1
|
Shi Z, Wu T, Huang L, Liu S, Xiao X, Zhao B. Direct Enantioselective Allylic Alkylation of α-Amino Esters to Quaternary Glutamates via Strategic Pyridoxal Catalyst Design. J Am Chem Soc 2025; 147:14945-14953. [PMID: 40273118 DOI: 10.1021/jacs.5c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The difficulty for N-unprotected α-substituted glycinates as α-C nucleophiles originates from both competing N nucleophilic interference and steric hindrance of the α substituent, which makes direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with Morita-Baylis-Hillman (MBH) adducts especially challenging. Given the wide utilization of α-quaternary chiral glutamic acid derivatives in therapeutic studies, we took advantage of biomimetic carbonyl catalysis to achieve their efficient synthesis. A bifunctional centrally chiral pyridoxal, featured with an expanded catalytic cavity and reduced steric hindrance around the aldehyde group, was designed and synthesized. In this work, we describe the novel centrally chiral pyridoxal enabled direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with MBH acetates. A broad range of α-quaternary chiral glutamic acid derivatives with multiple modifications were produced with high reactivity and excellent stereocontrol.
Collapse
Affiliation(s)
- Zhengjun Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tianhao Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Longjie Huang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Liu Z, Li P, Wang H, Zhang J, Huo X, Sun ZL, Zhang W. Ternary Aldehyde-Copper-Iridium Catalysis Enables Stereodivergent Allylation via α-C-H Functionalization of Primary Amines. Angew Chem Int Ed Engl 2025:e202508335. [PMID: 40324954 DOI: 10.1002/anie.202508335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
α-Chiral primary amines are recognized as one of the most valuable and versatile synthetic intermediates, widely utilized in the construction of diverse amine-containing natural products, pharmaceuticals, and agrochemicals. The direct asymmetric α-C-H functionalization of unprotected primary amines is the most straightforward method for creating these motifs. However, this transformation remains underdeveloped, particularly in stereodivergent synthesis of primary amines with multiple stereocenters. Herein, we report an aldehyde/copper/iridium ternary catalytic system, which was successfully employed for the direct enantio- and diastereodivergent α-allylation of primary α-amino-chromanone without requiring additional protection or activation of the NH2 group. A wide range of α-tertiary primary amines bearing vicinal stereocenters were prepared in high yields with excellent enantio- and diastereoselectivities (generally >20:1 dr and >99% ee). Notably, all four stereoisomers of the α-tertiary amines can be readily prepared by simply switching the configuration combinations of the two chiral metal catalysts. Furthermore, the asymmetric induction model for the α-C-H functionalization of primary amines was meticulously elucidated through comprehensive density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Zijiao Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen-Liang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Tan DH, Das A, Huang V, Schoch TD, Mohammed AL, Lipshultz JM. Pyridoxal-Inspired Photo-Decarboxylase Catalysis: Photochemical Decarboxylation of Unprotected Amino Acids. Angew Chem Int Ed Engl 2025; 64:e202424843. [PMID: 39954015 PMCID: PMC12009495 DOI: 10.1002/anie.202424843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
A photochemical organocatalytic method for the protodecarboxylation of unprotected amino acids is reported. Inspired by pyridoxal 5'-phosphate-dependent decarboxylase enzymes, the catalytic activation of amino acid substrates by 3-hydroxyisonicotinaldehyde enables a photochemical decarboxylation event, which can be leveraged in combination with a thiol co-catalyst. The necessary and sufficient structural features of the pyridoxal-like framework for photoactivity are determined using ultraviolet-visible absorption spectroscopy. A broad scope of unprotected amino acids can be decarboxylated in this system, with selectivity between multiple carboxylates realized on the possible basis of hyperconjugation. The ability to engage simple amino acids in decarboxylative functionalization at ambient conditions using a pyridoxal-mimicking organocatalyst enables new possibilities for the translation of biogenic amino acids into medicinally valuable amines.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Agniva Das
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Vincent Huang
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Timothy D Schoch
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abubakar Lawal Mohammed
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Jeffrey M Lipshultz
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Han H, Yi W, Ding S, Ren X, Zhao B. Enantioselective Three-Component α-Allylic Alkylation of α-Amino Esters by Synergistic Photoinduced Pd/Carbonyl Catalysis. Angew Chem Int Ed Engl 2025; 64:e202418910. [PMID: 39551702 DOI: 10.1002/anie.202418910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Photoinduced excited-state Pd catalysis has emerged as an intriguing strategy for unlocking new reactivity potential of simple substrates. However, the related transformations are still limited and the enantiocontrol remains challenging. Organocatalysis displays unique capability in substrate activation and stereocontrol. Combination of organocatalysis and photoinduced excited-state Pd catalysis may provide opportunities to develop new enantioselective reactions from simple substrates. By applying cooperative triple catalysis including excited-state Pd catalysis, ground-state Pd catalysis, and carbonyl catalysis, we have successfully realized enantioselective α-allylic alkylation of α-amino esters with simple styrene and alkyl halide starting materials. The reaction allows rapid modular assembly of the three reaction partners into a variety of chiral quaternary α-amino esters in good yields with 90-99 % ee, without protecting group manipulations at the active NH2 group. The cooperation of the chiral pyridoxal catalyst and the chiral phosphine ligand accounts for the excellent chirality induction.
