1
|
Meng W, Chen S, Wu M, Gao F, Hou Y, Zhan X, Hu W, Liang L, Zhang Q. Dehydration-enhanced Ion Recognition of Triazine Covalent Organic Frameworks for High-resolution Li +/Mg 2+ Separation. Angew Chem Int Ed Engl 2025; 64:e202422423. [PMID: 39834313 DOI: 10.1002/anie.202422423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation. The remarkably high rejection of Mg2+ by the COF membrane is achieved via imposed ion dehydration and the construction of the energy well. The proper hydrophilic environment of the COF channel promotes the dissociation of Li+ from the negatively charged functional groups, allowing Li+ for hopping transport supported by the sulfonate side-chains to shorten the diffusion path of Li+. Under high-salinity electrodialysis conditions, the COF membrane demonstrates robust Li+/Mg2+ separation performance (No Mg2+ were detected in the collected solution), achieving efficient lithium recovery and high product purity (Li2CO3: 99.3 %). This membrane design strategy enables high energy efficiency and powerful lithium extraction in the electrodialysis lithium extraction process, and can be generalized to other energy and separation related membranes.
Collapse
Affiliation(s)
- Wentong Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ming Wu
- College of Automation, Hangzhou Dianzi University, Hangzhou 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Zhang Y, Cai C, Guo Z, Li X, Zhao G, Dong S. Supramolecular transparent plastic engineering via covalent-and-supramolecular polymerization. MATERIALS HORIZONS 2025; 12:2287-2297. [PMID: 39775739 DOI: 10.1039/d4mh01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance via the solvent-free one-pot amidation of thioctic acid and (poly)amines. Covalent amide linkers, dynamic disulfide bonds, and hydrogen bonds significantly enhance the mechanical toughness and hardness of supramolecular plastic. Greatly benefitting from covalent-and-supramolecular polymerization, not only does the supramolecular plastic exhibit a high mechanical strength of 45.51 MPa and a rigidity of 74.0 HD, but it is also highly resistant to mechanical impact (34.47 kJ m-2). Experimental and theoretical investigations demonstrated that polymeric structures connected via amide units are responsible for the tough mechanical properties, whereas the dynamic and reversible bonding/debonding of disulfide and hydrogen bonds favor energy dissipation, which together convert supramolecular transparent plastic into a rigid and tough material.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.
| | - Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, P. R. China.
| | - Zhiyuan Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Xing Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.
| |
Collapse
|
3
|
Zhang Y, Cai C, Li F, Tan X, Li Q, Ni X, Dong S. Supramolecular control over the variability of color and fluorescence in low-molecular-weight glass. MATERIALS HORIZONS 2024; 11:5641-5649. [PMID: 39192671 DOI: 10.1039/d4mh00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Colorful and fluorescent transparent materials have been extensively used in industrial and scientific activities, with inorganic and polymeric glasses being the most typical representatives. Recently, artificial glass originating from low-molecular-weight monomers has attracted considerable attention. Compared with the deep understanding of the building blocks and driving forces of supramolecular glass, related studies on its optical properties are insufficient in terms of systematicness and pertinence. In this study, a supramolecular strategy was applied to introduce versatile colors and fluorescence emissions into a low-molecular-weight glass. Pillar[5]arene and cucurbit[8]uril were selected to recognize the functional components and yield the desired optical performances. Macrocycle-based host-guest chemistry endows artificial glass with controllable and programmable colors and fluorescence emissions.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin Tan
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412000, China
| | - Qing Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 50025, China.
| | - Xinlong Ni
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Qiao B, Zeng Q, Li L. Efficient Synthesis of Metastable Cyclodextrin-Based Polyrotaxanes with Tunable Threading Ratios. Angew Chem Int Ed Engl 2024; 63:e202412839. [PMID: 39075021 DOI: 10.1002/anie.202412839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Cyclodextrin-based polyrotaxanes (CD-PRs) are gaining attention for their dynamic sliding rings along the polymer axis, enabling various applications in molecular shuttles, drug delivery, and durable polymers with slidable cross-links. However, the conventional synthesis of CD-PRs with tunable threading ratios is typically laborious, time-consuming, and complicated, which limits their scalability and cost-effectiveness. Herein, we highlight the great potential of planetary centrifugal mixing, a process that significantly accelerates and simplifies the initial synthesis of polypseudorotaxanes (PPRs), followed by a thiol-ene click reaction as an efficient end-capping reaction for the synthesis of PRs. Notably, PRs synthesized with glutathione (GSH) as the end-capping reagent are in a metastable state, where GSH act as a molecular bumper that significantly prevent de-threading of α-CD rings at room temperature. Moreover, the rate of ring de-threading can be precisely controlled by heating, enabling the preparation of metastable PRs with tunable threading ratios over a wide range. The developed strategy is of great significance to the efficient synthesis of CD-PRs, thus marking a significant step towards their practical application in advanced functional materials and devices.
