1
|
Kim J, Cho YW, Woo SG, Lee JN, Lee GH. Advancements in Chemical Vapor Deposited Carbon Films for Secondary Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410570. [PMID: 39981787 DOI: 10.1002/smll.202410570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Carbon films, synthesized via chemical vapor deposition (CVD), have gained significant attention in secondary battery applications, where stability and capacity are required to be improved for next-generation electronic devices and electric vehicles. Beyond the inherent properties of carbon films, such as high electrical conductivity, mechanical strength, chemical stability, and flexibility, the CVD method provides a high degree of freedom in designing the carbon films in battery applications, enabling conformal coating with structure engineering for modification of its electrical and mechanical properties. In this review, the CVD-grown carbon films are highlighted in the secondary battery applications, enabling them to overcome critical issues, such as volume expansion, sluggish kinetics, and unstable interfaces. To deeply understand the CVD-grown carbon films, such as graphene and amorphous carbon, a comprehensive overview of the CVD process is also provided, focusing on growth mechanisms, control of 3D morphology, and doping techniques. In addition, a broad range of applications are introduced for carbon films in battery components, including their use in cathodes, anodes, and current collectors, as well as their potential in advanced battery systems, such as lithium-sulfur and all-solid-state batteries. This review proposes future directions for optimizing carbon films to achieve practical applications in next-generation energy storage devices.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Wook Cho
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Sang-Gil Woo
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Je-Nam Lee
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Saenari-ro 25, Bundang-gu, Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Yuan H, Liu M, Cheng S, Li W, Liang F, Zheng K, Liu L, Yang F, Liu R, Su Q, Qi Y, Liu Z. Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6825-6834. [PMID: 39809474 DOI: 10.1021/acsami.4c20313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed. The premelted substrate can promote charge transfer from the substrate to the nuclei near graphene domains, thus facilitating the reaction between the CO2 etchant and the nuclei. Consequently, the PSE strategy can realize selective etching of nuclei formed near graphene domains to evolve high-quality graphene with a uniform domain size of ∼1 μm and an ID/IG ratio of ∼0.13 on glass fiber, achieving the largest domain size and the lowest defect density in graphene grown on a noncatalytic substrate without metal assistance. The largely improved quality of graphene significantly increases the electrical conductivity by 3 times and improves the working life by 7 times when applied as an electric heater compared with that fabricated without the PSE strategy.
Collapse
Affiliation(s)
- Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Mengxiong Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, Beijing 102249, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kangyi Zheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- College of Energy Soochow Institute for Energy and Materials Innovations Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Longfei Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Qingxu Su
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
3
|
Yang Y, Yuan H, Cheng Y, Yang F, Liu M, Huang K, Wang K, Cheng S, Liu R, Li W, Liang F, Zheng K, Liu L, Tu C, Wang X, Qi Y, Liu Z. Fluid-Dynamics-Rectified Chemical Vapor Deposition (CVD) Preparing Graphene-Skinned Glass Fiber Fabric and Its Application in Natural Energy Harvest. J Am Chem Soc 2024; 146:25035-25046. [PMID: 39213649 DOI: 10.1021/jacs.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.
Collapse
Affiliation(s)
- Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Mengxiong Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Kangyi Zheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- College of Energy Soochow Institute for Energy and Materials Innovations Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Longfei Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Qi
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
4
|
Li W, Liang F, Sun X, Zheng K, Liu R, Yuan H, Cheng S, Wang J, Cheng Y, Huang K, Wang K, Yang Y, Yang F, Tu C, Mao X, Yin W, Cai A, Wang X, Qi Y, Liu Z. Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat Commun 2024; 15:6825. [PMID: 39122739 PMCID: PMC11316083 DOI: 10.1038/s41467-024-51118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.
Collapse
Affiliation(s)
- Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiucai Sun
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Ali Cai
- Beijing Graphene Institute (BGI), Beijing, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
5
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E, Liu K. Understanding epitaxial growth of two-dimensional materials and their homostructures. NATURE NANOTECHNOLOGY 2024; 19:907-918. [PMID: 38987649 DOI: 10.1038/s41565-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Tianyao Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Espoo, Finland
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
7
|
Wang K, Sun X, Cheng S, Cheng Y, Huang K, Liu R, Yuan H, Li W, Liang F, Yang Y, Yang F, Zheng K, Liang Z, Tu C, Liu M, Ma M, Ge Y, Jian M, Yin W, Qi Y, Liu Z. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat Commun 2024; 15:5040. [PMID: 38866786 PMCID: PMC11169262 DOI: 10.1038/s41467-024-48958-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.