Collapse
Affiliation(s)
- Haohao Han
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wuqi Yi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojie Ding
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
5
|
Zhu F, He H, Wen W, Guan HL, Wu ZL, Cai T, Ni SF, Guo QX. Chiral Aldehyde/Palladium Catalysis Enables Asymmetric Branched-Selective Ring-Opening Functionalization of Methylenecyclopropanes with Amino Acid Esters. J Am Chem Soc 2025; 147:2315-2322. [PMID: 39791232 DOI: 10.1021/jacs.4c16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Achieving catalytic asymmetric functionalization of methylenecyclopropanes (MCPs) by selective C-C bond cleavage is a notable challenge due to the intricate reaction partners involved. In this work, we report that chiral aldehyde/palladium combined catalysis enables the asymmetric functionalization of MCPs with NH2-unprotected amino acid esters. This reaction proceeds through a regiospecific branched ring-opening mechanism, resulting in optically active α,α-disubstituted α-amino acid esters bearing nonconjugated terminal alkene units. Mechanism studies indicate that the ring-opening pathways are irreversible and the ultimate regioselectivity is governed by palladium catalysis. The products can be utilized in the construction of chiral dihydropyrazoles, α-methyl aspartic acid derivatives, and analogues of VPC01091 and BMS-986104.
Collapse
Affiliation(s)
- Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui He
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Lin Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Fei Ni
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Zhang R, Xu J, Liu S, Si S, Chen J, Wang L, Chen WW, Zhao B. Direct Enantioselective α-C-H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis. J Am Chem Soc 2024; 146:25927-25933. [PMID: 39259771 DOI: 10.1021/jacs.4c09840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Direct asymmetric α-C-H conjugate addition of propargylamines to α,β-unsaturated ketones remains a great challenge due to the low α-amino C-H acidity of propargylamines and the nucleophilic interference of the NH2 group. Utilizing a new type of pyridoxals featuring a benzene-pyridine biaryl skeleton and a bulky amide side chain as carbonyl catalyst, we have accomplished direct asymmetric α-C-H conjugate addition of NH2-unprotected propargylamines to α,β-unsaturated ketones. The adducts undergo subsequent in situ intramolecular cyclization, delivering a wide range of chiral polysubstituted 1-pyrrolines in high yields (up to 92%) with excellent diastereo- and enatioelectivities (up to >20:1 dr and 99% ee). This work has demonstrated a straightforward approach to access pharmaceutically important chiral 1-pyrrolines, and it has also provided an impressive instance of direct asymmetric functionalization of inert C-H bonds enabled by biomimetic organocatalysts.
Collapse
Affiliation(s)
- Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shibo Si
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiayao Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lingxiao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
7
|
Lin Y, Wen W, Liu JH, Zhu F, Li CX, Wu ZL, Cai T, Liu CJ, Guo QX. Asymmetric α-Allylation of Amino Acid Esters with Alkynes Enabled by Chiral Aldehyde/Palladium Combined Catalysis. Org Lett 2024; 26:7908-7913. [PMID: 39254672 DOI: 10.1021/acs.orglett.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A highly efficient, atom-economical α-allylation reaction of NH2-unprotected amino acid esters and alkynes is achieved by chiral aldehyde/palladium combined catalysis. A diverse range of α,α-disubstituted nonproteinogenic α-amino acid esters are produced in 31-92% yields and 84-97% ee values. The allylation products are utilized for the synthesis of drug molecule BMS561392 and other chiral molecules possessing complex structures. Mechanistic investigations reveal that this reaction proceeds via a chiral aldehyde-/palladium-mediated triple cascade catalytic cycle.
