1
|
Zhang JW, Shi DY, Tian P, Li QH. Rhodium(III)-catalyzed asymmetric allylic cyclization of cyclohexadienone-tethered allenes. Org Biomol Chem 2025; 23:3643-3647. [PMID: 40125568 DOI: 10.1039/d5ob00220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The rhodium(III)-catalyzed asymmetric allylic cyclization of cyclohexadienone-tethered allenes is successfully developed. This protocol exhibits broad functional group tolerance and is applicable for modifying biologically active molecules containing phenol structures. Notably, compounds 3ga and 3ha demonstrate promising anticancer properties.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Da-Yu Shi
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Chen P, Zhang MM, Rao L, Li YH, Jia Y, Tan Y, Xiao WJ, Lu LQ. Access to N-α-quaternary chiral morpholines via Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy. Sci Bull (Beijing) 2024; 69:3516-3524. [PMID: 39183108 DOI: 10.1016/j.scib.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91% yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.
Collapse
Affiliation(s)
- Peng Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mao-Mao Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan-Heng Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yue Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Dwivedi KC, Sabharwal G, Kote BS, Balakrishna MS. Ni II, Pd II and Pt II pincer complexes of 2-(diphenylphosphanyl)- N-(2-(diphenyl-phosphanyl)benzyl)benzamide: synthesis, reactivity and catalytic studies. Dalton Trans 2024; 53:18321-18329. [PMID: 39453671 DOI: 10.1039/d4dt02611j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In this article, the synthesis of bis(phosphine), o-Ph2PC6H4C(O)N(H)CH2C6H4PPh2-o (1) (hereafter referred to as "PCNHCP" and its anionic form as "PCNCP") and its group 10 metal chemistry and catalytic studies are described. PCNHCP (1) on reaction with NiCl2(DME) and PdCl2(COD) afforded pincer complexes, [MCl{(PCNCP)κ3-P,N,P}] (M = Ni, 2; Pd, 3). A similar reaction of 1 with PtCl2(COD) yielded a chelate complex, [PtCl2{(PCNHCP)κ2-P,P}] (4), which on further treatment with LiHMDS produced the 1,2-azaphospholene-phosphine complex, [PtCl(Ph){(o-P(Ph)C6H4CONCH2C6H4PPh2-o)κ2-P,P}] (5) via P-C/P-N bond metathesis. Passing dry HCl gas through the solution of 5 resulted in benzene elimination to form [PtCl2{(o-P(Ph)C6H4CONCH2C6H4PPh2-o)κ2-P,P}] (6). Treatment of 1 with PtCl2(COD) and Pt(Cl)(Me)(COD) in the presence of a base resulted in pincer complexes [PtX{(PCNCP)κ3-P,N,P}] (X = Cl, 7; Me, 8). Nickel complex 2 catalyzed the Suzuki-Miyaura cross coupling reaction between bromobenzene and phenyl boronic acid to give the corresponding biphenyls in good yield. The platinum complex 5 showed good catalytic activity towards regio- and stereoselective hydroboration of terminal alkynes. Both the catalytic reactions were performed under mild reaction conditions with a very low catalyst loading.
Collapse
Affiliation(s)
- Khilesh C Dwivedi
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Gazal Sabharwal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Basvaraj S Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Gao X, Li BB, Li YW, Xiao X, Liu MM, Mei GJ. Enantiodivergent Cyclization of Racemic Cyclohexadienones via Parallel Kinetic Asymmetric Transformation. Org Lett 2024; 26:6290-6294. [PMID: 39023054 DOI: 10.1021/acs.orglett.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Strategies that fully convert available racemic substrates into valuable enantioenriched products are urgently needed in organic synthesis. Reported herein is the first parallel kinetic asymmetric transformation of racemic cyclohexadienones. Racemic cyclohexadienones are first diastereoselectively converted into a new pair of racemic transient dienol intermediates, which are then parallel protonated by chiral phosphoric acid to deliver two sets of hydroindole products bearing a quaternary stereocenter with generally excellent enantioselectivity.
