1
|
Wix P, Tandon S, Vaesen S, Karimu K, Mathieson JS, Esien K, Felton S, Watson GW, Schmitt W. Alkali cation-π interactions in aqueous systems, modulating supramolecular stereoisomerism of nanoscopic metal-organic capsules. Nat Commun 2024; 15:10180. [PMID: 39580478 PMCID: PMC11585540 DOI: 10.1038/s41467-024-54426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
Contrary to common chemical intuition, cation-π interactions can persist in polar, aqueous reaction solutions, rather than in dry non-coordinative solvent systems. This account highlights how alkali ion-π interactions impart distinctive structure-influencing supramolecular forces that can be exploited in the preparation of nanoscopic metal-organic capsules. The incorporation of alkali ions from polar solutions into molecular pockets promotes the assembly of otherwise inaccessible capsular entities whose structures are distinctive to those of common polyoxovanadate clusters in which {V=O} moieties usually point radially to the outside, shielding the molecular entities. The applied concept is exemplified by homologous {V20} and {V30} cages, composed of inverted, hemispherical {V5O9} units. The number and geometrical organization of these {V5O9} sub-units in these cages are associated with prevailing cation- π interactions and competing steric effects. The stereoisomers of these resulting nano-sized objects are comparable to Alfred Werner-type structural isomers of simple mononuclear complexes in-line with fundamental coordination chemistry principles.
Collapse
Affiliation(s)
- Paul Wix
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Swetanshu Tandon
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Sebastien Vaesen
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Kadri Karimu
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Jennifer S Mathieson
- School of Chemistry, University of Glasgow, Joseph Black Building, University Ave, Glasgow, G12 8QQ, UK
| | - Kane Esien
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Solveig Felton
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Graeme W Watson
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Wolfgang Schmitt
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland.
| |
Collapse
|
2
|
Wang HZ, Chan MHY, Yam VWW. Heavy-Metal Ions Removal and Iodine Capture by Terpyridine Covalent Organic Frameworks. SMALL METHODS 2024; 8:e2400465. [PMID: 39049798 DOI: 10.1002/smtd.202400465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Porous materials are excellent candidates for water remediation in environmental issues. However, it is still a key challenge to design efficient adsorbents for rapid water purification from various heavy metal ions-contaminated wastewater in one step. Here, two robust nitrogen-rich covalent organic frameworks (COFs) bearing terpyridine units on the pore walls by a "bottom-up" strategy are reported. Benefitting from the strong chelation interaction between the terpyridine units and various heavy metal ions, these two terpyridine COFs show excellent removal efficiency and capability for Pb2+, Hg2+, Cu2+, Ag+, Cd2+, Ni2+, and Cr3+ from water. These COFs are shown to remove such heavy metal ions with >90% of contents at one time after the aqueous metal ions mixture is passed through the COF filter. The nitrogen-rich features of the COFs also endow them with the capability of capturing iodine vapors, offering the terpyridine COFs the potential for environmental remediation applications.
Collapse
Affiliation(s)
- Huai-Zhen Wang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| |
Collapse
|
3
|
Silvestri I, Manigrasso J, Andreani A, Brindani N, Mas C, Reiser JB, Vidossich P, Martino G, McCarthy AA, De Vivo M, Marcia M. Targeting the conserved active site of splicing machines with specific and selective small molecule modulators. Nat Commun 2024; 15:4980. [PMID: 38898052 PMCID: PMC11187226 DOI: 10.1038/s41467-024-48697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100, Caserta, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Andreani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | | | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
4
|
Carlesso A, Hörberg J, Deganutti G, Reymer A, Matsson P. Structural dynamics of therapeutic nucleic acids with phosphorothioate backbone modifications. NAR Genom Bioinform 2024; 6:lqae058. [PMID: 38800826 PMCID: PMC11127634 DOI: 10.1093/nargab/lqae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Antisense oligonucleotides (ASOs) offer ground-breaking possibilities for selective pharmacological intervention for any gene product-related disease. Therapeutic ASOs contain extensive chemical modifications that improve stability to enzymatic cleavage and modulate binding affinity relative to natural RNA/DNA. Molecular dynamics (MD) simulation can provide valuable insights into how such modifications affect ASO conformational sampling and target binding. However, force field parameters for chemically modified nucleic acids (NAs) are still underdeveloped. To bridge this gap, we developed parameters to allow simulations of ASOs with the widely applied phosphorothioate (PS) backbone modification, and validated these in extensive all-atom MD simulations of relevant PS-modified NA systems representing B-DNA, RNA, and DNA/RNA hybrid duplex structures. Compared to the corresponding natural NAs, single PS substitutions had marginal effects on the ordered DNA/RNA duplex, whereas substantial effects of phosphorothioation were observed in single-stranded RNA and B-DNA, corroborated by the experimentally derived structure data. We find that PS-modified NAs shift between high and low twist states, which could affect target recognition and protein interactions for phosphorothioated oligonucleotides. Furthermore, conformational sampling was markedly altered in the PS-modified ssRNA system compared to that of the natural oligonucleotide, indicating sequence-dependent effects on conformational preference that may in turn influence duplex formation.