Collapse
Affiliation(s)
- Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chen-Jiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Zhang H, Wen W, Wang YY, Lu ZX, Liu JL, Wu ZL, Cai T, Guo QX. Asymmetric bifunctionalization of allenes with aryl iodides and amino acids enabled by chiral aldehyde/palladium combined catalysis. Chem Sci 2024; 15:12983-12988. [PMID: 39148795 PMCID: PMC11322975 DOI: 10.1039/d4sc03398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Even though catalytic asymmetric bifunctionalization of allenes has been extensively studied, almost all of the reported examples have been achieved in a two-component manner. In this study, we report a highly efficient asymmetric bifunctionalization of allenes with iodohydrocarbons and NH2-unprotected amino acid esters. The adopted chiral aldehyde/palladium combined catalytic system precisely governs the chemoselectivity, regioselectivity, and stereoselectivity of this three-component reaction. A wide range of substituted aryl iodides, allenes and amino acid esters can well participate in this reaction and deliver structurally diverse α,α-disubstituted α-amino acid esters with excellent experimental outcomes. One of the resulting products is utilized for the total synthesis of the molecule (S,R)-VPC01091.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yu-Yang Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jin-Long Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
9
|
Liu JH, Wen W, Wu ZL, Cai T, Huang YM, Guo QX. Asymmetric three-component Tsuji-Trost allylation reaction enabled by chiral aldehyde/palladium combined catalysis. Chem Sci 2024; 15:10232-10236. [PMID: 38966351 PMCID: PMC11220596 DOI: 10.1039/d4sc02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Despite the long-standing exploration of the catalytic asymmetric Tsuji-Trost allylation reaction since the mid-20th century, most reported instances have adhered to a two-component approach. Here, we present a remarkably efficient three-component asymmetric allylation reaction enabled by the collaborative action of chiral aldehyde and palladium. A diverse array of NH2-unprotected amino acid esters, aryl or alkenyl iodides, and allyl alcohol esters exhibit robust participation in this reaction, resulting in the synthesis of structurally diverse non-proteinogenic α-amino acid esters with favorable experimental outcomes. Mechanistic investigations reveal the dominance of the allylation/Heck coupling cascade in reactions involving electron-rich aryl iodides, while the Heck coupling/allylation cascade emerges as the dominant pathway in reactions involving electron-deficient aryl iodides. This chiral aldehyde/palladium combining catalytic system precisely governs the chemoselectivity of C-allylation and N-allylation, the regioselectivity of linear and branched allylation, and the enantioselectivity of C-allylation products.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
10
|
Su Z, Tan B, He H, Chen K, Chen S, Lei H, Chen TG, Ni SF, Li Z. Enantioselective Tsuji-Trost α-Fluoroallylation of Amino Acid Esters with Gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202402038. [PMID: 38412055 DOI: 10.1002/anie.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
A novel enantioselective Tsuji-Trost-type cross coupling reaction between gem-difluorinated cyclopropanes and N-unprotected amino acid esters enabled by synergistic Pd/Ni/chiral aldehyde catalysis is presented herein. This transformation streamlined the diversity-oriented synthesis (DOS) of optically active α-quaternary α-amino acid esters bearing a linear 2-fluoroallylic motif, which served as an appealing platform for the construction of other valuable enantioenriched compounds. The key intermediates were confirmed by HRMS detection, while DFT calculations revealed that the excellent enantioselectivity was attributed to the stabilizing non-covalent interactions between the Pd(II)-π-fluoroallyl species and the Ni(II)-Schiff base complex.
Collapse
Affiliation(s)
- Zheng Su
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Binhong Tan
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Kaifeng Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shixin Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510641, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, 528400, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
12
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
13
|
Wen W, Guo QX. Chiral Aldehyde Catalysis-Enabled Asymmetric α-Functionalization of Activated Primary Amines. Acc Chem Res 2024; 57:776-794. [PMID: 38381559 DOI: 10.1021/acs.accounts.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ConspectusThe development of catalytic activation modes provides a reliable and effective platform for designing new enantioselective reactions and preparing chiral molecules with diverse structures. Chiral aldehyde catalysis is an attractive concept in asymmetric catalysis, which utilizes a chiral aldehyde catalyst to promote the asymmetric hydroamination of allylic amines, the asymmetric α-functionalization of primary amines, or the asymmetric transamination of α-keto esters. Typically, the chiral aldehyde-catalyzed asymmetric α-functionalization of primary amines provides an efficient and straightforward method for the synthesis of α-functionalized chiral amines, which does not require any additional protection or deprotection manipulations of the amine group. However, achieving catalytic stereoselective transformations with high efficiency and enantioselectivity by this strategy has remained an intractable challenge.This Account summarizes our endeavors in the development and application of chiral aldehyde catalysis. Using a chiral aldehyde as a catalyst, we reported the catalytic asymmetric α-C alkylation of 2-aminomalonate with 3-indolylmethanol in 2014, which represents the first chiral aldehyde-catalyzed asymmetric α-functionalization of an activated primary amine. Subsequently, several axially chiral aldehyde catalysts were continuously prepared by using chiral BINOL as the starting material, and their applications in asymmetric synthesis were explored. On the one hand, they were used as organocatalysts to realize the various transformations of α-amino acid esters, such as asymmetric 1,4-addition toward conjugated enones/α,β-unsaturated diesters and cyclic 1-azadienes as well as asymmetric α-arylation/allylation and benzylation with corresponding halohydrocarbons. Notably, taking advantage of the difference in the distribution of catalytic sites between two chiral aldehyde catalysts, we disclosed chiral aldehyde-catalyzed diastereodivergent 1,6-conjugated addition and Mannich reactions. On the other hand, the potential for the cooperative catalysis of a chiral aldehyde with a transition metal has also been demonstrated. Enabled by the combination of a chiral aldehyde, a palladium complex, and a Lewis acid, the enantioselective α-allylation of amino acid esters with allyl alcohol esters was established. Moreover, the ternary catalytic system has been successfully used for the α-functionalization of amino acid esters with 1,3-dienes, allenes, allenylic alcohol esters, 1,3-disubstituted allyl alcohol esters, and arylmethanol esters as well as the asymmetric cascade Heck-alkylation reaction. The combination of a chiral aldehyde and nickel complex allows for the asymmetric α-propargylation of amino acid esters with propargylic alcohol esters and provides excellent enantioselectivities. These transformations provide a large library of optically active amines and amino acids. With those chiral amino acid esters as key building blocks, the synthesis or formal synthesis of multiple natural products and biologically significant unnatural molecules was accomplished. This includes the stereodivergent synthesis of natural pyrrolizidine alkaloid NP25302 and the formal synthesis of natural product (S)-hypoestestatin 1 and manzacidin C, clinical candidate compound (+)-AG-041R, and somatostatin mimetics. It is fully anticipated that chiral aldehyde catalysis will soon witness rapid expansion both in the development of novel asymmetric transformations and in innovative applications for constructing optically active nitrogen-containing molecules with significant values.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Zhang Y, Vanderghinste J, Wang J, Das S. Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids. Nat Commun 2024; 15:1474. [PMID: 38368416 PMCID: PMC10874380 DOI: 10.1038/s41467-024-45790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
α,α-Disubstituted α-amino acids (α-AAs) have improved properties compared to other types of amino acids. They serve as modifiers of peptide conformation and as precursors of bioactive compounds. Therefore, it has been a long-standing goal to construct this highly valuable scaffold efficiently in organic synthesis and drug discovery. However, access to α,α-disubstituted α-AAs is highly challenging and largely unexplored due to their steric constraints. To overcome these, remarkable advances have been made in the last decades. Emerging strategies such as synergistic enantioselective catalysis, visible-light-mediated photocatalysis, metal-free methodologies and CO2 fixation offer new avenues to access the challenging synthesis of α,α-disubstituted α-AAs and continuously bring additional contributions to this field. This review article aims to provide an overview of the recent advancements since 2015 and discuss existing challenges for the synthesis of α,α-disubstituted α-AAs and their derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China.