Collapse
Affiliation(s)
- Xiang Gao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bei-Bei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng-Meng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
5
|
Wang YF, Wang F, Yang DD, Kittakoop P, Tan YX, Tian P. Enantioselective Reductive Cyclization of Alkynyl-Tethered Cyclohexadienones Catalyzed by Rhodium Complexes. Org Lett 2024; 26:5614-5619. [PMID: 38953701 DOI: 10.1021/acs.orglett.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Although various types of asymmetric cyclization reactions of 1,6-enynes have been established, simple asymmetric reductive cyclization remains underdeveloped. In this study, the enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones (1,6-enynes) has been developed via a chiral pincer rhodium catalyst, affording cis-hydrobenzofurans and cis-hydroindoles with high enantioselectivities (90-99% ee). Furthermore, several synthetic applications and preliminary inhibitory activity studies against SARS-CoV-2 3CLpro are presented.
Collapse
Affiliation(s)
- Yi-Fan Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Dan-Dan Yang
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok 10210, Thailand
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
6
|
Wang YJ, Kang WY, Zhao YW, Wang YH, Tian P. N-Heterocyclic Carbene-Catalyzed Formal Intramolecular [3 + 2] Annulations of Cyclohexadienone-Tethered Ynals. Org Lett 2024; 26:3552-3556. [PMID: 38639551 DOI: 10.1021/acs.orglett.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A formal [3 + 2] annulation of cyclohexadienone-tethered ynals is enabled by an N-heterocyclic carbene (NHC) catalyst, affording a tricyclo[6.2.1.04,11]undecane framework. This study represents the first demonstration of using C═C double bonds as the reaction partner in the NHC-catalyzed annulation of ynals. This strategy is characterized by mild reaction conditions and 100% atom economy as well as high catalytic performance and efficiency.
Collapse
Affiliation(s)
- Ya-Jie Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen-Yu Kang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi-Wen Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
7
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
8
|
Chen Q, Zhang Y, Song Y, Zhang Y, Su Z, Feng X, Liu X. Asymmetric Synthesis of Hydroindoles via Desymmetrizing [3+2] Annulation of p-Quinamines and Arylalkylketenes. Org Lett 2024. [PMID: 38606985 DOI: 10.1021/acs.orglett.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The asymmetric desymmetrizing [3+2] annulation reaction of p-quinamines and arylalkylketenes to synthesize hydroindoles was realized. Catalyzed by chiral bisguanidinium hemisalt via multiple hydrogen bond interactions, enantiomerically enriched products with reversal of diastereoselectivity in comparison with the racemic version were afforded in good yields under mild reaction conditions. Diaryl-substituted hydroindoles could also perform the Friedel-Crafts type of addition to give more complicated multicycles. Density functional theory calculations revealed that the enantio- and diastereoselectivity stem from varied hydrogen-bonding manners.
Collapse
Affiliation(s)
- Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Cheng YY, Kuo TS, Wu PY, Hsieh JC, Wu HL. Rhodium(I)/Chiral Diene Complexes Catalyzed Asymmetric Desymmetrization of Alkynyl-Tethered 2,5-Cyclohexadienones Through an Arylative Cyclization Cascade. J Org Chem 2024; 89:4861-4876. [PMID: 38525772 DOI: 10.1021/acs.joc.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cis-hydrobenzofurans, cis-hydroindoles, and cis-hydrindanes, privileged structural motifs found in numerous biologically active natural and synthetic compounds, are efficiently prepared by a Rh(I)-catalyzed cascade syn-arylation/1,4-addition protocol. This approach starts with the regioselective syn-arylation of the alkyne tethered to 2,5-hexadienone moieties, using a chiral Rh(I) catalyst generated in situ from a chiral bicyclo[2.2.1]hepatadiene ligand L4f. By forging two new carbon-carbon bonds and introducing two chiral centers, the resulting alkenylrhodium species undergoes desymmetrization via an intramolecular 1,4-addition reaction, delivering annulated products with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co. Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
10
|
Magham LR, Thopate SB, Samad A, Chegondi R. Enantioselective Desymmetrization Triggered by Iminium-Enamine Activation: Access to Complex Cyclohepta[b]indoles. Chemistry 2023; 29:e202203435. [PMID: 36530064 DOI: 10.1002/chem.202203435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The expeditious construction of complex molecules having multiple stereocentres is highly desirable in organic chemistry. In the present communication, we report the development of an organocatalytic asymmetric desymmetrization of prochiral enal-tethered cyclohexadienones via the C3-selective Friedel-Crafts alkylation of indoles triggered by LUMO-lowering iminium activation/HOMO-raising enamine activation. The reaction provides access to bicyclic enones, which further undergo acid-mediated intramolecular annulation from C2-position to afford highly strained cyclohepta[b]indoles with five contiguous stereocentres and three new C-C bonds in excellent enantioselectivity and diastereoselectivity.