Collapse
Affiliation(s)
- Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiucai Sun
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Zhiwei Liang
- Beijing Graphene Institute (BGI), Beijing, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mengxiong Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mingyang Ma
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yunsong Ge
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Muqiang Jian
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
8
|
Fang Y, Zhou K, Wei W, Zhang J, Sun J. Recent advances in batch production of transfer-free graphene. NANOSCALE 2024; 16:10522-10532. [PMID: 38739019 DOI: 10.1039/d4nr01339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Large-area transfer-free graphene films prepared via chemical vapor deposition have proved appealing for various applications, with exciting examples in electronics, photonics, and optoelectronics. To achieve their commercialisation, batch production is a prerequisite. Nevertheless, the prevailing scalable synthesis strategies that have been reported are still obstructed by production inefficiencies and non-uniformity. There has also been a lack of reviews in this realm. We present herein a comprehensive and timely summary of recent advances in the batch production of transfer-free graphene. Primary issues and promising approaches for improving the graphene growth rate are first addressed, followed by a discussion of the strategies to guarantee in-plane and batch uniformity for graphene grown on planar plates and wafer-scale substrates, with the design of the target equipment to meet productivity requirements. Finally, potential research directions are outlined, aiming to offer insights into guiding the scalable production of transfer-free graphene.
Collapse
Affiliation(s)
- Ye Fang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Kaixuan Zhou
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Wenze Wei
- Beijing Graphene Institute, Beijing 100095, China
| | - Jincan Zhang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
| | - Jingyu Sun
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
9
|
Huang K, Liang F, Sun J, Zhang Q, Li Z, Cheng S, Li W, Yuan H, Liu R, Ge Y, Cheng Y, Wang K, Jiang J, Yang Y, Ma M, Yang F, Tu C, Xie Q, Yin W, Wang X, Qi Y, Liu Z. Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313752. [PMID: 38576272 DOI: 10.1002/adma.202313752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.
Collapse
Affiliation(s)
- Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jianbo Sun
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Qinchi Zhang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhihao Li
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Shuting Cheng
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yunsong Ge
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jun Jiang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyang Ma
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Fan Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ce Tu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Qin Xie
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wanjian Yin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xiaobai Wang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
10
|
Li Y, Zhou K, Ci H, Sun J. Recent Advances in Transfer-Free Synthesis of High-Quality Graphene. CHEMSUSCHEM 2023; 16:e202300865. [PMID: 37491687 DOI: 10.1002/cssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
High-quality graphene obtained by chemical vapor deposition (CVD) technique holds significant importance in constructing innovative electronic and optoelectronic devices. Direct growth of graphene over target substrates readily eliminates cumbersome transfer processes, offering compatibility with practical application scenarios. Recent years have witnessed growing strategic endeavors in the preparation of transfer-free graphene with favorable quality. Nevertheless, timely review articles on this topic are still scarce. In this contribution, a systematic summary of recent advances in transfer-free synthesis of high-quality graphene on insulating substrates, with a focus on discussing synthetic strategies designed by elevating reaction temperature, confining gas flow, introducing growth promotor and regulating substrate surface is presented.
Collapse
Affiliation(s)
- Yinghan Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaixuan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haina Ci
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
11
|
Liu G, Xu G. Facile preparation of conductive carbon-based membranes on dielectric substrates. Front Chem 2023; 11:1152947. [PMID: 37056354 PMCID: PMC10086138 DOI: 10.3389/fchem.2023.1152947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Graphene has attracted much research attention due to its outstanding chemical and physical properties, such as its excellent electronic conductivity, making it as a useful carbon material for a variety of application fields of photoelectric functional devices. Herein, a new method for synthesizing conductive carbon membranes on dielectric substrates via a low-temperature thermodynamic driven process is developed. Although the obtained films exhibit low crystallinity, their electrical, wetting, and optical properties are acceptable in practice, which opens up a new avenue for the growth of carbon membranes and may facilitate the applications of transparent electrodes as potential plasma-free surface-enhanced Raman scattering (SERS) substrates.