Collapse
Affiliation(s)
- Antonio Carlesso
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden
| | - Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | | | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Pär Matsson
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Sweden
| |
Collapse
|
5
|
Genna V, Iglesias-Fernández J, Reyes-Fraile L, Villegas N, Guckian K, Seth P, Wan B, Cabrero C, Terrazas M, Brun-Heath I, González C, Sciabola S, Villalobos A, Orozco M. Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides. Nucleic Acids Res 2023; 51:4713-4725. [PMID: 37099382 PMCID: PMC10250214 DOI: 10.1093/nar/gkad309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023] Open
Abstract
Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.
Collapse
Affiliation(s)
- Vito Genna
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- NBD | Nostrum Biodiscovery, Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Laura Reyes-Fraile
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Nuria Villegas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Punit Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brad Wan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cristina Cabrero
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | - Montserrat Terrazas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | | | | | - Modesto Orozco
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
6
|
Yang JF, Wang F, Wang MY, Wang D, Zhou ZS, Hao GF, Li QX, Yang GF. CIPDB: A biological structure databank for studying cation and π interactions. Drug Discov Today 2023; 28:103546. [PMID: 36871844 DOI: 10.1016/j.drudis.2023.103546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
As major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.ccnu.edu.cn/ccb/database/CIPDB). This review lays the foundation for the in-depth study of cation and π interactions and will guide the use of molecular design for drug discovery.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| |
Collapse
|
7
|
Geronimo I, De Vivo M. Alchemical Free-Energy Calculations of Watson-Crick and Hoogsteen Base Pairing Interconversion in DNA. J Chem Theory Comput 2022; 18:6966-6973. [PMID: 36201305 DOI: 10.1021/acs.jctc.2c00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hoogsteen (HG) base pairs have a transient nature and can be structurally similar to Watson-Crick (WC) base pairs, making their occurrence and thermodynamic stability difficult to determine experimentally. Herein, we employed the restrain-free-energy perturbation-release (R-FEP-R) method to calculate the relative free energy of the WC and HG base pairing modes in isolated and bound DNA systems and predict the glycosyl torsion conformational preference of purine bases. Notably, this method does not require prior knowledge of the transition pathway between the two end states. Remarkably, relatively fast convergence was reached, with results in excellent agreement with experimental data for all the examined DNA systems. The R-REP-R method successfully determined the stability of HG base pairing and more generally, the conformational preference of purine bases, in these systems. Therefore, this computational approach can help to understand the dynamic equilibrium between the WC and HG base pairing modes in DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
8
|
Liu Y, Munsayac A, Hall I, Keane SC. Solution Structure of NPSL2, A Regulatory Element in the oncomiR-1 RNA. J Mol Biol 2022; 434:167688. [PMID: 35717998 PMCID: PMC9474619 DOI: 10.1016/j.jmb.2022.167688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
The miR-17 ∼ 92a polycistron, also known as oncomiR-1, is commonly overexpressed in multiple cancers and has several oncogenic properties. OncomiR-1 encodes six constituent microRNAs (miRs), each enzymatically processed with different efficiencies. However, the structural mechanism that regulates this differential processing remains unclear. Chemical probing of oncomiR-1 revealed that the Drosha cleavage sites of pri-miR-92a are sequestered in a four-way junction. NPSL2, an independent stem loop element, is positioned just upstream of pri-miR-92a and sequesters a crucial part of the sequence that constitutes the basal helix of pri-miR-92a. Disruption of the NPSL2 hairpin structure could promote the formation of a pri-miR-92a structure that is primed for processing by Drosha. Thus, NPSL2 is predicted to function as a structural switch, regulating pri-miR-92a processing. Here, we determined the solution structure of NPSL2 using solution NMR spectroscopy. This is the first high-resolution structure of an oncomiR-1 element. NPSL2 adopts a hairpin structure with a large, but highly structured, apical and internal loops. The 10-bp apical loop contains a pH-sensitive A+·C mismatch. Additionally, several adenosines within the apical and internal loops have elevated pKa values. The protonation of these adenosines can stabilize the NPSL2 structure through electrostatic interactions. Our study provides fundamental insights into the secondary and tertiary structure of an important RNA hairpin proposed to regulate miR biogenesis.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/YapingLiu5