Collapse
Affiliation(s)
- Lakshmi Revati Magham
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Satish B Thopate
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Abdus Samad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
11
|
Nunes MP, Jawale DV, Delolo FG, Araujo MH, Gravel E, Doris E, da Silva Júnior EN. Solvent-free hydroboration of alkenes and alkynes catalyzed by rhodium-ruthenium nanoparticles on carbon nanotubes. Chem Commun (Camb) 2023; 59:2763-2766. [PMID: 36786050 DOI: 10.1039/d2cc06864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A heterogeneous catalyst consisting of bimetallic rhodium-ruthenium particles immobilized on carbon nanotubes was used in the hydroboration reaction and proved highly effective for a variety of alkenes and alkynes. The reactions were carried out with low catalytic loadings (0.04 mol%), under solvent-free conditions, and at room temperature. In addition, to demonstrate its recyclability, the catalyst was recovered by a simple centrifugation process and reused over 5 consecutive cycles without losing any activity.
Collapse
Affiliation(s)
- Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Dhanaji V Jawale
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Fábio G Delolo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
12
|
Kanno S, Kakiuchi F, Kochi T. Palladium-Catalyzed Hydroboration/Cyclization of 1, n-Dienes. J Org Chem 2023; 88:2621-2630. [PMID: 36701792 DOI: 10.1021/acs.joc.2c02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
While the hydroboration of alkenes is well established, the corresponding cyclization reaction of dienes remains challenging. Here, we report a new method for hydroboration/cyclization applicable to various 1,n-dienes and hydroboranes. The method features the direct synthesis of borylalkyl cyclopentanes from common 1,6-dienes, which is highlighted by syntheses of elaborated pyrrolidine cores from easily accessible diallylamines. Notably, 1,n-dienes (n > 6) also undergo five-membered ring formation, offering "remote" hydroboration/cyclization that would be otherwise difficult to achieve.
Collapse
Affiliation(s)
- Shota Kanno
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
13
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Wang YJ, Wang YF, Kang WY, Lu WY, Wang YH, Tian P. A Highly Enantioselective Homoenolate Michael Addition/Esterification Sequence of Cyclohexadienone-Tethered Enals via NHC Catalysis. Org Lett 2023; 25:630-635. [PMID: 36662291 DOI: 10.1021/acs.orglett.2c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reported here is a highly enantioselective homoenolate Michael addition/esterification sequence of cyclohexadienone-tethered enals via N-heterocyclic carbene (NHC) catalysis, affording the enantiopure cis-hydrobenzofurans, cis-hydroindoles, and cis-hydroindenes. The NHC catalyst bearing a nitro group greatly enhances the stereocontrol, and a bulky N-aryl substituent of the triazolium salt in the catalyst is helpful for inhibiting the further aldol condensation after homoenolate Michael addition. The utility of this protocol is highlighted by a gram-scale experiment and versatile downstream transformations.