Collapse
|
12
|
Shen C, Xu S, Chen Z, Ji N, Yang J, Zhang J. Fluorobenzene and Water-Promoted Rapid Growth of Vertical Graphene Arrays by Electric-Field-Assisted PECVD. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207745. [PMID: 36650988 DOI: 10.1002/smll.202207745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Vertical graphene (VG) arrays show exposed sharp edges, ultra-low electrical resistance, large surface-to-volume ratio, and low light reflectivity, thus having great potential in emerging applications, including field emission, sensing, energy storage devices, and stray light shields. Although plasma enhanced chemical vapor deposition (PECVD) is regarded as an effective approach for the synthesis of VG, it is still challenging to increase the growth rate and height of VG arrays simultaneously. Herein, a fluorobenzene and water-assisted method to rapidly grow VG arrays in an electric field-assisted PECVD system is developed. Fluorobenzene-based carbon sources are used to produce highly electronegative fluorine radicals to accelerate the decomposition of methanol and promote the growth of VG. Water is applied to produce hydroxyl radicals in order to etch amorphous carbon and accelerate the VG growth. The fastest growth rate can be up to 15.9 µm h-1 . Finally, VG arrays with a height of 144 µm are successfully synthesized at an average rate of 14.4 µm h-1 . As a kind of super black material, these VG arrays exhibit an ultra-low reflectance of 0.25%, showing great prospect in stray light shielding.
Collapse
Affiliation(s)
- Chao Shen
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Nannan Ji
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Jinhui Yang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
13
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
14
|
Bahri M, Gebre SH, Elaguech MA, Dajan FT, Sendeku MG, Tlili C, Wang D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ci H, Chen J, Ma H, Sun X, Jiang X, Liu K, Shan J, Lian X, Jiang B, Liu R, Liu B, Yang G, Yin W, Zhao W, Huang L, Gao T, Sun J, Liu Z. Transfer-Free Quasi-Suspended Graphene Grown on a Si Wafer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206389. [PMID: 36208081 DOI: 10.1002/adma.202206389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The direct growth of graphene affording wafer-scale uniformity on insulators is paramount to electronic and optoelectronic applications; however, it remains a challenge to date, because it entails an entirely different growth mode than that over metals. Herein, the metal-catalyst-free growth of quasi-suspended graphene on a Si wafer is demonstrated using an interface-decoupling chemical vapor deposition strategy. The employment of lower-than-conventional H2 dosage and concurrent introduction of methanol during growth can effectively weaken the interaction between the synthesized graphene and the underlying substrate. The growth mode can be thus fine-tuned, producing a predominantly monolayer graphene film with wafer-level homogeneity. Graphene thus grown on a 4 inch Si wafer enables the transfer-free fabrication of high-performance graphene-based field-effect transistor arrays that exhibit almost no shift in the charge neutral point, indicating a quasi-suspended feature of the graphene. Moreover, a carrier mobility up to 15 000 cm2 V-1 s-1 can be attained. This study is anticipated to offer meaningful insights into the synthesis of wafer-scale high-quality graphene on dielectrics for practical graphene devices.
Collapse
Affiliation(s)
- Haina Ci
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Jingtao Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaoli Sun
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Xingyu Jiang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Kaicong Liu
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingyuan Shan
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xueyu Lian
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Bei Jiang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ruojuan Liu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingzhi Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Guiqi Yang
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wanjian Yin
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Teng Gao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
16
|
Zou X, Sun Y, Wang C. Horizontally Self-Standing Growth of Bi 2 O 2 Se Achieving Optimal Optoelectric Properties. SMALL METHODS 2022; 6:e2200347. [PMID: 35676223 DOI: 10.1002/smtd.202200347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Air-stable 2D Bi2 O2 Se material with high carrier mobility appears as a promising semiconductor platform for future micro/nanoelectronics and optoelectronics. Like most 2D materials, Bi2 O2 Se 2D nanostructures normally form on atomically flat mica substrates, in which undesirable defects and structural damage from the subsequent transfer process will largely degrade their photoelectronic performance. Here, a new synthesis route involving successive kinetic and thermodynamic processes is proposed to achieve horizontally self-standing Bi2 O2 Se nanostructures on SiO2 /Si substrates. Fewer defects and avoidance of transfer procedure involving corrosive solvents ensure the integrity of the intrinsic lattice and band structures in Bi2 O2 Se nanostructures. In contrast to flat structures grown on mica, it displays reduced dark current and improved photoresponse performance (on-off ratio, photoresponsivity, response time, and detectivity). These results indicate a new potential in high-quality 2D electronic nanostructures with optimal optoelectronic functionality.
