma exposures at the extragenital sites of infection. The purpose of the present study was to compare the antibacterial activity of individual gentamicin C congeners against Neisseria gonorrhoeae to that of other aminoglycoside antibiotics. METHODS Antimicrobial susceptibility of three N. gonorrhoeae reference strains and 152 clinical isolates was assessed using standard disk diffusion, agar dilution, and epsilometer tests. RESULTS Gentamicin C1, C2, C1a, and C2a demonstrated similar activity against N. gonorrhoeae. Interestingly, susceptibility to the 1-N-ethylated aminoglycosides etimicin and netilmicin was significantly higher than the susceptibility to their parent compounds gentamicin C1a and sisomicin, and to any other of the 25 aminoglycosides assessed in this study. Propylamycin, a 4'-propylated paromomycin analogue, was significantly more active against N. gonorrhoeae than its parent compound, too. CONCLUSION Selectively enriched gentamicin formulations hold promise for a less toxic but equally efficacious alternative to gentamicin. Our study warrants additional consideration of the clinically established netilmicin and etimicin for treatment of genital and perhaps extragenital gonorrhea. Additional studies are required to elucidate the mechanism behind the advantage of alkylated aminoglycosides.
Collapse
Affiliation(s)
- Sonja Gross
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Sebastian Herren
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - Anna Roditscheff
- Private University in the Principality of Liechtenstein, Dorfstrasse 24, 9495, Triesen, Liechtenstein
- Dr. Risch Medical Laboratory, Waldeggstrasse 37, 3097, Liebefeld, Switzerland
| | - Martin Risch
- Private University in the Principality of Liechtenstein, Dorfstrasse 24, 9495, Triesen, Liechtenstein
- Dr. Risch Medical Laboratory, Waldeggstrasse 37, 3097, Liebefeld, Switzerland
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006, Zurich, Switzerland.
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
3
|
Marinus N, Reintjens NRM, Haldimann K, Mouthaan MLMC, Hobbie SN, Witte MD, Minnaard AJ. Site-Selective Palladium-catalyzed Oxidation of Unprotected Aminoglycosides and Sugar Phosphates. Chemistry 2024; 30:e202400017. [PMID: 38284753 DOI: 10.1002/chem.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Niels R M Reintjens
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Marc L M C Mouthaan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| |
Collapse
|
4
|
Kasdekar N, Spieker MR, Crich D. Practical Synthesis from Streptomycin and Regioselective Partial Deprotections of (-)-(1 R,2 S,3 R,4 R,5 S,6 S)-1,3-Di(deamino)-1,3-diazido-2,5,6-tri- O-benzylstreptamine. J Org Chem 2024; 89:4225-4231. [PMID: 38427951 PMCID: PMC10949228 DOI: 10.1021/acs.joc.3c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
We describe the gram-scale synthesis of (-)-(1R,2S,3R,4R,5S,6S)-1,3-di(diamino)-1,3-diazido-2,5,6-tri-O-benzylstreptamine from streptomycin by (i) hydrolysis of the two streptomycin guanidine residues, (ii) reprotection of the amines as azides, (iii) protection of all alcohols as benzyl ethers, and (iv) glycosidic bond cleavage with HCl in methanol. Protocols for regioselective monodebenzylation and regioselective reduction of a single azide in the product are also described, providing four optically pure building blocks for exploitation in novel aminoglycoside synthesis.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Bordeleau E, Stogios PJ, Evdokimova E, Koteva K, Savchenko A, Wright GD. Mechanistic plasticity in ApmA enables aminoglycoside promiscuity for resistance. Nat Chem Biol 2024; 20:234-242. [PMID: 37973888 DOI: 10.1038/s41589-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
The efficacy of aminoglycoside antibiotics is waning due to the acquisition of diverse resistance mechanisms by bacteria. Among the most prevalent are aminoglycoside acetyltransferases (AACs) that inactivate the antibiotics through acetyl coenzyme A-mediated modification. Most AACs are members of the GCN5 superfamily of acyltransferases which lack conserved active site residues that participate in catalysis. ApmA is the first reported AAC belonging to the left-handed β-helix superfamily. These enzymes are characterized by an essential active site histidine that acts as an active site base. Here we show that ApmA confers broad-spectrum aminoglycoside resistance with a molecular mechanism that diverges from other detoxifying left-handed β-helix superfamily enzymes and canonical GCN5 AACs. We find that the active site histidine plays different functions depending on the acetyl-accepting aminoglycoside substrate. This flexibility in the mechanism of a single enzyme underscores the plasticity of antibiotic resistance elements to co-opt protein catalysts in the evolution of drug detoxification.