Collapse
Affiliation(s)
- Ya-Jie Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi-Fan Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen-Yu Kang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen-Ya Lu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
15
|
Chen W, Mao Y, Wang M, Ling F, Li C, Chen Z, Yao J. Rh(III)-catalyzed [4 + 1] cyclization of aryl substituted pyrazoles with cyclopropanols via C-H activation. Org Biomol Chem 2023; 21:775-782. [PMID: 36594518 DOI: 10.1039/d2ob02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium-catalyzed formal [4 + 1]-cyclization reaction of aryl substituted pyrazoles with cyclopropanols via C-H bond activation/cyclization processes to selectively construct a series of carbonyl functionalized pyrazolo[5,1-a]isoindoles is described. The reaction features good functional group compatibility and a broad substrate scope with respect to both cyclization components with up to 84% yields. Mechanistic studies indicated that the C-H cleavage might be the rate-determining step in this transformation.
Collapse
Affiliation(s)
- Wenxi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yan Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Min Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
16
|
Zhang XH, Wu X, Shi HX. Mechanistic investigation on rhodium(III)-catalyzed cycloaddition of 2-vinylphenol derivatives with ethyne or carbon monoxide by DFT study. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2009172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Rhodium-catalyzed cycloaddition reaction was calculated by density functional theory M06-2X method to directly synthesize benzoxepine and coumarin derivatives. In this work, we conducted a computational study of two competitive mechanisms in which the carbon atom of acetylene or carbon monoxide attacked and inserted from two different directions of the six-membered ring reactant to clarify the principle characteristics of this transformation. The calculation results reveal that: (i) the insertion process of alkyne or carbon monoxide is the key step of the reaction; (ii) for the (5+2) cycloaddition reaction of acetylene, higher energy is required to break the Rh−O bond of the reactant, and the reaction tends to complete the insertion from the side of the Rh−C bond; (iii) for the (5+1) cycloaddition of carbon monoxide, both reaction paths have lower activation free energy, and the two will generate a competition mechanism.
Collapse
Affiliation(s)
- Xing-hui Zhang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Xi Wu
- School of Foreign Languages, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Hai-xiong Shi
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| |
Collapse
|
17
|
Palladium‐catalyzed Intramolecular Dehydrogenative Arylboration of Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Copper-Catalyzed Diastereo- and Enantioselective Borylative Cyclization. Catalysts 2022. [DOI: 10.3390/catal12070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Copper-catalyzed enantioselective borylative cyclization with various electrophiles via difunctionalization of unsaturated hydrocarbons is a powerful tool for the generation of interesting boron-containing carbocycles and heterocycles processes involving a chiral organocopper intermediate. Alkenes, allenes, and alkynes are versatile and easily accessible substrates that can be subjected to a wide range of reactions to produce densely functionalized, enantioenriched products. In this chapter, I discuss copper-catalyzed alkenes, allenes, and alkynes borofunctionalization and enantioselective cyclization via chiral organocopper intermediate. Copper-catalyzed enantioselective borylative cyclization and regiodivergent functionalization of alkenes, allenes, and alkynes, as well as the current mechanistic understanding of such processes, are given special attention in this review.
Collapse
|
19
|
Donthoju A, Munakala A, Ellandula S, Chegondi R. Palladium(0)-Catalyzed Remote Decarboxylative Allylation and Base-Mediated 1,3-Migration. J Org Chem 2022; 87:8267-8276. [PMID: 35671458 DOI: 10.1021/acs.joc.2c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we have reported the palladium(0)-catalyzed decarboxylative oxa-Michael addition/remote α-allylation/1,3- migration of prochiral allyl carbonate-tethered cyclohexadienones in good yields. This unconventional intramolecular rearrangement is triggered by the base-mediated retro-Michael ring-opening reaction (β-elimination) and subsequent syn-selective oxa-Michael addition on the less substituted enone functionality. The generality of tandem decarboxylative allylation was examined with various substrates and in the gram-scale reaction.
Collapse
Affiliation(s)
- Ashok Donthoju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushma Ellandula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Tanaka K, Hattori H, Yabe R, Nishimura T. Ir-Catalyzed cyclization of α,ω-dienes with an N-methyl group via two C-H activation steps. Chem Commun (Camb) 2022; 58:5371-5374. [PMID: 35411896 DOI: 10.1039/d2cc01275h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium-catalyzed sp3 C-H alkylation of an N-methyl group with 1,5- and 1,6-dienes proceeded to give five- and six-membered carbocyclic compounds, respectively, in high yields. The reaction involves intermolecular alkylation of the N-methyl group with a vinyl moiety and subsequent intramolecular cyclization at the β-position of the initially formed alkylated intermediate. The reaction using a chiral bidentate phosphine ligand enabled the asymmetric synthesis of the cyclic compounds.