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| | - Jaro Vanderghinste
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jinxin Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
15
|
Chen KL, Tanaka F. Organocatalytic enantioselective Mannich and retro-Mannich reactions and combinations of these reactions to afford tetrasubstituted α-amino acid derivatives. Org Biomol Chem 2024; 22:477-481. [PMID: 38099926 DOI: 10.1039/d3ob01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organocatalytic asymmetric Mannich reactions and kinetic resolutions of the products via retro-Mannich reactions that afford enantiomerically enriched tetrasubstituted α-amino acid derivatives (α,α-disubstituted-α-amino acid derivatives) were developed. Furthermore, the combination of the Mannich reaction and the retro-Mannich reaction allowed access to products with almost perfect enantiopurities.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|
16
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Zhang H, Wen W, Lu ZX, Wu ZL, Cai T, Guo QX. Core Structure-Oriented Asymmetric α-Allenylic Alkylation of Amino Acid Esters Enabled by Chiral Aldehyde/Palladium Catalysis. Org Lett 2024; 26:153-159. [PMID: 38133484 DOI: 10.1021/acs.orglett.3c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Chen J, Yang X, Huang Y, Zheng Z, Li T. The Development of Aldehyde Catalytic System. Chem Asian J 2023; 18:e202300731. [PMID: 37755436 DOI: 10.1002/asia.202300731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Aldehyde catalysts have proven to be highly effective in facilitating and accelerating a wide range of challenging transformations in organic chemistry. This article is structured into three main sections, focusing on the utilization of aldehydes as organocatalysts, the aldehydes/transition metals catalytic systems, and photochemical initiators. Finally, we provide a concise summary of the advancements in this fascinating research field, offering our perspectives and insights.
Collapse
Affiliation(s)
- Jinli Chen
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Xiaoqun Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Zhiguo Zheng
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University. Huaxi District, Guiyang, 550025, China
| |
Collapse
|
19
|
Guo F, Fang S, He J, Su Z, Wang T. Enantioselective organocatalytic synthesis of axially chiral aldehyde-containing styrenes via S NAr reaction-guided dynamic kinetic resolution. Nat Commun 2023; 14:5050. [PMID: 37598233 PMCID: PMC10439945 DOI: 10.1038/s41467-023-40840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
The precise and efficient construction of axially chiral scaffolds, particularly toward the aryl-alkene atropoisomers with impeccably full enantiocontrol and highly structural diversity, remains greatly challenging. Herein, we disclose an organocatalytic asymmetric nucleophilic aromatic substitution (SNAr) reaction of aldehyde-substituted styrenes involving a dynamic kinetic resolution process via a hemiacetal intermediate, offering a novel and facile way to significant axial styrene scaffolds. Upon treatment of the aldehyde-containing styrenes bearing (o-hydroxyl)aryl unit with commonly available fluoroarenes in the presence of chiral peptide-phosphonium salts, the SNAr reaction via an exquisite bridged biaryl lactol intermediate undergoes smoothly to furnish a series of axially chiral aldehyde-containing styrenes decorated with various functionalities and bioactive fragments in high stereoselectivities (up to >99% ee) and complete E/Z selectivities. These resulting structural motifs are important building blocks for the preparation of diverse functionalized axial styrenes, which have great potential as efficient and privileged chiral ligands/catalysts in asymmetric synthesis.
Collapse
Affiliation(s)
- Fengyuan Guo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
| |
Collapse
|
20
|
Zhou Q, Yin ZW, Wu ZL, Cai T, Wen W, Huang YM, Guo QX. Asymmetric α-Allylation of N-Unprotected Amino Acid Esters with 1,3-Disubstituted Allyl Acetates Enabled by Chiral-Aldehyde/Palladium Catalysis. Org Lett 2023; 25:5790-5794. [PMID: 37523673 DOI: 10.1021/acs.orglett.3c02027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A chiral aldehyde/palladium catalysis-enabled asymmetric α-allylation of NH2-unprotected amino acid esters with 1,3-disubstituted allyl acetates is described in this work. With the utilization of different chiral phosphine ligands, both the anti- and syn-selective allylation reactions are achieved enantioselectively. A series of α,α-disubstituted amino acid esters bearing two adjacent chiral centers are produced in moderate-to-excellent yields, diastereoselectivities, and enantioselectivities.