Collapse
Affiliation(s)
- Emily Bordeleau
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID) University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Jana S, Rajasekaran P, Haldimann K, Vasella A, Böttger EC, Hobbie SN, Crich D. Synthesis of Gentamicins C1, C2, and C2a and Antiribosomal and Antibacterial Activity of Gentamicins B1, C1, C1a, C2, C2a, C2b, and X2. ACS Infect Dis 2023; 9:1622-1633. [PMID: 37481733 PMCID: PMC10425985 DOI: 10.1021/acsinfecdis.3c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/25/2023]
Abstract
Complementing our earlier syntheses of the gentamicins B1, C1a, C2b, and X2, we describe the synthesis of gentamicins C1, C2, and C2a characterized by methyl substitution at the 6'-position, and so present an alternative access to previous chromatographic methods for accessing these sought-after compounds. We describe the antiribosomal activity of our full set of synthetic gentamicin congeners against bacterial ribosomes and hybrid ribosomes carrying the decoding A site of the human mitochondrial, A1555G mutant mitochondrial, and cytoplasmic ribosomes and establish structure-activity relationships with the substitution pattern around ring I to antiribosomal activity, antibacterial resistance due to the presence of aminoglycoside acetyl transferases acting on the 6'-position in ring I, and literature cochlear toxicity data.
Collapse
Affiliation(s)
- Santanu Jana
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parasuraman Rajasekaran
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Klara Haldimann
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic
Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
8
|
Mohamad-Ramshan R, Ande C, Matsushita T, Haldimann K, Vasella A, Hobbie SN, Crich D. Synthesis of 4- O-(4-Amino-4-deoxy-β-D-xylopyranosyl)paromomycin and 4- S-(β-D-Xylopyranosyl)-4-deoxy-4'-thio-paromomycin and Evaluation of their Antiribosomal and Antibacterial Activity. Tetrahedron 2023; 135:133330. [PMID: 37035443 PMCID: PMC10081503 DOI: 10.1016/j.tet.2023.133330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-β-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding β-D-xylopyranosyl derivative. The second is a 4'-(β-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple β-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.
Collapse
Affiliation(s)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
9
|
Ngo D, Magaña AJ, Tran T, Sklenicka J, Phan K, Eykholt B, Jimenez V, Ramirez MS, Tolmasky ME. Inhibition of Enzymatic Acetylation-Mediated Resistance to Plazomicin by Silver Ions. Pharmaceuticals (Basel) 2023; 16:236. [PMID: 37259383 PMCID: PMC9966628 DOI: 10.3390/ph16020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/24/2024] Open
Abstract
Plazomicin is a recent U.S. Food and Drug Administration (FDA)-approved semisynthetic aminoglycoside. Its structure consists of a sisomicin scaffold modified by adding a 2(S)-hydroxy aminobutyryl group at the N1 position and a hydroxyethyl substituent at the 6' position. These substitutions produced a molecule refractory to most aminoglycoside-modifying enzymes. The main enzyme within this group that recognizes plazomicin as substrate is the aminoglycoside 2'-N-acetyltransferase type Ia [AAC(2')-Ia], which reduces the antibiotic's potency. Designing formulations that combine an antimicrobial with an inhibitor of resistance is a recognized strategy to extend the useful life of existing antibiotics. We have recently found that several metal ions inhibit the enzymatic inactivation of numerous aminoglycosides mediated by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib]. In particular, Ag+, which also enhances the effect of aminoglycosides by other mechanisms, is very effective in interfering with AAC(6')-Ib-mediated resistance to amikacin. Here we report that silver acetate is a potent inhibitor of AAC(2')-Ia-mediated acetylation of plazomicin in vitro, and it reduces resistance levels of Escherichia coli carrying aac(2')-Ia. The resistance reversion assays produced equivalent results when the structural gene was expressed under the control of the natural or the blaTEM-1 promoters. The antibiotic effect of plazomicin in combination with silver was bactericidal, and the mix did not show significant toxicity to human embryonic kidney 293 (HEK293) cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA
| |
Collapse
|
10
|
Tevyashova AN, Shapovalova KS. Potential for the Development of a New Generation of Aminoglycoside Antibiotics. Pharm Chem J 2022; 55:860-875. [PMID: 35039693 PMCID: PMC8754558 DOI: 10.1007/s11094-021-02510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 11/29/2022]
Abstract
The present review summarizes recent publications devoted to aminoglycosides that study the main types of resistance to antibiotics of this class and the main directions of chemical modification aimed at overcoming the resistance or changing the spectrum of biological activity. Conjugates of aminoglycosides with various pharmacophores including amino acids, peptides, peptide nucleic acids, nucleic bases, and several other biologically active molecules and modifications resulting in other types of biological activity of this class of antibiotics are described. It is concluded that a promising research direction aimed at increasing the activity of antibiotics against resistant strains is the search for selective inhibitors of aminoglycoside-modifying enzymes. This would allow renewal of the use of antibiotics already meeting widespread resistance and would increase the potential of a new generation of antibiotics.