Collapse
Affiliation(s)
- Bo Qiao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qinghong Zeng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longyu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
5
|
Yao G, Pan Y, Li F, Dong S. Macrocyclic Supramolecular Glass: New Type of Supramolecular Transparent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405337. [PMID: 39073234 DOI: 10.1002/smll.202405337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Transparent materials are widely used in industries, everyday life, and scientific activities. The development of new, lightweight, and durable artificial transparent materials is a challenge in synthetic chemistry. In this study, a supramolecular approach is conceived to construct transparent glass. Cyclodextrins are selected as the building blocks for the fabrication of supramolecular glass via noncovalent polymerization. The newly formed glass displays several attractive advantages, including good thermal processability, high mechanical strength and dielectric constant, excellent visible light transparency, and good adhesion performance. Importantly, the structural characteristics of long-range disorder and short-range order are observed in cyclodextrin glass. Here a new strategy is presented for the preparation and functionalization of low-molecular-weight transparent materials.
Collapse
Affiliation(s)
- Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Du R, Bao T, Kong D, Zhang Q, Jia X. Cyclodextrins-Based Polyrotaxanes: From Functional Polymers to Applications in Electronics and Energy Storage Materials. Chempluschem 2024; 89:e202300706. [PMID: 38567455 DOI: 10.1002/cplu.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The concept of polyrotaxane comes from the rotaxane structure in the supramolecular field. It is a mechanically interlocked supramolecular assembly composed of linear polymer chains and cyclic molecules. Over recent decades, the synthesis and application of polyrotaxanes have seen remarkable growth. Particularly, cyclodextrin-based polyrotaxanes have been extensively reported due to the low-price raw materials, good biocompatibility, and ease of modification. Hence, it is also one of the most promising mechanically interlocking supramolecules for wide industrialization in the future. Polyrotaxanes are widely introduced into materials such as elastomers, hydrogels, and engineering polymers to improve their mechanical properties or impart functionality to the materials. In these materials, polyrotaxane acts as a slidable cross-linker to dissipate energy through sliding or assist in dispersing stress concentration in the cross-linked network, thereby enhancing the toughness of the materials. Further, the unique sliding-ring effect of cyclodextrin-based polyrotaxanes has pioneered advancements in stretchable electronics and energy storage materials. This includes their innovative use in stretchable conductive composite and binders for anodes, addressing critical challenges in these fields. In this mini-review, our focus is to highlight the current progress and potential wider applications in the future, underlining their transformative impact across various domains of material science.
Collapse
Affiliation(s)
- Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianwei Bao
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Deshuo Kong
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
7
|
Jia XM, Zhou J. Anomalous segmental dynamics of supercooled polyrotaxane melts: A computer simulation study. J Chem Phys 2023; 159:244901. [PMID: 38131486 DOI: 10.1063/5.0180375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Polyrotaxanes, which consist of mechanically interlocked bonds with rings threaded onto soft polymer chains, exhibit unique mechanical properties and find applications in diverse fields. In this study, we investigate the anomalous segmental dynamics of supercooled polyrotaxane melts using coarse-grained molecular dynamics simulations. Our simulations reveal that the presence of rings effectively reduces the packing efficiency, resulting in well-contained local motion even below the glass transition temperature. We also observe variations in dynamical free volume, characterized by the Debye-Waller factor, which shows a minimum at a ring coverage of 0.1 on threading chains. Such a non-monotonic dependence on coverage shows great consistency in structural relaxation time and dynamic heterogeneity. Specifically, the high segmental mobility of threading linear chains at large coverage can be attributed to the increased dynamical free volume due to supported rigid rings. However, such anomalous segmental dynamics is limited to length scales smaller than one ring size. Beyond this characteristic length scale, the diffusion is dominated by topological constraints, which significantly reduce the mobility of polyrotaxanes and enhance the dynamic heterogeneity. These findings offer microscopic insights into the unique packing structures and anomalous segmental dynamics of supercooled polyrotaxane melts, facilitating the design of advanced materials based on mechanical interlocking polymers for various applications.