| | - Aldrex Munsayac
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/ihallu14
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Donati E, Vidossich P, De Vivo M. Molecular Mechanism of Phosphate Steering for DNA Binding, Cleavage Localization, and Substrate Release in Nucleases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
10
|
Manigrasso J, De Vivo M, Palermo G. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. ACS Catal 2021; 11:8786-8797. [PMID: 35145762 DOI: 10.1021/acscatal.1c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent in crystallo reaction intermediates have detailed how nucleic acid hydrolysis occurs in the RNA ribonuclease H1 (RNase H1), a fundamental metalloenzyme involved in maintaining the human genome. At odds with the previous characterization, these in crystallo structures unexpectedly captured multiple metal ions (K+ and Mg2+) transiently bound in the vicinity of the two-metal-ion active site. Using multi-microsecond all-atom molecular dynamics and free-energy simulations, we investigated the functional implications of the dynamic exchange of multiple K+ and Mg2+ ions at the RNase H1 reaction center. We found that such ions are timely positioned at non-overlapping locations near the active site, at different stages of catalysis, being crucial for both reactants' alignment and leaving group departure. We also found that this cation trafficking is tightly regulated by variations of the solution's ionic strength and is aided by two conserved second-shell residues, E188 and K196, suggesting a mechanism for the cations' recruitment during catalysis. These results indicate that controlled trafficking of multi-cation dynamics, opportunely prompted by second-shell residues, is functionally essential to the complex enzymatic machinery of the RNase H1. These findings revise the current knowledge on the RNase H1 catalysis and open new catalytic possibilities for other similar metalloenzymes including, but not limited to, CRISPR-Cas9, group II intron ribozyme and the human spliceosome.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy.,Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States.,Department of Chemistry, University of California Riverside, Riverside, CA 52512, United States
| |
Collapse
|
11
|
Marcia M, Manigrasso J, De Vivo M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J Chem Inf Model 2021; 61:2511-2515. [PMID: 34133879 PMCID: PMC8278382 DOI: 10.1021/acs.jcim.1c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This viewpoint discusses the predictive power and impact of computational analyses and simulations to gain prospective, experimentally supported mechanistic insights into complex biological systems. Remarkably, two newly resolved cryoEM structures have confirmed the previous, and independent, prediction of the precise localization and dynamics of key catalytic ions in megadalton-large spliceosomal complexes. This outstanding outcome endorses a prominent synergy of computational and experimental methods in the prospective exploration of such large multicomponent biosystems.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble 38042, France
| | - Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
12
|
Spinello A, Borišek J, Pavlin M, Janoš P, Magistrato A. Computing Metal-Binding Proteins for Therapeutic Benefit. ChemMedChem 2021; 16:2034-2049. [PMID: 33740297 DOI: 10.1002/cmdc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological states associated with metal-dependent cellular dysfunctions. In this compendium, we illustrate how the use of a computational arsenal based on docking, classical, and quantum-classical molecular dynamics simulations can contribute to extricate the minutiae of the catalytic, transport, and inhibition mechanisms of metal-binding proteins at the atomic level. This knowledge represents a fertile ground and an essential prerequisite for selectively targeting metal-binding proteins with small-molecule inhibitors aiming to (i) abrogate deregulated metal-dependent (mis)functions or (ii) leverage metal-dyshomeostasis to selectively trigger harmful cells death.