Collapse
Affiliation(s)
- A. N. Tevyashova
- G. F. Gause Institute of New Antibiotics, 11/1 B. Pirogovskaya St, Moscow, 119021 Russia
| | - K. S. Shapovalova
- G. F. Gause Institute of New Antibiotics, 11/1 B. Pirogovskaya St, Moscow, 119021 Russia
| |
Collapse
|
11
|
Wang X, Sun Y, Ling L, Ren X, Liu X, Wang Y, Dong Y, Ma J, Song R, Yu A, Wei J, Fan Q, Guo M, Zhao T, Dao R, She G. Gaultheria leucocarpa var. yunnanensis for Treating Rheumatoid Arthritis-An Assessment Combining Machine Learning-Guided ADME Properties Prediction, Network Pharmacology, and Pharmacological Assessment. Front Pharmacol 2021; 12:704040. [PMID: 34671253 PMCID: PMC8520986 DOI: 10.3389/fphar.2021.704040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), a traditional Chinese/ethnic medicine (TC/EM), has been used to treat rheumatoid arthritis (RA) for a long time. The anti-rheumatic arthritis fraction (ARF) of G. yunnanensis has significant anti-inflammatory and analgesic activities and is mainly composed of methyl salicylate glycosides, flavonoids, organic acids, and others. The effective ingredients and rudimentary mechanism of ARF remedying RA have not been elucidated to date. Purpose: The aim of the present study is to give an insight into the effective components and mechanisms of Dianbaizhu in ameliorating RA, based on the estimation of the absorption, distribution, metabolism, and excretion (ADME) properties, analysis of network pharmacology, and in vivo and in vitro validations. Study design and methods: The IL-1β-induced human fibroblast-like synoviocytes of RA (HFLS-RA) model and adjuvant-induced arthritis in the rat model were adopted to assess the anti-RA effect of ARF. The components in ARF were identified by using UHPLC-LTQ-Orbitrap-MSn. The quantitative structure-activity relationship (QSAR) models were developed by using five machine learning algorithms, alone or in combination with genetic algorithms for predicting the ADME properties of ARF. The molecular networks and pathways presumably referring to the therapy of ARF on RA were yielded by using common databases and visible software, and the experimental validations of the key targets conducted in vitro. Results: ARF effectively relieved RA in vivo and in vitro. The five optimized QSAR models that were developed showed robustness and predictive ability. The characterized 48 components in ARF had good biological potency. Four key signaling pathways were obtained, which were related to both cytokine signaling and cell immune response. ARF suppressed IL-1β-induced expression of EGFR, MMP 9, IL2, MAPK14, and KDR in the HFLS-RA . Conclusions: ARF has good druggability and high exploitation potential. Methyl salicylate glycosides and flavonoids play essential roles in attuning RA. ARF may partially attenuate RA by regulating the expression of multi-targets in the inflammation-immune system. These provide valuable information to rationalize ARF and other TC/EMs in the treatment of RA.
Collapse
Affiliation(s)
- Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Ling
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Miaoxian Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Dao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| |
Collapse
|
12
|
Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosan–silver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–Vis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity.
Collapse
|
13
|
Pirrone MG, Hobbie SN, Vasella A, Böttger EC, Crich D. Influence of ring size in conformationally restricted ring I analogs of paromomycin on antiribosomal and antibacterial activity. RSC Med Chem 2021; 12:1585-1591. [PMID: 34671740 DOI: 10.1039/d1md00214g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In order to further investigate the importance of the conformation of the ring I side chain in aminoglycoside antibiotic binding to the ribosomal target several derivatives of paromomycin were designed with conformationally locked side chains. By changing the size of the appended ring between O-4' and C-6' used to restrict the motion of the side chain, the position of the C-6' hydroxy group was fine tuned to probe for the optimal conformation for inhibition of the ribosome. While the changes in orientation of the 6'-hydroxy group cannot be completely dissociated from the size and hydrophobicity of the conformation-restricting ring, overall, it is apparent that the preferred conformation of the ring I side chain for interaction with A1408 in the decoding A site of the bacterial ribosome is an ideal gt conformation, which results in the highest antimicrobial activity as well as increased selectivity for bacterial over eukaryotic ribosomes.
Collapse
Affiliation(s)
- Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, Wayne State University 5101 Cass Avenue Detroit MI 48202 USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, University of Georgia 140 Cedar Street Athens GA 30602 USA
| |
Collapse
|
14
|
Lubriks D, Zogota R, Sarpe VA, Matsushita T, Sati GC, Haldimann K, Gysin M, Böttger EC, Vasella A, Suna E, Hobbie SN, Crich D. Synthesis and Antibacterial Activity of Propylamycin Derivatives Functionalized at the 5''- and Other Positions with a View to Overcoming Resistance Due to Aminoglycoside Modifying Enzymes. ACS Infect Dis 2021; 7:2413-2424. [PMID: 34114793 DOI: 10.1021/acsinfecdis.1c00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.