Collapse
Affiliation(s)
- Qing Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhi-Wei Yin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
21
|
Li Q, Liu Y, Li C. Picolinaldehyde-Zinc(II)-Palladium(0) Catalytic System for the Asymmetric α-Allylation of N-Unprotected Amino Esters. Chemistry 2023; 29:e202301348. [PMID: 37237423 DOI: 10.1002/chem.202301348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Reported in this work is a synergistic ternary achiral picolinaldehyde-Zn(II)-chiral palladium complex system for the highly enantioselective α-allylation of N-unprotected amino esters. By utilizing a variety of allylic carbonates or vinyl benzoxazinanones as substrates, α-allyl α-amino esters were obtained in high yields (up to 96 %) with high enantioselectivities (up to 98 % ee). Control experiments suggest that the coordination of Zn(II) with the Schiff base intermediate enhances the acidity of the α-C-H bonds of amino esters, thereby favoring α-allylation over intrinsic N-allylation. Furthermore, NMR studies reveal an interaction between the chiral palladium complex and the Zn(II)-Schiff base intermediate, leading to the formation of a picolinaldehyde-Zn(II)-Pd(0) catalytic system.
Collapse
Affiliation(s)
- Qian Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
22
|
Shen HR, Li CX, Jiang X, Lin Y, Liu JH, Zhu F, Wu ZL, Cai T, Wen W, He RX, Guo QX. Chiral aldehyde catalysis enables direct asymmetric α-substitution reaction of N-unprotected amino acids with halohydrocarbons. Chem Sci 2023; 14:5665-5671. [PMID: 37265737 PMCID: PMC10231321 DOI: 10.1039/d3sc01294h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
The direct catalytic α-hydrocarbylation of readily available amino acids with halohydrocarbons is one of the most straightforward methods leading to α,α-disubstituted non-proteinogenic α-amino acid compounds. However, all the reported methodologies depend on N-protected amino acids as starting materials. Herein, we report on three highly efficient aldehyde-catalyzed direct α-hydrocarbylations of N-unprotected amino acid esters with aryl-, allyl-, and benzyl halides. By promoting a simple chiral BINOL-aldehyde catalyst or combining catalysts of a chiral aldehyde and Lewis acid ZnCl2, the asymmetric α-arylation, α-allylation, and α-benzylation of amino acid esters with the corresponding halohydrocarbons proceed smoothly, producing α,α-disubstituted α-amino acids in moderate-to-high yields and good-to-excellent enantioselectivities. The asymmetric α-arylation reaction can be applied in the formal synthesis of the clinical candidate compound (+)-AG-041R. Based on the results given by control experiments, three reaction models are proposed to illustrate the stereoselective-control outcomes.
Collapse
Affiliation(s)
- Hao-Ran Shen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xin Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Rong-Xing He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
23
|
Shen QW, Wen W, Guo QX. Chiral Aldehyde-Palladium Catalysis Enables Asymmetric Synthesis of α-Alkyl Tryptophans via Cascade Heck-Alkylation Reaction. Org Lett 2023; 25:3163-3167. [PMID: 37096821 DOI: 10.1021/acs.orglett.3c01119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The first catalytic asymmetric cascade Heck-alkylation reaction of NH2-unprotected amino acid esters with N-(2-iodophenyl)allenamides is reported in this work. Under the promotion of a combining catalytic system comprising a chiral aldehyde, a chiral palladium complex, and the Lewis acid ZnCl2, the title reaction takes place smoothly, giving optically active α-alkyl tryptophan derivatives in moderate to good yields and excellent enantioselectivities. The target products can be converted into other structurally complex chiral indoles without the loss of enantioselectivities.