Collapse
Affiliation(s)
- Katsumasa Tanaka
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Hiroshi Hattori
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Ryota Yabe
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| |
Collapse
|
21
|
Bai X, Zheng W, Ge S, Lu Y. Enantioselective Palladium-Catalyzed Arylborylation/Cyclization of Alkenes to Access Boryl-Functionalized Heterocyclic Compounds Containing Quaternary Stereogenic Centers. Org Lett 2022; 24:3080-3085. [PMID: 35436402 DOI: 10.1021/acs.orglett.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asymmetric palladium-catalyzed arylboration/cyclization of both nonactivated and activated alkenes with B2pin2 was developed. A wide range of N-allyl-o-iodobenzamides and o-iodoacryanilides reacted with B2pin2 to afford borylated 3,4-dihydroisoquinolinones and oxindoles, respectively, in high yields with high enantioselectivities. The synthetic utility of this enantioselective protocol was highlighted by synthesizing various chiral 3,4-dihydroisoquinolinone and oxindole derivatives containing quaternary stereogenic carbon centers, including enantioenriched Roche anticancer agent (S)-RO4999200.
Collapse
Affiliation(s)
- Xingfeng Bai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Wenrui Zheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
22
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
23
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
24
|
Qiao Y, Bai S, Wu XF, Yang Y, Meng H, Ming J. Rhodium-Catalyzed Desymmetric Arylation of γ,γ-Disubsituted Cyclohexadienones: Asymmetric Synthesis of Chiral All-Carbon Quaternary Centers. Org Lett 2022; 24:1556-1560. [PMID: 35142218 DOI: 10.1021/acs.orglett.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desymmetric arylation of prochiral cyclohexadienones with ArZnCl in the presence of an (R)-segphos-rhodium catalyst gave high yields of the corresponding cyclohexenones, which contain a chiral arylated carbon center at the β-position and a chiral all-carbon quaternary center at the γ-position, with high diastereo- and enantioselectivities. This catalytic system was also applied to the arylation of spirocarbocyclic cyclohexadienones and afforded the corresponding cyclohexenones bearing a chiral spiro quaternary carbon with high dr and ee.
Collapse
Affiliation(s)
- Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xiao-Feng Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ying Yang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
25
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. Angew Chem Int Ed Engl 2021; 60:24488-24492. [PMID: 34435424 PMCID: PMC8596825 DOI: 10.1002/anie.202110736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/21/2022]
Abstract
A MnI‐catalyzed hydroboration of terminal alkenes and a 1,2‐diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti‐Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans‐1,2‐selectivity. The most active pre‐catalyst is bench‐stable alkyl bisphosphine MnI complex fac‐[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn–alkyl bond to yield an acyl intermediate, which undergoes B−H bond cleavage of HBPin (for alkenes) and rapid C−H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Daniel Zobernig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060, Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| |
Collapse
|
27
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:24693-24697. [PMID: 38505543 PMCID: PMC10947181 DOI: 10.1002/ange.202110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
A MnI-catalyzed hydroboration of terminal alkenes and a 1,2-diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti-Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans-1,2-selectivity. The most active pre-catalyst is bench-stable alkyl bisphosphine MnI complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate, which undergoes B-H bond cleavage of HBPin (for alkenes) and rapid C-H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Daniel Zobernig
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Berthold Stöger
- X-Ray CenterVienna University of TechnologyGetreidemarkt 9A-1060WienAustria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv Rovisco Pais1049-001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| |
Collapse
|
28
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
29
|