Collapse
Affiliation(s)
- Xiang-Meng Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Yang Z, Wu J, Li K, Zhou X, Lu D, Zhang L. Sliding Dynamics of a Small Charged Ring Chain on the Diblock Polyelectrolyte in Poly[2]catenane in the Presence of Counterions. J Phys Chem B 2023; 127:10189-10200. [PMID: 37734004 DOI: 10.1021/acs.jpcb.3c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In this study, we investigate the sliding dynamics of small charged ring chains along the rigid central cyclic diblock polyelectrolyte of AnBn in radial charged poly[2]catenane in the presence of counterions using molecular dynamics simulations and the Lifson-Jackson formula, and our aim is to study the effects of electrostatical interaction strength, the size of the charged small ring chain, and the rigid block length of the diblock polyelectrolyte on the sliding dynamics of a small ring chain threaded on the rigid diblock polyelectrolyte. The mean-square displacement g3(t) of a small ring chain sliding along the rigid diblock polyelectrolyte of A10B10 exhibits oscillating behavior at short time scales for the moderate electrostatical interaction strength, while for the weak or strong electrostatic interactions, it is normal subdiffusion at short time scales. For n = 1, the diffusion coefficient D of the small ring chain sliding along the rigid diblock polyelectrolyte of A1B1 decreases monotonically as the relative electrostatic interaction strength A increases from A = 0.25-4. However, for n ≠ 1, the diffusion coefficient D of the small ring chain sliding along the rigid diblock polyelectrolyte of AnBn first decreases and then increases with the increase of A, and the nonmonotonous relationship between D and A becomes more obvious for larger n. In view of the free energy potential, the sliding diffusion of a small ring chain is governed by both the width of the free energy potential well and the height of the free energy potential barrier. According to the potential of mean force (PMF) of the small ring chain sliding along the rigid diblock polyelectrolyte, we find that our results are in good agreement with the theoretical analysis using the Lifson-Jackson formula. These results may help us to understand the diffusion motion of a ring chain in radial poly[n]catenanes from a fundamental point of view and control the sliding dynamics in molecular designs.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Wu
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ke Li
- College of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaolin Zhou
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dan Lu
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Bai Y, Li W, Tie Y, Kou Y, Wang YX, Hu W. A Stretchable Polymer Conductor Through the Mutual Plasticization Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303245. [PMID: 37318149 DOI: 10.1002/adma.202303245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Indexed: 06/16/2023]
Abstract
Intrinsically stretchable conductors play key roles in the dynamic interfacing of electronic devices with soft human tissues. However, it is difficult to simultaneously achieve high electrical conductivity and mechanical stretchability. Here, highly stretchable and conductive thin film electrodes are prepared by combining PEDOT:PSS and a mutually plasticized polymer dopant. Notably, harsh acid treatment for conductivity enhancement is avoided, and good solvent tolerance and high optical transparency are realized, all of which are essential to device fabrication. A transparent electrochromic display is further developed that can bear stretching up to 80% strain, demonstrating its promising application in next-generation optoelectronics.
Collapse
Affiliation(s)
- Yihong Bai
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Weizhen Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yuan Tie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yan Kou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
10
|
Kato K, Taniguchi M, Ito K. Tough Glass with Mechanical Bonding Network Anchored by High-Mobility Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Kazuaki Kato
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Masayuki Taniguchi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
11
|
Zhou X, Yang J, Yang J, Yin P. Topological Interaction among Molecular Cluster Assemblies Affords Tunable Viscoelasticity. J Phys Chem Lett 2022; 13:7009-7015. [PMID: 35895296 DOI: 10.1021/acs.jpclett.2c01817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the assemblies of subnanoscale polyhedral oligomeric silsesquioxane, topological interaction makes the dominant contribution to their viscoelasticity with broad tunability. The assembly molecules are designed with dumbbell, triangular, and tetrahedral shapes, and they demonstrate an intrinsic glassy feature with neither long-range ordering nor supramolecular assembly formation in their bulk. Their viscoelasticity can be broadly tuned through the tailoring of molecular topologies, while the trimer and tetramer assemblies afford elastic moduli comparable to those of rubbers (∼0.5 MPa) even 80 K above their glass transition temperatures. Molecular dynamics studies reveal the topological constraints resulting from the topology-disrupted cooperative dynamics among the cluster assemblies, and this finally leads to the typical caging dynamics of the structural units and the elasticity of the bulk materials. Further broadband dielectric spectroscopy studies uncover the unique hierarchical relaxation dynamics, inspiring the strategy for the decoupling of mechanical strengths and toughness for the design of impact resistant materials.