Collapse
Affiliation(s)
- Xiaobin Zou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Yong Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Shan J, Fang S, Wang W, Zhao W, Zhang R, Liu B, Lin L, Jiang B, Ci H, Liu R, Wang W, Yang X, Guo W, Rümmeli MH, Guo W, Sun J, Liu Z. Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. Natl Sci Rev 2022; 9:nwab169. [PMID: 35967588 PMCID: PMC9370374 DOI: 10.1093/nsr/nwab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023] Open
Abstract
Direct synthesis of high-quality graphene on dielectric substrates without a transfer process is of vital importance for a variety of applications. Current strategies for boosting high-quality graphene growth, such as remote metal catalyzation, are limited by poor performance with respect to the release of metal catalysts and hence suffer from a problem with metal residues. Herein, we report an effective approach that utilizes a metal-containing species, copper acetate, to continuously supply copper clusters in a gaseous form to aid transfer-free growth of graphene over a wafer scale. The thus-derived graphene films were found to show reduced multilayer density and improved electrical performance and exhibited a carrier mobility of 8500 cm2 V-1 s-1. Furthermore, droplet-based hydrovoltaic electricity generator devices based on directly grown graphene were found to exhibit robust voltage output and long cyclic stability, in stark contrast to their counterparts based on transferred graphene, demonstrating the potential for emerging energy harvesting applications. The work presented here offers a promising solution to organize the metal catalytic booster toward transfer-free synthesis of high-quality graphene and enable smart energy generation.
Collapse
Affiliation(s)
- Jingyuan Shan
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sunmiao Fang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wendong Wang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Bingzhi Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Li Lin
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haina Ci
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ruojuan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen Wang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiaoqin Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mark H Rümmeli
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
18
|
Dong R, Gong X, Yang J, Sun Y, Ma L, Wang J. The Intrinsic Thermodynamic Difficulty and a Step-Guided Mechanism for the Epitaxial Growth of Uniform Multilayer MoS 2 with Controllable Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201402. [PMID: 35288996 DOI: 10.1002/adma.202201402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Multilayer MoS2 shows superior performance over the monolayer MoS2 for electronic devices while the growth of multilayer MoS2 with controllable and uniform thickness is still very challenging. It is revealed by calculations that monolayer MoS2 domains are thermodynamically much more favorable than multilayer ones on epitaxial substrates due to the competition between surface interactions and edge formation, leading accordingly to a layer-by-layer growth pattern and non-continuously distributed multilayer domains with uncontrollable thickness uniformity. The thermodynamics model also suggests that multilayer MoS2 domains with aligned edges can significantly reduce their free energy and represent a local minimum with very prominent energy advantage on a potential energy surface. However, the nucleation probability of multilayer MoS2 domains with aligned edges is, if not impossible, extremely rare on flat substrates. Herein, a step-guided mechanism for the growth of uniform multilayer MoS2 on an epitaxial substrate is theoretically proposed. The steps with proper height on sapphire surface are able to guide the simultaneous nucleation of multilayer MoS2 with aligned edges and uniform thickness, and promote the continuous growth of multilayer MoS2 films. The proposed mechanism can be reasonably extended to grow multilayer 2D materials with uniform thickness on epitaxial substrates.