Tan YX, Peng PY, Wang YJ, Liu XL, Ye W, Gao D, Lin GQ, Tian P. Diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-containing 1,6-dienes. Chem Commun (Camb) 2021; 57:9724-9727. [PMID: 34474456 DOI: 10.1039/d1cc03645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-tethered terminal alkenes and (E)-1,2-disubstituted alkenes (1,6-dienes) is reported, providing cis-bicyclic products bearing three contiguous stereocenters with good yields and high diastereo- and enantioselectivities. The kinetic resolution of the racemic precursor is also achieved with good efficiency. Moreover, a subgram-scale experiment, several transformations of the cyclization product, and one-pot preparation of bridged polycyclic frameworks are presented.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei-Ying Peng
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Ya-Jie Wang
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Xi-Liang Liu
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Wenbo Ye
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Dingding Gao
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Guo-Qiang Lin
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ping Tian
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. .,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
30
|
Deng C, Li C, Yao J, Jin Q, Miao M, Zhou H. Rh(III)‐Catalyzed [4+2] Cyclization of 2‐Aryl‐1
H
‐benzo[
d
]imidazoles with Maleimides via C‐H Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Deng
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China
| | - Changchang Li
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Jinzhong Yao
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Quanli Jin
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Maozhong Miao
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China
| | - Hongwei Zhou
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| |
Collapse
|
31
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
32
|
Xu H, Tan YX, Xie PP, Ding R, Liao Q, Zhang JW, Li QH, Wang YH, Hong X, Lin GQ, Tian P. Rhodium(III)-Catalyzed Asymmetric Reductive Cyclization of Cyclohexadienone-Containing 1,6-Dienes via an Anti-Michael/Michael Cascade Process. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Rui Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Liao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
33
|
Patil VB, Nanubolu JB, Chegondi R. Design, synthesis and application of spiro[4.5]cyclohexadienones via one-pot sequential p-hydroxybenzylation/oxidative dearomatization. Chem Commun (Camb) 2021; 57:5574-5577. [PMID: 33969843 DOI: 10.1039/d1cc01752g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot sequential p-hydroxybenzylation/oxidative dearomatization/spiroannulation has been designed for the efficient construction of tetrahydrofuran containing spiro-cyclohexadienones. This reaction proceeds through the p-hydroxybenzylation of 1,3-diketones with p-hydroxybenzyl alcohol via quinone methide formation followed by oxidative dearomatization/spiroannulation with suitable alcohols. The Friedel-Crafts alkylation of spiro[4.5]cyclohexadienones with indoles provided a broad array of highly diastereoselective C-3 alkylated spirocycles and cyclohepta[b]indoles depending upon the ring size of the fused cyclic ketones.
Collapse
Affiliation(s)
- Vaibhav B Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. / and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India and Department of Analytical and Structural chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. / and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Ji Y, Zhang M, Xing M, Cui H, Zhao Q, Zhang C. Transition Metal Catalyzed Enantioselective Borylative Cyclization Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| |
Collapse
|
36
|
Shu T, Cossy J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem Soc Rev 2021; 50:658-666. [DOI: 10.1039/d0cs00666a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is covering the recent development of catalytic asymmetric domino reactions for the desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metals and chiral ligands.
Collapse
Affiliation(s)
- Tao Shu
- Molecular, Macromolecular Chemistry and Materials
- ESPCI Paris
- PSL University
- Paris
- France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials
- ESPCI Paris
- PSL University
- Paris
- France
| |
Collapse
|
37
|
Chen B, He CY, Chu WD, Liu QZ. Recent advances in the asymmetric transformations of achiral cyclohexadienones. Org Chem Front 2021. [DOI: 10.1039/d0qo01358g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes recent developments in the asymmetric transformations of achiral cyclohexadienones, including enantioselective desymmetrization of prochiral cyclohexadienones and kinetic resolution of racemic cyclohexadienones.