Collapse
Affiliation(s)
- Angelo Spinello
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Jure Borišek
- National Institute of Chemistry Institution Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Matic Pavlin
- Laboratory of Microsensor Structures and Electronics Faculty of Electrical Engineering, University of Ljubljana Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Pavel Janoš
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-, Institute of Materials (IOM) c/o International School for Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
13
|
Velema WA, Park HS, Kadina A, Orbai L, Kool ET. Trapping Transient RNA Complexes by Chemically Reversible Acylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Willem A. Velema
- Institute for Molecules and Materials Radboud University Nijmegen 6525 AJ The Netherlands
| | - Hyun Shin Park
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Anastasia Kadina
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Lucian Orbai
- Cell Data Sciences 46127 Landing Pkwy Fremont CA 94538 USA
| | - Eric T. Kool
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
14
|
Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Vidossich P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M. Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pietro Vidossich
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luis Eduardo Castañeda Moreno
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Cristiano Mota
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Daniele de Sanctis
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Gian Pietro Miscione
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
16
|
Velema WA, Park HS, Kadina A, Orbai L, Kool ET. Trapping Transient RNA Complexes by Chemically Reversible Acylation. Angew Chem Int Ed Engl 2020; 59:22017-22022. [PMID: 32845055 DOI: 10.1002/anie.202010861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 01/01/2023]
Abstract
RNA-RNA interactions are essential for biology, but they can be difficult to study due to their transient nature. While crosslinking strategies can in principle be used to trap such interactions, virtually all existing strategies for crosslinking are poorly reversible, chemically modifying the RNA and hindering molecular analysis. We describe a soluble crosslinker design (BINARI) that reacts with RNA through acylation. We show that it efficiently crosslinks noncovalent RNA complexes with mimimal sequence bias and establish that the crosslink can be reversed by phosphine reduction of azide trigger groups, thereby liberating the individual RNA components for further analysis. The utility of the new approach is demonstrated by reversible protection against nuclease degradation and trapping transient RNA complexes of E. coli DsrA-rpoS derived bulge-loop interactions, which underlines the potential of BINARI crosslinkers to probe RNA regulatory networks.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525, AJ, The Netherlands
| | - Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lucian Orbai
- Cell Data Sciences, 46127 Landing Pkwy, Fremont, CA, 94538, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Liu H, Fu H, Shao X, Cai W, Chipot C. Accurate Description of Cation-π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. J Chem Theory Comput 2020; 16:6397-6407. [PMID: 32852943 DOI: 10.1021/acs.jctc.0c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cation-π interactions play a significant role in a host of processes eminently relevant to biology. However, polarization effects arising from the interaction of cations with aromatic moieties have long been recognized to be inadequately described by pairwise additive force fields. In the present work, we address this longstanding shortcoming through the nonbonded FIX (NBFIX) feature of the CHARMM36 force field, modifying pair-specific Lennard-Jones (LJ) parameters, while circumventing the limitations of the Lorentz-Berthelot combination rules. The potentials of mean force (PMFs) characterizing prototypical cation-π interactions in aqueous solutions are first determined using a hybrid quantum mechanical/molecular mechanics (QM/MM) strategy in conjunction with an importance-sampling algorithm. The LJ parameters describing the cation-π pairs are then optimized to match the QM/MM PMFs. The standard binding free energies of nine cation-π complexes, i.e., toluene, para-cresol, and 3-methyl-indole interacting with either ammonium, guanidinium, or tetramethylammonium, determined with this new set of parameters agree well with the experimental measurements. Additional simulations were carried out on three different classes of biological objects featuring cation-π interactions, including five individual proteins, three protein-ligand complexes, and two protein-protein complexes. Our results indicate that the description of cation-π interactions is overall improved using NBFIX corrections, compared with the standard pairwise additive force field. Moreover, an accurate binding free energy calculation for a protein-ligand complex containing cation-π interactions (2BOK) shows that using the new parameters, the experimental binding affinity can be reproduced quantitatively. Put together, the present work suggests that the NBFIX parameters optimized here can be broadly utilized in the simulation of proteins in an aqueous solution to enhance the representation of cation-π interactions, at no additional computational cost.