Collapse
Affiliation(s)
- Ruikang Dong
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaoshu Gong
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jiafu Yang
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yueming Sun
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Liang Ma
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- School of Physics & School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
19
|
Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L, Lin X, Yang S, Gao X, Zhang Y, Gao P, Novoselov KS, Sun J, Liu Z. Direct growth of wafer-scale highly oriented graphene on sapphire. SCIENCE ADVANCES 2021; 7:eabk0115. [PMID: 34797705 PMCID: PMC8604399 DOI: 10.1126/sciadv.abk0115] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct chemical vapor deposition (CVD) growth of wafer-scale high-quality graphene on dielectrics is of paramount importance for versatile applications. Nevertheless, the synthesized graphene is typically a polycrystalline film with high density of uncontrolled defects, resulting in a low carrier mobility and high sheet resistance. Here, we report the direct growth of highly oriented monolayer graphene films on sapphire wafers. Our growth strategy is achieved by designing an electromagnetic induction heating CVD operated at elevated temperature, where the high pyrolysis and migration barriers of carbon species are easily overcome. Meanwhile, the embryonic graphene domains are guided into good alignment by minimizing its configuration energy. The thus obtained graphene film accordingly manifests a markedly improved carrier mobility (~14,700 square centimeters per volt per second at 4 kelvin) and reduced sheet resistance (~587 ohms per square), which compare favorably with those from catalytic growth on polycrystalline metal foils and epitaxial growth on silicon carbide.
Collapse
Affiliation(s)
- Zhaolong Chen
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
| | - Chunyu Xie
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wendong Wang
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Jinpei Zhao
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jingyuan Shan
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xueyan Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Hong
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Lin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
| | - Li Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Lin
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenyuan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Xuan Gao
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Peng Gao
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871,China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117575, Singapore
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Jingyu Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Corresponding author. (S.Y.); (Y.Z.); (P.G.); (K.S.N.); (J.S.); (Z.L.)
| |
Collapse
|
20
|
Li L, Zhang Y, Zhang R, Han Z, Dong H, Yu G, Geng D, Yang HY. A minireview on chemical vapor deposition growth of wafer-scale monolayer h-BN single crystals. NANOSCALE 2021; 13:17310-17317. [PMID: 34652355 DOI: 10.1039/d1nr04034k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hexagonal boron nitride (h-BN), with its excellent stability, flat surface, and large bandgap, plays a role in a variety of fundamental science and technology fields. The past few years have witnessed significant development in the scaled growth of h-BN single crystals. Currently, the size of h-BN crystal can be reached up to wafer-scale, paving the way towards industrial production and commercial applications. In this minireview, recent academic breakthroughs regarding the controlled growth of large-sized h-BN single crystals via chemical vapor deposition (CVD) are presented. The as-developed technique in terms of growth parameters, choice of catalysts, and the mechanism is fully emphasized, offering a guideline in enhancing the size and quality of h-BN. Several typical metal catalysts have been used in shaping scaled h-BN single crystals, of which the metal Cu substrate has drawn the most intensive attention. The significant advances in expanding the size of h-BN single crystals will largely push forward the way to h-BN industrialization and commercialization. The past few years have witnessed significant development in the scaled growth of h-BN single crystals. Currently, the size of h-BN crystal can be reached up to wafer-scale, paving the way towards industrial production and commercial applications. In this minireview, recent academic breakthroughs regarding controlled growth of large-sized h-BN single crystals via chemical vapor deposition (CVD) are present. The as-developed technique in terms of growth parameters, choice of catalysts and mechanism is fully emphasized, offering a guideline in enhancing size and quality of h-BN. Several typical metal catalysts are exhibited in shaping scaled h-BN single crystals, of which the metal Cu substrate has drawn the most intensive attentions.
Collapse
Affiliation(s)
- Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China.
| | - Ye Zhang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China.
| | - Ruijie Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | - Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
21
|
Jiang B, Wang S, Sun J, Liu Z. Controllable Synthesis of Wafer-Scale Graphene Films: Challenges, Status, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008017. [PMID: 34106524 DOI: 10.1002/smll.202008017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The availability of high-quality, large-scale, and single-crystal wafer-scale graphene films is fundamental for key device applications in the field of electronics, optics, and sensors. Synthesis determines the future: unleashing the full potentials of such emerging materials relies heavily upon their tailored synthesis in a scalable fashion, which is by no means an easy task to date. This review covers the state-of-the-art progress in the synthesis of wafer-scale graphene films by virtue of chemical vapor deposition (CVD), with a focus on main challenges and present status. Particularly, prevailing synthetic strategies are highlighted on a basis of the discussion in the reaction kinetics and gas-phase dynamics during CVD process. Perspectives with respect to key opportunities and promising research directions are proposed to guide the future development of wafer-scale graphene films.