Collapse
Affiliation(s)
| | - Rimants Zogota
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Vikram A. Sarpe
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
16
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
17
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Li T, Li T, Sun Y, Yang Y, Lv P, Wang F, Lou H, Schmidt RR, Peng P. Regioselective benzoylation of unprotected β-glycopyranosides with benzoyl cyanide and an amine catalyst – application to saponin synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01243b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regioselective protection of trans-trans triol and tetrol moieties in carbohydrates was achieved with BzCN as the benzoylating agent and amine catalysts. The protocols are useful for the chemical synthesis of oligosaccharides and saponins.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
- Key Laboratory of Chemical Biology (Ministry of Education)
| | - Tong Li
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
| | - Yajing Sun
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
| | - Yue Yang
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
| | - Panpan Lv
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
| | - Fengshan Wang
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
- Key Laboratory of Chemical Biology (Ministry of Education)
| | - Hongxiang Lou
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
- Key Laboratory of Chemical Biology (Ministry of Education)
| | | | - Peng Peng
- National Glycoengineering Research Center
- Shandong University
- Jinan
- China
- Key Laboratory of Chemical Biology (Ministry of Education)
| |
Collapse
|
19
|
Jeong CS, Hwang J, Do H, Cha SS, Oh TJ, Kim HJ, Park HH, Lee JH. Structural and biochemical analyses of an aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis. Sci Rep 2020; 10:21503. [PMID: 33299080 PMCID: PMC7725843 DOI: 10.1038/s41598-020-78699-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022] Open
Abstract
The expression of aminoglycoside-modifying enzymes represents a survival strategy of antibiotic-resistant bacteria. Aminoglycoside 2′-N-acetyltransferase [AAC(2′)] neutralizes aminoglycoside drugs by acetylation of their 2′ amino groups in an acetyl coenzyme A (CoA)-dependent manner. To understand the structural features and molecular mechanism underlying AAC(2′) activity, we overexpressed, purified, and crystallized AAC(2′) from Mycolicibacterium smegmatis [AAC(2′)-Id] and determined the crystal structures of its apo-form and ternary complexes with CoA and four different aminoglycosides (gentamicin, sisomicin, neomycin, and paromomycin). These AAC(2′)-Id structures unraveled the binding modes of different aminoglycosides, explaining the broad substrate specificity of the enzyme. Comparative structural analysis showed that the α4-helix and β8–β9 loop region undergo major conformational changes upon CoA and substrate binding. Additionally, structural comparison between the present paromomycin-bound AAC(2′)-Id structure and the previously reported paromomycin-bound AAC(6′)-Ib and 30S ribosome structures revealed the structural features of paromomycin that are responsible for its antibiotic activity and AAC binding. Taken together, these results provide useful information for designing AAC(2′) inhibitors and for the chemical modification of aminoglycosides.
Collapse
Affiliation(s)
- Chang-Sook Jeong
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.,Genome-Based BioIT Convergence Institute, Asan, 31460, Republic of Korea.,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Busan, 48513, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea. .,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
20
|
Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes. Proc Natl Acad Sci U S A 2020; 117:32423-32432. [PMID: 33288712 DOI: 10.1073/pnas.2013065117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gentamicin is a potent broad-spectrum aminoglycoside antibiotic whose use is hampered by ototoxic side-effects. Hospital gentamicin is a mixture of five gentamicin C-subtypes and several impurities of various ranges of nonexact concentrations. We developed a purification strategy enabling assaying of individual C-subtypes and impurities for ototoxicity and antimicrobial activity. We found that C-subtypes displayed broad and potent in vitro antimicrobial activities comparable to the hospital gentamicin mixture. In contrast, they showed different degrees of ototoxicity in cochlear explants, with gentamicin C2b being the least and gentamicin C2 the most ototoxic. Structure-activity relationships identified sites in the C4'-C6' region on ring I that reduced ototoxicity while preserving antimicrobial activity, thus identifying targets for future drug design and mechanisms for hair cell toxicity. Structure-activity relationship data suggested and electrophysiological data showed that the C-subtypes both bind and permeate the hair cell mechanotransducer channel, with the stronger the binding the less ototoxic the compound. Finally, both individual and reformulated mixtures of C-subtypes demonstrated decreased ototoxicity while maintaining antimicrobial activity, thereby serving as a proof-of-concept of drug reformulation to minimizing ototoxicity of gentamicin in patients.
Collapse
|
21
|
Zhou T, Yang W, Yang Q, Xuan B, Zhang L, Li X, Zhou F. Distribution, diagnosis, and analysis of related risk factors of multidrug-resistant organism in patients with malignant neoplasms. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2648-2655. [PMID: 33165442 PMCID: PMC7642715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE In this study, we sought to investigate the distribution characteristics, early diagnosis, and related risk factors of multidrug-resistant organism (MDRO) in patients with malignant tumors. METHODS A total of 278 patients with malignant tumors and infections were selected in the Department of Oncology for retrospective study, including 128 MDRO patients and 150 non-MDRO patients. The markers of bacterial culture were detected, and the serum procalcitonin (PCT), C-reactive protein (CRP), and serum amyloid A (SAA) levels were measured in patients' blood samples. The diagnostic value of PCT, CRP, and SAA for MDRO was evaluated, the distribution of MDRO in different years and different infection sites was analyzed, and the related risk factors of MDRO infection were studied. RESULTS The PCT, CRP, and SAA in the MDRO group were significantly higher than those of the non-MDRO group (all P<0.001). The area under the curve of receiver operating characteristics for the diagnosis of MDRO by PCT, CRP, and SAA. The combination of the three was 0.792, 0.811, 0.755, and 0.842, respectively. The distribution of MDRO strains in different years was statistically different (P<0.05), as well as the distribution of MDRO in different infection sites (P<0.05). Multivariate regression analysis demonstrated that invasive operation, excessive bed rest, hypoproteinemia, PCT, and SAA were independent risk factors for MDRO infection in patients with malignant tumors (all P<0.05). CONCLUSION The combination of CRP, PCT, and SAA displays a value for early diagnosis of MDRO infection. MDRO infections in malignant tumors mainly include carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Escherichia coli. There are differences in terms of MDRO strains in different years and different infection sites, and there are many risk factors regarding MDRO infection in patients with malignant tumors. Intervention should be taken in order to reduce the rate of MDRO infection.