Collapse
Affiliation(s)
- Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| |
Collapse
|
38
|
Tan YX, Liu XY, He CY, Tian P. Rhodium(III)-catalyzed asymmetric carboboration of heterobicyclic alkenes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Munakala A, Chegondi R. Silver(I)-Catalyzed Enyne Cyclization/Aromatization of Alkyne-Tethered Cyclohexadienones to Access Meta-Substituted Phenols. Org Lett 2020; 23:317-323. [PMID: 33381974 DOI: 10.1021/acs.orglett.0c03819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we report a highly regioselective silver(I)-catalyzed intramolecular annulation of alkyne-tethered cyclohexadienones to access meta-substituted phenols with enone functionality, which are difficult to synthesize from conventional methods. The reaction proceeds via intramolecular 1,6-enyne cyclization followed by aromatization and subsequent oxetene ring rearrangement. This strategy has also been compatible with a wide range of C-tethered cyclohexadienones to afford indanes in high yields. The unique functionality of products allows further transformations to expand the diversity.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Ding Z, Wang Y, Liu W, Chen Y, Kong W. Diastereo- and Enantioselective Construction of Spirocycles by Nickel-Catalyzed Cascade Borrowing Hydrogen Cyclization. J Am Chem Soc 2020; 143:53-59. [PMID: 33356186 DOI: 10.1021/jacs.0c10055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhengtian Ding
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yate Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
41
|
Gollapelli KK, Patil VB, Vinaykumar A, Chegondi R. Rh(i)-catalyzed stereoselective desymmetrization of prochiral cyclohexadienones via highly exo-selective Huisgen-type [3 + 2] cycloaddition. Chem Sci 2020; 12:1544-1550. [PMID: 34163917 PMCID: PMC8179110 DOI: 10.1039/d0sc05543c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed. This method enables convergent construction of complex epoxy-bridged polycyclic ring systems with five contiguous stereocenters with excellent exo-selectivity and broad substrate scope. The highly atom-economical process involves 6-endo-dig cyclization of carbonyl oxygen onto an activated alkyne resulting in a highly reactive metal–benzopyrylium intermediate, which readily undergoes intramolecular [3 + 2] annulation/hydration. Asymmetric induction is also achieved for the first time in Rh(i)-catalyzed 1,3-dipolar cycloaddition using an easily accessible chiral diene as the ligand. A Rh(i)-catalyzed highly stereoselective desymmetrization of 2-alkynylbenzaldehyde-tethered cyclohexadienones triggered by intramolecular Huisgen-type [3 + 2] cycloaddition has been developed.![]()
Collapse
Affiliation(s)
- Krishna Kumar Gollapelli
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Vaibhav B Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Allam Vinaykumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India https://cramhcu.wixsite.com/rambabu-chegondi
| |
Collapse
|
42
|
Chandra G, Patel S. Molecular Complexity from Aromatics: Recent Advances in the Chemistry of
para
Quinol and Masked
para
‐Quinone Monoketal. ChemistrySelect 2020. [DOI: 10.1002/slct.202003802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Girish Chandra
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| | - Samridhi Patel
- Department of Chemistry School of Physical and Chemical Sciences Central University of South Bihar SH-7, Gaya-Panchanpur Road Gaya Bihar India 824236
| |
Collapse
|
43
|
Copper(I)-catalyzed diastereo- and enantio-selective construction of optically pure exocyclic allenes. Nat Commun 2020; 11:4293. [PMID: 32855405 PMCID: PMC7453021 DOI: 10.1038/s41467-020-18136-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Among about 150 identified allenic natural products, the exocyclic allenes constitute a major subclass. Substantial efforts are devoted to the construction of axially chiral allenes, however, the strategies to prepare chiral exocyclic allenes are still rare. Herein, we show an efficient strategy for the asymmetric synthesis of chiral exocyclic allenes with the simultaneous control of axial and central chirality through copper(I)-catalyzed asymmetric intramolecular reductive coupling of 1,3-enynes to cyclohexadienones. This tandem reaction exhibits good functional group compatibility and the corresponding optically pure exocyclic allenes bearing cis-hydrobenzofuran, cis-hydroindole, and cis-hydroindene frameworks, are obtained with high yields (up to 99% yield), excellent diastereoselectivities (generally >20:1 dr) and enantioselectivities (mostly >99% ee). Furthermore, a gram-scale experiment and several synthetic transformations of the chiral exocyclic allenes are also presented.