Collapse
Affiliation(s)
- Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| |
Collapse
|
22
|
Han Z, Li M, Li L, Jiao F, Wei Z, Geng D, Hu W. When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. NANOSCALE 2021; 13:13174-13194. [PMID: 34477725 DOI: 10.1039/d1nr03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cheng T, Liu Z, Liu Z, Ding F. The Mechanism of Graphene Vapor-Solid Growth on Insulating Substrates. ACS NANO 2021; 15:7399-7408. [PMID: 33749254 DOI: 10.1021/acsnano.1c00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wafer-scale single-crystal graphene film directly grown on insulating substrates via the chemical vapor deposition (CVD) method is desired for building high-performance graphene-based devices. In comparison with the well-studied mechanism of graphene growth on transition metal substrates, the lack of understanding on the mechanism of graphene growth on insulating surfaces greatly hinders the progress. Here, by using first-principles calculation, we systematically explored the absorption of various carbon species CHx (x = 0, 1, 2, 3, 4) on three typical insulating substrates [h-BN, sapphire, and quartz] and reveal that graphene growth on an insulating surface is dominated by the reaction of active carbon species with the hydrogen-passivated graphene edges and thus is less sensitive to the type of the substrate. The dominating gas phase precursor, CH3, plays two key roles in graphene CVD growth on an insulating substrate: (i) to feed the graphene growth and (ii) to remove excessive hydrogen atoms from the edge of graphene. The threshold reaction barriers for the growth of graphene armchair (AC) and zigzag (ZZ) edges were calculated as 3.00 and 1.94 eV, respectively; thus the ZZ edge grows faster than the AC one. Our theory successfully explained why the circumference of a graphene island grown on insulating substrates is generally dominated by AC edges, which is a long-standing puzzle of graphene growth. In addition, the very slow graphene growth rate on an insulating substrate is calculated and agrees well with existing experimental observations. The comprehensive insights on the graphene growth on insulating surfaces at the atomic scale provide guidance on the experimental design for high-quality graphene growth on insulating substrates.
Collapse
Affiliation(s)
- Ting Cheng
- College of Chemistry and Molecular Engineering, Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Korea
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhongfan Liu
- College of Chemistry and Molecular Engineering, Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
24
|
Cai L, Yu G. Fabrication Strategies of Twisted Bilayer Graphenes and Their Unique Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004974. [PMID: 33615593 DOI: 10.1002/adma.202004974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Twisted bilayer graphene (tBLG) exhibits a host of innovative physical phenomena owing to the formation of moiré superlattice. Especially, the discovery of superconducting behavior has generated new interest in graphene. The growing studies of tBLG mainly focus on its physical properties, while the fabrication of high-quality tBLG is a prerequisite for achieving the desired properties due to the great dependence on the twist angle and the interfacial contact. Here, the cutting-edge preparation strategies and challenges of tBLG fabrication are reviewed. The advantages and disadvantages of chemical vapor deposition, epitaxial growth on silicon carbide, stacking monolayer graphene, and folding monolayer graphene methods for the fabrication of tBLG are analyzed in detail, providing a reference for further development of preparation methods. Moreover, the characterization methods of twist angle for the tBLG are presented. Then, the unique physicochemical properties and corresponding applications of tBLG, containing correlated insulating and superconducting states, ferromagnetic state, soliton, enhanced optical absorption, tunable bandgap, and lithium intercalation and diffusion, are described. Finally, the opportunities and challenges for fabricating high-quality and large-area tBLG are discussed, unique physical properties are displayed, and new applications inferred from its angle-dependent features are explored, thereby impelling the commercialization of tBLG from laboratory to market.