Collapse
Affiliation(s)
- Tang Zhou
- Department of Laboratory, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| | - Wenchao Yang
- Department of Hospital-Acquired Infection Control, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| | - Qijun Yang
- Department of Pharmacy, Zhuji Second People’s HospitalZhuji, Zhejiang Province, China
| | - Bixia Xuan
- Department of Pharmacy, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| | - Liuping Zhang
- Department of Cardiovascular Medicine, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| | - Xiaofang Li
- Department of Pharmacy, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| | - Fang Zhou
- Department of Pediatrics, Traditional Chinese Medical Hospital of ZhujiZhuji, Zhejiang Province, China
| |
Collapse
|
22
|
Li T, Li T, Linseis M, Wang F, Winter RF, Schmidt RR, Peng P. Catalytic Regioselective Benzoylation of 1,2- trans-Diols in Carbohydrates with Benzoyl Cyanide: The Axial Oxy Group Effect and the Action of Achiral and Chiral Amine Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
| | - Michael Linseis
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| | - Rainer F. Winter
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Richard R. Schmidt
- Department of Chemistry, University of Konstanz, Konstanz D-78457, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan City, Shandong 250012, China
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan City, Shandong 250012, China
| |
Collapse
|
23
|
Qian Y, Huang S, Li Y, Zhou C. Biocompatible antibacterial nanoparticles prepared by assembling polycaprolactone-lysine-dendrimers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Sonousi A, Vasella A, Crich D. Synthesis of a Pseudodisaccharide Suitable for Synthesis of Ring I Modified 4,5-2-Deoxystreptamine Type Aminoglycoside Antibiotics. J Org Chem 2020; 85:7583-7587. [PMID: 32336094 PMCID: PMC7275914 DOI: 10.1021/acs.joc.0c00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To facilitate the synthesis of paromomycin and/or neomycin analogues, we describe a cleavage of ring I from paromomycin that proceeds in the presence of azides and affords a glycosyl acceptor for the installation of a modified ring I. A paromomycin 4',6'-diol is oxidized by the Dess-Martin periodinane followed by m-chloroperoxybenzoic acid. Base treatment then affords a protected pseudodisaccharide, which functions as a glycosyl acceptor. The method should also apply to the cleavage of pyranosyl 4,6-diols from oligosaccharides and glycoconjugates.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Rajasekaran P, Crich D. Synthesis of Gentamicin Minor Components: Gentamicin B1 and Gentamicin X2. Org Lett 2020; 22:3850-3854. [PMID: 32343899 DOI: 10.1021/acs.orglett.0c01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The clinical aminoglycoside antibiotic gentamicin is a mixture of several difficult-to-separate major and minor components. The relative inaccessibility of the minor components in particular complicates efforts to separate antibacterial activity from nephro- and/or ototoxicity and to clarify the origin of the potentially therapeutically important read-through activity. With a view to facilitating such studies, the synthesis of a fully and selectively protected garamine-based acceptor has been developed from readily available sisomicin. Glycosylation of this acceptor with a 6-azido-6,7-dideoxy-d-glycero-d-glucoheptopyranosyl donor affords gentamicin B1 after deprotection, whereas employment of a 2-azido-2-deoxy-d-glucopyranosyl donor under N,N-dimethylformamide-directed glycosylation conditions affords gentamicin X2 after deprotection.
Collapse
Affiliation(s)
- Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
26
|
Jospe-Kaufman M, Siomin L, Fridman M. The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorg Med Chem Lett 2020; 30:127218. [PMID: 32360102 PMCID: PMC7194799 DOI: 10.1016/j.bmcl.2020.127218] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Aminoglycoside antibiotics, used to treat persistent gram-negative infections, tuberculosis, and life-threatening infections in neonates and patients with cystic fibrosis, can infer acute kidney injury and irreversible hearing loss. The full repertoire of cellular targets and processes leading to the toxicity of aminoglycosides is not fully resolved, making it challenging to devise rational directions to circumvent their adverse effects. As a result, there has been very limited effort to rationally address the issue of aminoglycoside-induced toxicity. Here we provide an overview of the reported effects of aminoglycosides on cells of the inner ear and on kidney tubular epithelial cells. We describe selected examples for structure–toxicity relationships established by evaluation of both natural and semisynthetic aminoglycosides. The various assays and models used to evaluate these antibiotics and recent progress in development of safer aminoglycoside antibiotics are discussed.