Collapse
|
44
|
Munakala A, Gollapelli KK, Nanubolu JB, Chegondi R. Silver(I)-Catalyzed Oxidative Intramolecular Cyclopropanation: Access to Complex Tricyclo[3.3.1.0]nonanediones via Semipinacol-Type Rearrangement. Org Lett 2020; 22:7019-7024. [DOI: 10.1021/acs.orglett.0c02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anandarao Munakala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Chauhan A, Patel RK, Grellier M, Kumar R. Hydrogen-Bond-Guided Reaction of Cyclohexadienone-aldehydes with Amines: Synthesis of an Aminal Group Containing a Fused Tetracyclic Framework. Org Lett 2020; 22:6177-6181. [PMID: 32790433 DOI: 10.1021/acs.orglett.0c02284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modular approach has been developed for an efficient synthesis of an aminal group containing a new tetracyclic framework. The strategy has been devised based on selective hydrogen-bond-guided aza-Michael addition of heteroaromatic amines to cyclohexadienone-aldehydes. The reaction is highly atom economic and practical and involves stereoselective construction of four new C-N bonds and four rings. The synthetic utility of the tetracyclic product was explored. The role of a H-bond was explained with the help of experimental and density functional theory (DFT) computation studies.
Collapse
Affiliation(s)
- Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India
| | - Mary Grellier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031 UP, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
46
|
Zhang L, Shi M, Wang F. Practical way for the synthesis of 4H-benzo[e][1,3]oxazine by anhydride-promoted [4+2] cyclization of in situ generated o-quinone methides with amides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Zhang JL, Gao D, Tan YX, He CY, Peng PY, Lin GQ, Li QH, Tian P. Rhodium(III)-Catalyzed Kinetic Resolution of Racemic 1,6-Dienes via Asymmetric Borylative Cyclization. Org Lett 2020; 22:3661-3666. [DOI: 10.1021/acs.orglett.0c01156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jun-Li Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Yu He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei-Ying Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Liu Z, Gao Y, Zeng T, Engle KM. Transition-Metal-Catalyzed 1,2-Carboboration of Alkenes: Strategies, Mechanisms, and Stereocontrol. Isr J Chem 2020; 60:219-229. [PMID: 33785969 PMCID: PMC8006804 DOI: 10.1002/ijch.201900087] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
During the past decade, many research groups have described catalytic methods for 1,2-carboboration, allowing access to structurally complex organoboronates from alkenes. Various transition metals, especially copper, palladium, and nickel, have been widely used in these reactions. This review summarizes advances in this field, with a special focus on the catalytic cycles involved in different metal-catalyzed carboboration reactions, as well as the regio- and stereochemical consequences of the underlying mechanisms. 1,2-Carboboration of other unsaturated systems, such as alkynes and allenes, are outside of the scope of this review.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92307 (USA)
| | - Yang Gao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92307 (USA)
| | - Tian Zeng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (USA)
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92307 (USA)
| |
Collapse
|
49
|
Xu Z, Tang Y, Shen C, Zhang H, Gan Y, Ji X, Tian X, Dong K. Nickel-catalyzed regio- and diastereoselective hydroarylative and hydroalkenylative cyclization of 1,6-dienes. Chem Commun (Camb) 2020; 56:7741-7744. [DOI: 10.1039/c9cc09450d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By using methanol as the hydrogen source and commercially available nickel complex as the catalyst, the hydroarylative and hydroalkenylative cyclization of unsymmetrically substituted 1,6-dienes with organoboronic acid was developed to afford products with high regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Zhengshuai Xu
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yitian Tang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Chaoren Shen
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hongru Zhang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yuxin Gan
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xiaolei Ji
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xinxin Tian
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan 030006
- China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
50
|
He C, Li Q, Wang X, Wang F, Tian P, Lin G. Copper‐Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone‐Containing 1,6‐Dienes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng‐Yu He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Qing‐Hua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Xin Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Feng Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Guo‐Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|