Collapse
Affiliation(s)
- Qi-Wen Shen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Abstract
ConspectusOne of the fundamental goals of chemists is to develop highly efficient methods for producing optically active compounds, given their wide range of applications in chemistry, pharmaceutical industry, chemical biology, and material science. Biomimetic asymmetric catalysis, which imitates the structures and functions of enzymes, has emerged as an extremely attractive strategy for producing chiral compounds. This field has drawn tremendous research interest and has led to various protocols for constructing complex molecular scaffolds. The Vitamin B6 family, including pyridoxal, pyridoxamine, pyridoxine, and the corresponding phosphorylated derivatives, serves as the cofactors to catalyze more than 200 enzymatic functions, accounting for ∼4% of all enzyme activities. Although significant progress has been made in simulating the biological roles of vitamin B6 during the past several decades, its extraordinary catalytic power has not yet been successfully applied into asymmetric synthesis. In recent years, our group has been devoted to developing vitamin B6-based biomimetic asymmetric catalysis using chiral pyridoxals/pyridoxamines as catalysts. We are particularly interested in mimicking the processes of enzymatic transamination and biological aldol reaction of glycine, respectively, developing asymmetric biomimetic transamination and carbonyl catalysis enabled α-C-H transformation of primary amines. Using a chiral α,α-diarylprolinol-derived pyridoxal as the catalyst, we reported the first chiral pyridoxal catalyzed asymmetric transamination of α-keto acids in 2015. A significant breakthrough in biomimetic transamination was achieved by using an axially chiral biaryl pyridoxamine catalyst that bears a lateral amine side arm. The amine side arm acts as an intramolecular base, accelerating the transamination and proving highly effective for transamination of α-keto acids and α-keto amides. In addition, we discovered the catalytic power of chiral pyridoxals as carbonyl catalysts for asymmetric biomimetic Mannich/aldol reactions of glycinates. These chiral pyridoxals also enabled more α-C-H conversions of glycinates, such as asymmetric 1,4-addition toward α,β-unsaturated esters and asymmetric α-allylation with Morita-Baylis-Hillman acetates. Moreover, carbonyl catalysis can be further applied to highly challenging primary amines with inert α-C-H bonds, such as propargylamines and benzylamines, which represents a powerful strategy for direct asymmetric α-C-H functionalization of various primary amines without protection of the NH2 group. These biomimetic/bioinspired transformations provide efficient new protocols for the synthesis of chiral amines. Herein, we summarize our recent efforts on the development of the vitamin B6-based biomimetic asymmetric catalysis.
Collapse
Affiliation(s)
- Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
25
|
Paladhi S, Park SJ, Hwang IS, Park JH, Bae HY, Jadhav AP, Song CE. Biomimetic Catalytic Retro-Aldol Reaction Using a Cation-Binding Catalyst: A Promising Route to Axially Chiral Biaryl Aldehydes. Org Lett 2023; 25:2713-2717. [PMID: 37052359 DOI: 10.1021/acs.orglett.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Here we describe a biomimetic catalytic retro-aldol reaction of racemic α-substituted β-hydroxy ketones utilizing a chiral oligoEG cation-binding catalyst as a type-II aldolase mimic. Our investigation of various aldol substrates has demonstrated that our biomimetic retro-aldol protocol enables rapid access to highly enantiomerically enriched aldols with a selectivity factor (s) of up to 70. Additionally, we have demonstrated the synthetic strategy's feasibility for accessing diverse and valuable axially chiral aldehydes.
Collapse
Affiliation(s)
- Sushovan Paladhi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry, Thakur Prasad Singh (T.P.S.) College, Patna 800001, India
| | - Si Joon Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - In-Soo Hwang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Amol P Jadhav
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Choong Eui Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
26
|
Ke M, Yu Y, Sun L, Li X, Cao Q, Xiao X, Chen F. Regio- and stereoselective syntheses of chiral α-quaternary ( Z)-trisubstituted allylic amino acids via synergistic Pd/Cu catalysis. Chem Commun (Camb) 2023; 59:2632-2635. [PMID: 36779224 DOI: 10.1039/d2cc06820f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synergistic palladium/copper catalysis for asymmetric allylic alkylation of vinylethylene carbonates with aldimine esters has been developed for the synthesis of α-quaternary (Z)-trisubstituted allylic amino acids under mild conditions. This methodology features broad substrate compatibilities in yields of up to 87% and up to 94% ee. A facile scale-up and straightforward conversion to 1,2,3,5-tetrasubstituted pyrrole and 1,2,5,6-tetrahydropyridine bearing chiral quaternary carbon centers verifies the synthetic utility of this method.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Qianqian Cao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
27
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
28
|
Biphenyl aldehyde-based ternary catalytic system catalyzed Tsuji–Trost allylation of N-unprotected amino acid esters. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Zhu F, Li CX, Wu ZL, Cai T, Wen W, Guo QX. Chiral aldehyde-nickel dual catalysis enables asymmetric α-propargylation of amino acids and stereodivergent synthesis of NP25302. Nat Commun 2022; 13:7290. [PMID: 36435942 PMCID: PMC9701212 DOI: 10.1038/s41467-022-35062-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combined catalytic systems derived from organocatalysts and transition metals exhibit powerful activation and stereoselective-control abilities in asymmetric catalysis. This work describes a highly efficient chiral aldehyde-nickel dual catalytic system and its application for the direct asymmetric α-propargylation reaction of amino acid esters with propargylic alcohol derivatives. Various structural diversity α,α-disubstituted non-proteinogenic α-amino acid esters are produced in good-to-excellent yields and enantioselectivities. Furthermore, a stereodivergent synthesis of natural product NP25302 is achieved, and a reasonable reaction mechanism is proposed to illustrate the observed stereoselectivity based on the results of control experiments, nonlinear effect investigation, and HRMS detection.