Collapse
Affiliation(s)
- Moriah Jospe-Kaufman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liza Siomin
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
27
|
Abu-Saleh AAAA, Sharma S, Yadav A, Poirier RA. Role of Asp190 in the Phosphorylation of the Antibiotic Kanamycin Catalyzed by the Aminoglycoside Phosphotransferase Enzyme: A Combined QM:QM and MD Study. J Phys Chem B 2020; 124:3494-3504. [DOI: 10.1021/acs.jpcb.0c01604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Abd Al-Aziz A. Abu-Saleh
- Chemistry Department, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| | - Sweta Sharma
- Department of Chemistry, University Institute of Engineering & Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering & Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Raymond A. Poirier
- Chemistry Department, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
28
|
Pirrone MG, Matsushita T, Vasella A, Crich D. Stereospecific synthesis of methyl 2-amino-2,4-dideoxy-6S-deuterio-α-D-xylo-hexopyranoside and methyl 2-amino-2,4-dideoxy-6S-deuterio-4-propyl-α-d-glucopyranoside: Side chain conformation of the novel aminoglycoside antibiotic propylamycin. Carbohydr Res 2020; 491:107984. [PMID: 32217361 DOI: 10.1016/j.carres.2020.107984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The stereospecific syntheses of methyl 2-amino-2,4-dideoxy-4-C-propyl-α-d-glucopyranoside and of methyl 2-amino-2,4-dideoxy-α-D-xylo-hexopyranoside and of their 6S-deuterioisotopomers are described as models for ring I of the aminoglycoside antibiotics propylamycin and 4'-deoxyparomomycin, respectively. Analysis of the 1H NMR spectra of these compounds and of methyl 2-amino-2-deoxy-α-d-glucopyranoside, a model for paromomycin itself, reveals that neither deoxygenation at the 4-position, nor substitution of the C-O bond at the 4-postion by a C-C bond significantly changes the distribution of the side chain population between the three possible staggered conformations. From this it is concluded that the beneficial effect on antiribosomal and antibacterial activity of the propyl group in propylamycin does not derive from a change in side chain conformation. Rather, enhanced basicity of the ring oxygen and increased hydrophobicity and/or solvation effects are implicated.
Collapse
Affiliation(s)
- Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
29
|
Böttger EC, Crich D. Aminoglycosides: Time for the Resurrection of a Neglected Class of Antibacterials? ACS Infect Dis 2020; 6:168-172. [PMID: 31855407 DOI: 10.1021/acsinfecdis.9b00441] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Viewpoint addresses the question of whether, after years of declining use, the time is ripe for renewed investigations into the aminoglycoside class of antibiotics for the development of novel therapeutic agents for the treatment of drug-resistant bacterial infections, particularly of the Gram-negative type. The reasons underlying the decline in use of the aminoglycosides are briefly considered and found to be outweighed by the ever-increasing clinical need for improved antibacterials with which to combat modern day multidrug resistant pathogens. The potential of the aminoglycosides builds on their well-established pharmacokinetics/pharmacodynamics (PK/PD), mechanisms of action, toxicity, and resistance and the extensive existing structure-activity relationship (SAR) databases, which permit rational, informed drug design. When coupled with the power of modern synthetic organic chemistry and improved funding scenarios, these multiple attributes open the door for the development of structurally novel, potent, and less toxic aminoglycosides to address the pressing societal problem of multidrug-resistant (MDR) infectious disease.