Collapse
Affiliation(s)
- Han Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Wensheng Cai
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR n°7019, Université de Lorraine, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Sørensen MLH, Sanders BC, Hicks LP, Rasmussen MH, Vishart AL, Kongsted J, Winkler JR, Gray HB, Hansen T. Hole Hopping through Cytochrome P450. J Phys Chem B 2020; 124:3065-3073. [PMID: 32175746 DOI: 10.1021/acs.jpcb.9b09414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-potential iron-oxo species are intermediates in the catalytic cycles of oxygenase enzymes. They can cause heme degradation and irreversible oxidation of nearby amino acids. We have proposed that there are protective mechanisms in which hole hopping from oxidized hemes through tryptophan/tyrosine chains generates a surface-exposed amino-acid oxidant that could be rapidly disarmed by reaction with cellular reductants. In investigations of cytochrome P450BM3, we identified Trp96 as a critical residue that could play such a protective role. This Trp is cation-π paired with Arg398 in 81% of mammalian P450s. Here we report on the effect of the Trp/Arg cation-π interaction on Trp96 formal potentials as well as on electronic coupling strengths between Trp96 and the heme both for wild type cytochrome P450 and selected mutants. Mutation of Arg398 to His, which decreases the Trp96 formal potential, increases Trp-heme electronic coupling; however, surprisingly, the rate of phototriggered electron transfer from a Ru-sensitizer (through Trp96) to the P450BM3 heme was unaffected by the Arg398His mutation. We conclude that Trp96 has moved away from Arg398, suggesting that the protective mechanism for P450s with this Trp-Arg pair is conformationally gated.
Collapse
Affiliation(s)
- Mette L H Sørensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Brian C Sanders
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - L Perry Hicks
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Maria H Rasmussen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Andreas L Vishart
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Donati E, Genna V, De Vivo M. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases. J Am Chem Soc 2020; 142:2823-2834. [PMID: 31939291 PMCID: PMC7993637 DOI: 10.1021/jacs.9b10656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Enzymes of the 5′ structure-specific
nuclease family are crucial for DNA repair, replication, and recombination.
One such enzyme is the human exonuclease 1 (hExo1) metalloenzyme,
which cleaves DNA strands, acting primarily as a processive 5′-3′
exonuclease and secondarily as a 5′-flap endonuclease. Recently,
in crystallo reaction intermediates have elucidated how hExo1 exerts
hydrolysis of DNA phosphodiester bonds. These hExo1 structures show
a third metal ion intermittently bound close to the two-metal-ion
active site, to which recessed ends or 5′-flap substrates bind.
Evidence of this third ion has been observed in several nucleic-acid-processing
metalloenzymes. However, there is still debate over what triggers
the (un)binding of this transient third ion during catalysis and whether
this ion has a catalytic function. Using extended molecular dynamics
and enhanced sampling free-energy simulations, we observed that the
carboxyl side chain of Glu89 (located along the arch motif in hExo1)
flips frequently from the reactant state to the product state. The
conformational flipping of Glu89 allows one metal ion to be recruited
from the bulk and promptly positioned near the catalytic center. This
is in line with the structural evidence. Additionally, our simulations
show that the third metal ion assists the departure, through the mobile
arch, of the nucleotide monophosphate product from the catalytic site.
Structural comparisons of nuclease enzymes suggest that this Glu(Asp)-mediated
mechanism for third ion recruitment and nucleic acid hydrolysis may
be shared by other 5′ structure-specific nucleases.
Collapse
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Vito Genna
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
20
|
Kim M, Gould T, Rocca D, Lebègue S. Establishing the accuracy of density functional approaches for the description of noncovalent interactions in biomolecules. Phys Chem Chem Phys 2020; 22:21685-21695. [DOI: 10.1039/d0cp04137h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules have complex structures, and noncovalent interactions are crucial to determine their conformations and functionalities.
Collapse
Affiliation(s)
- Minho Kim
- Université de Lorraine and CNRS
- LPCT
- UMR 7019
- Vandoeuvre-lès-Nancy 54506
- France
| | - Tim Gould
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Nathan
- Australia
| | - Dario Rocca
- Université de Lorraine and CNRS
- LPCT
- UMR 7019
- Vandoeuvre-lès-Nancy 54506
- France
| | - Sébastien Lebègue
- Université de Lorraine and CNRS
- LPCT
- UMR 7019
- Vandoeuvre-lès-Nancy 54506
- France
| |
Collapse
|