Collapse
Affiliation(s)
- Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Ji P, Liu X, Xu J, Zhang X, Guo J, Chen W, Zhao B. Direct Asymmetric α‐C−H Addition of N‐unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206111. [DOI: 10.1002/anie.202206111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Pengwei Ji
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xiaopei Liu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xu Zhang
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Wen‐Wen Chen
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
31
|
Ji P, Liu X, Xu J, Zhang X, Guo J, Chen W, Zhao B. Direct Asymmetric α‐C−H Addition of N‐unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengwei Ji
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xiaopei Liu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Xu Zhang
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Wen‐Wen Chen
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Frontiers Science Center of Biomimetic Catalysis Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
32
|
Perveen S, Zhang S, Wang L, Song P, Ouyang Y, Jiao J, Duan X, Li P. Synthesis of Axially Chiral Biaryls via Enantioselective Ullmann Coupling of
ortho
‐Chlorinated Aryl Aldehydes Enabled by a Chiral 2,2′‐Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202212108. [DOI: 10.1002/anie.202212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Saima Perveen
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shuai Zhang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Linghua Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Peidong Song
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Jiao Jiao
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Xin‐Hua Duan
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
33
|
Yu C, Yu Y, Sun L, Li X, Liu Z, Ke M, Chen F. Highly diastereo- and enantioselective synthesis of multisubstituted allylic amino acid derivatives by allylic alkylation of a chiral glycine-based nickel complex and vinylethylene carbonates. Org Biomol Chem 2022; 20:4894-4899. [PMID: 35678149 DOI: 10.1039/d2ob00726f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric synthesis of multisubstituted allylic amino acid derivatives was accomplished by the allylic alkylation of a chiral glycine-based nickel complex with vinylethylene carbonates. High enantioselectivities and diastereoselectivities were obtained under mild reaction conditions. The gram-scale synthesis was carried out with a good yield and high enantioselectivity, indicating that the method is a highly efficient route to chiral multisubstituted allylic amino acid derivatives.
Collapse
Affiliation(s)
- Chao Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
34
|
Catalytic asymmetric Tsuji-Trost α-benzylation reaction of N-unprotected amino acids and benzyl alcohol derivatives. Nat Commun 2022; 13:2509. [PMID: 35523802 PMCID: PMC9076619 DOI: 10.1038/s41467-022-30277-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Catalytic asymmetric Tsuji–Trost benzylation is a promising strategy for the preparation of chiral benzylic compounds. However, only a few such transformations with both good yields and enantioselectivities have been achieved since this reaction was first reported in 1992, and its use in current organic synthesis is restricted. In this work, we use N-unprotected amino acid esters as nucleophiles in reactions with benzyl alcohol derivatives. A ternary catalyst comprising a chiral aldehyde, a palladium species, and a Lewis acid is used to promote the reaction. Both mono- and polycyclic benzyl alcohols are excellent benzylation reagents. Various unnatural optically active α-benzyl amino acids are produced in good-to-excellent yields and with good-to-excellent enantioselectivities. This catalytic asymmetric method is used for the formal synthesis of two somatostatin mimetics and the proposed structure of natural product hypoestestatin 1. A mechanism that plausibly explains the stereoselective control is proposed. The catalytic asymmetric benzylations of prochiral nucleophiles are very limited. Here, the authors disclose an asymmetric α−benzylation of N-unprotected amino acids with benzyl alcohol derivatives by a chiral aldehyde-involved catalytic system.
Collapse
|
35
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
36
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200850. [PMID: 35182094 DOI: 10.1002/anie.202200850] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qingfang Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Zi Ye
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
37
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N-Heterocyclic-Carbene-Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022; 61:e202117340. [PMID: 35100461 DOI: 10.1002/anie.202117340] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Axially chiral aldehydes have received increasing attention in enantioselective catalysis. However, only very few catalytic methods have been developed to construct structurally diverse axially chiral aldehydes. We herein describe an NHC-catalyzed atroposelective esterification of biaryl dialdehydes as a general and practical strategy for the construction of axially chiral aldehydes. Mechanistic studies indicate that coupling proceeds through a novel combination of NHC-catalyzed desymmetrization of the dialdehydes and kinetic resolution. This protocol features excellent enantioselectivity, mild conditions, good functional-group tolerance, and applicability to late-stage functionalization and provides a modular platform for the synthesis of axially chiral aldehydes and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
38
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric a‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiguo Ma
- Shanghai Normal University Chemistry CHINA
| | - Bin Gao
- Shanghai Normal University Chemistry CHINA
| | | | | | | | - Zi Ye
- Shanghai Normal University Chemistry CHINA
| | - Wen-Wen Chen
- Shanghai Normal University Chemistry 100 Guilin Rd 200234 Shanghai CHINA
| | - Baoguo Zhao
- Shanghai Normal University Chemistry Department 100 Guiling Rd 200234 Shanghai CHINA
| |
Collapse
|
39
|
Wu Y, Li M, Sun J, Zheng G, Zhang Q. Synthesis of Axially Chiral Aldehydes by N‐Heterocyclic‐Carbene‐Catalyzed Desymmetrization Followed by Kinetic Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingtao Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Mingrui Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Jiaqiong Sun
- School of Environment Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
40