Collapse
Affiliation(s)
- Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Zada SL, Baruch BB, Simhaev L, Engel H, Fridman M. Chemical Modifications Reduce Auditory Cell Damage Induced by Aminoglycoside Antibiotics. J Am Chem Soc 2020; 142:3077-3087. [PMID: 31958945 DOI: 10.1021/jacs.9b12420] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although aminoglycoside antibiotics are effective against Gram-negative infections, these drugs often cause irreversible hearing damage. Binding to the decoding site of the eukaryotic ribosomes appears to result in ototoxicity, but there is evidence that other effects are involved. Here, we show how chemical modifications of apramycin and geneticin, considered among the least and most toxic aminoglycosides, respectively, reduce auditory cell damage. Using molecular dynamics simulations, we studied how modified aminoglycosides influence the essential freedom of movement of the decoding site of the ribosome, the region targeted by aminoglycosides. By determining the ratio of a protein translated in mitochondria to that of a protein translated in the cytoplasm, we showed that aminoglycosides can paradoxically elevate rather than reduce protein levels. We showed that certain aminoglycosides induce rapid plasma membrane permeabilization and that this nonribosomal effect can also be reduced through chemical modifications. The results presented suggest a new paradigm for the development of safer aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Sivan Louzoun Zada
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Bar Ben Baruch
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Luba Simhaev
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| |
Collapse
|
31
|
Ban YH, Song MC, Park JW, Yoon YJ. Minor components of aminoglycosides: recent advances in their biosynthesis and therapeutic potential. Nat Prod Rep 2020; 37:301-311. [DOI: 10.1039/c9np00041k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Highlight covers the recent advances in the biosynthetic pathways of aminoglycosides including their minor components, together with the therapeutic potential for minor aminoglycoside components and semi-synthetic aminoglycosides.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Je Won Park
- School of Biosystems and Biomedical Sciences
- Korea University
- Seoul 02841
- Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| |
Collapse
|
32
|
Quirke JCK, Rajasekaran P, Sarpe VA, Sonousi A, Osinnii I, Gysin M, Haldimann K, Fang QJ, Shcherbakov D, Hobbie SN, Sha SH, Schacht J, Vasella A, Böttger EC, Crich D. Apralogs: Apramycin 5- O-Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltranserferase (3)-IV Resistance Determinant. J Am Chem Soc 2019; 142:530-544. [PMID: 31790244 DOI: 10.1021/jacs.9b11601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-β-d-ribofuranosides, 5-O-β-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Vikram A Sarpe
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Amr Sonousi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Ivan Osinnii
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Andrea Vasella
- Organic Chemistry Laboratory , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
33
|
Waduge P, Sati GC, Crich D, Chow CS. Use of a fluorescence assay to determine relative affinities of semisynthetic aminoglycosides to small RNAs representing bacterial and mitochondrial A sites. Bioorg Med Chem 2019; 27:115121. [PMID: 31610941 PMCID: PMC6961810 DOI: 10.1016/j.bmc.2019.115121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
The off-target binding of aminoglycosides (AGs) to the A site of human mitochondrial ribosomes in addition to bacterial ribosomes causes ototoxicity and limits their potential as antibiotics. A fluorescence assay was employed to determine relative binding affinities of classical and improved AG compounds to synthetic RNA constructs representing the bacterial and mitochondrial A sites. Results compared well with previously reported in vitro translation assays with engineered ribosomes. Therefore, the minimal RNA motifs and fluorescence assay are shown here to be useful for assessing the selectivity of new compounds.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Girish C Sati
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
34
|
Sati GC, Sarpe VA, Furukawa T, Mondal S, Mantovani M, Hobbie SN, Vasella A, Böttger EC, Crich D. Modification at the 2'-Position of the 4,5-Series of 2-Deoxystreptamine Aminoglycoside Antibiotics To Resist Aminoglycoside Modifying Enzymes and Increase Ribosomal Target Selectivity. ACS Infect Dis 2019; 5:1718-1730. [PMID: 31436080 PMCID: PMC6788953 DOI: 10.1021/acsinfecdis.9b00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A series
of derivatives of the 4,5-disubstituted class of 2-deoxystreptamine
aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin
was prepared and assayed for (i) their ability to inhibit protein
synthesis by bacterial ribosomes and by engineered bacterial ribosomes
carrying eukaryotic decoding A sites, (ii) antibacterial activity
against wild type Gram negative and positive pathogens, and (iii)
overcoming resistance due to the presence of aminoacyl transferases
acting at the 2′-position. The presence of five suitably positioned
residual basic amino groups was found to be necessary for activity
to be retained upon removal or alkylation of the 2′-position
amine. As alkylation of the 2′-amino group overcomes the action
of resistance determinants acting at that position and in addition
results in increased selectivity for the prokaryotic over eukaryotic
ribosomes, it constitutes an attractive modification for introduction
into next generation aminoglycosides. In the neomycin series, the
installation of small (formamide) or basic (glycinamide) amido groups
on the 2′-amino group is tolerated.
Collapse
Affiliation(s)
- Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Vikram A. Sarpe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sujit Mondal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matilde Mantovani
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
35
|
Nosrati M, Dey D, Mehrani A, Strassler SE, Zelinskaya N, Hoffer ED, Stagg SM, Dunham CM, Conn GL. Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition. J Biol Chem 2019; 294:17642-17653. [PMID: 31594862 DOI: 10.1074/jbc.ra119.011181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Indexed: 11/06/2022] Open
Abstract
Methylation of the small ribosome subunit rRNA in the ribosomal decoding center results in exceptionally high-level aminoglycoside resistance in bacteria. Enzymes that methylate 16S rRNA on N7 of nucleotide G1405 (m7G1405) have been identified in both aminoglycoside-producing and clinically drug-resistant pathogenic bacteria. Using a fluorescence polarization 30S-binding assay and a new crystal structure of the methyltransferase RmtC at 3.14 Å resolution, here we report a structure-guided functional study of 30S substrate recognition by the aminoglycoside resistance-associated 16S rRNA (m7G1405) methyltransferases. We found that the binding site for these enzymes in the 30S subunit directly overlaps with that of a second family of aminoglycoside resistance-associated 16S rRNA (m1A1408) methyltransferases, suggesting that both groups of enzymes may exploit the same conserved rRNA tertiary surface for docking to the 30S. Within RmtC, we defined an N-terminal domain surface, comprising basic residues from both the N1 and N2 subdomains, that directly contributes to 30S-binding affinity. In contrast, additional residues lining a contiguous adjacent surface on the C-terminal domain were critical for 16S rRNA modification but did not directly contribute to the binding affinity. The results from our experiments define the critical features of m7G1405 methyltransferase-substrate recognition and distinguish at least two distinct, functionally critical contributions of the tested enzyme residues: 30S-binding affinity and stabilizing a binding-induced 16S rRNA conformation necessary for G1405 modification. Our study sets the scene for future high-resolution structural studies of the 30S-methyltransferase complex and for potential exploitation of unique aspects of substrate recognition in future therapeutic strategies.