Collapse
Affiliation(s)
- Le Cai
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
|
26
|
Khan NA, Zhang R, Wu H, Shen J, Yuan J, Fan C, Cao L, Olson MA, Jiang Z. Solid–Vapor Interface Engineered Covalent Organic Framework Membranes for Molecular Separation. J Am Chem Soc 2020; 142:13450-13458. [DOI: 10.1021/jacs.0c04589] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jianliang Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Mark A. Olson
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
27
|
Zhou D, Lang J, Yoo N, Unocic RR, Wu Q, Li B. Fluid-Guided CVD Growth for Large-Scale Monolayer Two-Dimensional Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26342-26349. [PMID: 32420727 DOI: 10.1021/acsami.0c04125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric pressure chemical vapor deposition (APCVD) has been used extensively for synthesizing two-dimensional (2D) materials because of its low cost and promise for high-quality monolayer crystal synthesis. However, the understanding of the reaction mechanism and the key parameters affecting the APCVD processes is still in its embryonic stage. Hence, the scalability of the APCVD method in achieving large-scale continuous film remains very poor. Here, we use MoSe2 as a model system and present a fluid guided growth strategy for understanding and controlling the growth of 2D materials. Through the integration of experiment and computational fluid dynamics (CFD) analysis in the full-reactor scale, we identified three key parameters, precursor mixing, fluid velocity, and shear stress, which play a critical role in the APCVD process. By modifying the geometry of the growth setup to enhance precursor mixing and decrease nearby velocity shear rate and adjusting flow direction, we have successfully obtained inch-scale monolayer MoSe2. This unprecedented success of achieving scalable 2D materials through fluidic design lays the foundation for designing new CVD systems to achieve the scalable synthesis of nanomaterials.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Ji Lang
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Cellular Biomechanics and Sports Science Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Nicholas Yoo
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Cellular Biomechanics and Sports Science Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Bo Li
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
28
|
Liu C, Wang L, Qi J, Liu K. Designed Growth of Large-Size 2D Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000046. [PMID: 32196773 DOI: 10.1002/adma.202000046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
In the "post-Moore's Law" era, new materials are highly expected to bring next revolutionary technologies in electronics and optoelectronics, wherein 2D materials are considered as very promising candidates beyond bulk materials due to their superiorities of atomic thickness, excellent properties, full components, and the compatibility with the processing technologies of traditional complementary metal-oxide semiconductors, enabling great potential in fabrication of logic, storage, optoelectronic, and photonic 2D devices with better performances than state-of-the-art ones. Toward the massive applications of highly integrated 2D devices, large-size 2D single crystals are a prerequisite for the ultimate quality of materials and extreme uniformity of properties. However, at present, it is still very challenging to grow all 2D single crystals into the wafer scale. Therefore, a systematic understanding for controlled growth of various 2D single crystals needs to be further established. Here, four key aspects are reviewed, i.e., nucleation control, growth promotion, surface engineering, and phase control, which are expected to be controllable at different periods during the growth. In addition, the perspectives on designed growth and potential applications are discussed for showing the bright future of these advanced material systems of 2D single crystals.
Collapse
Affiliation(s)
- Can Liu
- State Key Lab for Mesoscopic Physics, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Li Wang
- State Key Lab for Mesoscopic Physics, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajie Qi
- State Key Lab for Mesoscopic Physics, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Kaihui Liu
- State Key Lab for Mesoscopic Physics, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Xie H, Cui K, Cui L, Liu B, Yu Y, Tan C, Zhang Y, Zhang Y, Liu Z. H 2 O-Etchant-Promoted Synthesis of High-Quality Graphene on Glass and Its Application in See-Through Thermochromic Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905485. [PMID: 31894647 DOI: 10.1002/smll.201905485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Direct growth of graphene on glass can bring an innovative revolution by coupling the complementary properties of traditional glass and modern graphene (such as transparency and conductivity), offering brand new daily-life related applications. However, preparation of high-quality graphene on nonmetallic glass is still challenging. Herein, the direct route of low sheet resistance graphene on glass is reported by using in situ-introduced water as a mild etchant and methane as a carbon precursor via chemical vapor deposition. The derived graphene features with large domain sizes and few amorphous carbon impurities. Intriguingly, the sheet resistance of graphene on glass is dramatically lowered down to ≈1170 Ω sq-1 at the optical transmittance ≈93%, ≈20% of that derived without the water etchant. Based on the highly conductive and optical transparent graphene on glass, a see-through thermochromic display is thus fabricated with transparent graphene glass as a heater. This work can motivate further investigations of the direct synthesis of high-quality graphene on functional glass and its versatile applications in transparent electronic devices or displays.
Collapse
Affiliation(s)
- Huanhuan Xie
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kejian Cui
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
| | - Lingzhi Cui
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingzhi Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yue Yu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Congwei Tan
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
| |
Collapse
|