|
Zhou Y, Chen H, Lei P, Gui C, Wang H, Yan Q, Wang W, Chen F. Palladium-catalyzed base- and solvent-controlled chemoselective allylation of amino acids with allylic carbonates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Zhao W, Liu J, He X, Jiang H, Lu L, Xiao W. N-Heterocyclic Carbene (NHC)-Catalyzed Desymmetrization of Biaryldialdehydes to Construct Axially Chiral Aldehydes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhao JQ, Rao HW, Qian HL, Zhang XM, Zhou S, Zhang YP, You Y, Wang ZH, Yuan WC. Palladium-catalyzed stereoselective decarboxylative allylation of azlactones: access to ( Z)-trisubstituted allylic amino acid derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed stereoselective decarboxylative allylation of azlactones with vinyl methylene cyclic carbonates affords a series of trisubstituted allylic amino acid derivatives in good yields with an exclusive (Z)-configuration.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xue-Man Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
43
|
Liu T, Ni S, Guo W. Practical asymmetric amine nucleophilic approach for the modular construction of protected α-quaternary amino acids. Chem Sci 2022; 13:6806-6812. [PMID: 35774153 PMCID: PMC9200120 DOI: 10.1039/d2sc02318k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids. The key to success is the use of an alcohol solvent, which makes a rationally designed COOMe-bonded Cu-allenylidene electrophilic intermediate stable enough to couple with amine nucleophiles before its decomposition. The reaction features wide functional group tolerance with high enantioselectivity, typically >90% ee, and is amenable to the modification of commercially available bioactive molecules. The resultant protected α-amino acids could be readily converted into a number of precious enantioenriched amines featuring α-hindered tertiary carbon centers, which are otherwise synthetically quite challenging, including those of α-amino aldehyde, peptides or α-vinyl amino ester with >92% ee in excellent yields. This protocol could be utilized for the synthesis of the protected bioactive α-ethylnorvaline in 3 steps, a significant advancement in comparison to an 11-step sequence reported previously. We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids.![]()
Collapse
Affiliation(s)
- Teng Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| | - Shaofei Ni
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| |
Collapse
|
44
|
Kim JY, Lee W, Kang HJ, Jeon TH, Baik MH, Cho CG. Switching Chemoselectivity Based on the Ring Size: How to Make Ring-Fused Indoles Using Transition-Metal-Mediated Cross-Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jang-Yeop Kim
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Woojong Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Tae-Hong Jeon
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheon-Gyu Cho
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| |
Collapse
|
45
|
Lin K, Shi A, Shi C, Lin J, Lin H. Catalytic Asymmetric Amino Acid and Its Derivatives by Chiral Aldehyde Catalysis. Front Chem 2021; 9:687817. [PMID: 34249862 PMCID: PMC8260972 DOI: 10.3389/fchem.2021.687817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Amine acid transformation is an important chemical process in biological systems. As a well-developed and acknowledged tool, chiral aldehyde catalysis provides good catalytic activation and stereoselective control abilities in the asymmetric reaction of N-unprotected amino acid esters and amino acid esters analogs, in which the key to success is the design of the catalysts derived from chiral BINOL aldehyde, which is based on the face control of enolate intermediates. In this review, one of the co-catalytic systems that combined with a transition metal to form a multiplex catalytic system and the well-established multiplex stereocenters of chiral aldehyde catalysis have been reviewed. Finally, a novel organocatalysis is prospected.
Collapse
Affiliation(s)
- Kaijin Lin
- School of Marine Engineering, Jimei University, Xiamen, China
| | - Ang Shi
- School of Marine Engineering, Jimei University, Xiamen, China
| | - Chunhong Shi
- School of Marine Engineering, Jimei University, Xiamen, China
| | - Jinbiao Lin
- School of Marine Engineering, Jimei University, Xiamen, China
| | - Honggui Lin
- School of Marine Engineering, Jimei University, Xiamen, China
| |
Collapse
|
46
|
Wu X, Ren J, Shao Z, Yang X, Qian D. Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
47
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:10588-10592. [PMID: 33554429 DOI: 10.1002/anie.202017306] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Direct α-functionalization of NH2 -free glycinates with relatively weak electrophiles such as α,β-unsaturated esters still remains a big challenge in organic synthesis. With chiral pyridoxal 5 d as a carbonyl catalyst, direct asymmetric conjugated addition at the α-C of glycinate 1 a with α,β-unsaturated esters 2 has been successfully realized, to produce various chiral pyroglutamic acid esters 4 in 14-96 % yields with 81-97 % ee's after in situ lactamization. The trans and cis diastereomers can be obtained at the same time by chromatography and both of them can be easily converted into chiral 4-substituted pyrrolidin-2-ones such as Alzheimer's drug Rolipram (11) with the same absolute configuration via tert-butyl group removal and subsequent Barton decarboxylation.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
48
|
Ke M, Liu Z, Zhang K, Zuo S, Chen F. Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
50
|
Zhang J, Xu Y, Wang Z, Zhong R, Wang Y. Organocatalyzed Cascade Aza-Michael/Aldol Reaction for Atroposelective Construction of 4-Naphthylquinoline-3-carbaldehydes. J Org Chem 2021; 86:4262-4273. [PMID: 33625226 DOI: 10.1021/acs.joc.1c00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalyzed cascade aza-Michael/Aldol reaction of alkynals with N-(2-(1-naphthoyl)phenyl)benzenesulfonamides has been disclosed. In the presence of a secondary amine catalyst, this method enables the construction of a series of axially chiral 4-naphthylquinoline-3-carbaldehydes in yields of up to 97% with enantioselectivities of up to 96%. Several further transformations of the synthesized products were investigated to demonstrate their synthetic applications.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Yong Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China
| | - Rong Zhong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| | - Yurong Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People's Republic of China
| |
Collapse
|