Collapse
Affiliation(s)
- Meisam Nosrati
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Atousa Mehrani
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Natalia Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
36
|
Zárate SG, Bastida A, Santana AG, Revuelta J. Synthesis of Ring II/III Fragment of Kanamycin: A New Minimum Structural Motif for Aminoglycoside Recognition. Antibiotics (Basel) 2019; 8:antibiotics8030109. [PMID: 31382490 PMCID: PMC6783941 DOI: 10.3390/antibiotics8030109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022] Open
Abstract
A novel protocol has been established to prepare the kanamycin ring II/III fragment, which has been validated as a minimum structural motif for the development of new aminoglycosides on the basis of its bactericidal activity even against resistant strains. Furthermore, its ability to act as a AAC-(6′) and APH-(3′) binder, and as a poor substrate for the ravenous ANT-(4′), makes it an excellent candidate for the design of inhibitors of these aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Sandra G Zárate
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Facultad de Tecnología, Carrera de Ingeniería Química, Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B Sucre, Bolivia
| | - Agatha Bastida
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G Santana
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Julia Revuelta
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
37
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Sonousi A, Shcherbakov D, Vasella A, Böttger EC, Crich D. Synthesis, ribosomal selectivity, and antibacterial activity of netilmicin 4'-derivatives. MEDCHEMCOMM 2019; 10:946-950. [PMID: 31303992 PMCID: PMC6595968 DOI: 10.1039/c9md00153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 11/21/2022]
Abstract
Halogenation of a suitably protected netilmicin derivative enables preparation of 4'-chloro-, bromo-, and iodo derivatives of netilmicin after deprotection. Suzuki coupling of a protected 4'-bromo derivative with phenylboronic acid or butyltrifluoroborate affords the corresponding 4'-phenyl and 4'-butyl derivatives of netilmicin. Sulfenylation of suitably protected netilmicin derivative with ethanesulfenyl chloride followed by deprotection affords 4'-ethylsulfanylnetilmicin. All netilmicin 4'-derivatives displayed reduced levels of inhibition for prokaryotic ribosomes and reduced antibacterial activity against typical Gram-positive and Gram-negative strains. None of the derivatives displayed enhanced target selectivity.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA .
| |
Collapse
|
39
|
Magallon J, Chiem K, Tran T, Ramirez MS, Jimenez V, Tolmasky ME. Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. PLoS One 2019; 14:e0217602. [PMID: 31141575 PMCID: PMC6541283 DOI: 10.1371/journal.pone.0217602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens resistant to amikacin and other aminoglycosides of clinical relevance usually harbor the 6’-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme that catalyzes inactivation of the antibiotic by acetylation using acetyl-CoA as donor substrate. Inhibition of the acetylating reaction could be a way to induce phenotypic conversion to susceptibility in these bacteria. We have previously observed that Zn2+ acts as an inhibitor of the enzymatic acetylation of aminoglycosides by AAC(6')-Ib, and in complex with ionophores it effectively reduced the levels of resistance in cellulo. We compared the activity of 8-hydroxyquinoline, three halogenated derivatives, and 5-[N-Methyl-N-Propargylaminomethyl]-8-Hydroxyquinoline in complex with Zn2+ to inhibit growth of amikacin-resistant Acinetobacter baumannii in the presence of the antibiotic. Two of the compounds, clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) and 5,7-diiodo-8-hydroxyquinoline, showed robust inhibition of growth of the two A. baumannii clinical isolates that produce AAC(6')-Ib. However, none of the combinations had any activity on another amikacin-resistant A. baumannii strain that possesses a different, still unknown mechanism of resistance. Time-kill assays showed that the combination of clioquinol or 5,7-diiodo-8-hydroxyquinoline with Zn2+ and amikacin was bactericidal. Addition of 8-hydroxyquinoline, clioquinol, or 5,7-diiodo-8-hydroxyquinoline, alone or in combination with Zn2+, and amikacin to HEK293 cells did not result in significant toxicity. These results indicate that ionophores in complex with Zn2+ could be developed into potent adjuvants to be used in combination with aminoglycosides to treat Gram-negative pathogens in which resistance is mediated by AAC(6')-Ib and most probably other related aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Jesus Magallon
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
- * E-mail:
| |
Collapse
|