Collapse
Affiliation(s)
- Xin Zhou
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jie Yang
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev 2022; 51:7046-7065. [PMID: 35852571 DOI: 10.1039/d2cs00202g] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of mechanically interlocked molecules (MIMs) has continued to encourage researchers to design and construct a variety of high-performance materials. Introducing mechanically interlocked structures into polymers has led to novel polymeric materials, called mechanically interlocked polymers (MIPs). Rotaxane-based MIPs are an important class, where the mechanically interlocked characteristic retains a high degree of structural freedom and mobility of their components, such as the rotation and sliding motions of rotaxane units. Therefore, these MIP materials are known to possess a unique set of properties, including mechanical robustness, adaptability and responsiveness, which endow them with potential applications in many emerging fields, such as protective materials, intelligent actuators, and mechanisorption. In this review, we outline the synthetic strategies, structure-property relationships, and application explorations of various polyrotaxanes, including linear polyrotaxanes, polyrotaxane networks, and rotaxane dendrimers.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China. .,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Li WZ, Li X, Yang F, Chen Y, Wang YX. Visualization of Solvent-Induced Structure Evolution in Cyclodextrin Polyrotaxane Gels. Macromol Rapid Commun 2022; 43:e2200082. [PMID: 35318772 DOI: 10.1002/marc.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Cyclodextrin (CD)-based polyrotaxanes (PR) are widely used to construct high-mechanical-performance materials because of the high degree of conformational freedom. However, strong hydrogen bonds between CDs greatly limit the application of CD-PR in the preparation of ductile neutral hydrogels. In this work, spiropyrane (SP) into α-CD-based PR is introduced to "visualize" the segment motion of the network in neutral water. The aggregation-induced cohesion and critical factors for the force transmission are disclosed. This system offers a new approach for the fundamental research for the complicated topologically cross-linked structures, which is important for the design of CD-PR-based biocompatible soft materials.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopei Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
14
|
Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z. Based On Confined Polymerization: In Situ Synthesis of PANI/PEEK Composite Film in One-Step. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103706. [PMID: 34766471 PMCID: PMC8728828 DOI: 10.1002/advs.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 05/11/2023]
Abstract
Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Ning Cao
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| |
Collapse
|
15
|
Kato K, Mizusawa T, Ohara A, Ito K. Direct enhancement of intercomponent interactions in polyrotaxane and its pronounced effects on glass state properties. Chem Commun (Camb) 2021; 57:12472-12475. [PMID: 34730577 DOI: 10.1039/d1cc05516j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong interactions between the host cyclodextrin and the threading guest polymer were introduced by selective modifications to the polymer of a polybutadine-based polyrotaxane. The changes in the intercomponent interactions influenced the mobility of the threading polymer that was confined in the glassy host framework, resulting in different mechanical properties.
Collapse
Affiliation(s)
- Kazuaki Kato
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. .,Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tomoki Mizusawa
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| | - Akihiro Ohara
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
16
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise-and-Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021; 60:16224-16229. [PMID: 33979478 DOI: 10.1002/anie.202105620] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/08/2022]
Abstract
Mortise-and-tenon joints have been widely used for thousands of years in wooden architectures in virtue of their artistic and functional performance. However, imitation of similar structural and mechanical design philosophy to construct mechanically adaptive materials at the molecular level is a challenge. Herein, we report a mortise-and-tenon joint inspired mechanically interlocked network (MIN), in which the [2]rotaxane crosslink not only mimics the joint in structure, but also reproduces its function in modifying mechanical properties of the MIN. Benefiting from the hierarchical energy dissipative ability along with the controllable intramolecular movement of the mechanically interlocked crosslink, the resultant MIN simultaneously exhibits notable mechanical adaptivity and structural stability in a single system, as manifested by decent stiffness, strength, toughness, and deformation recovery capacity.
Collapse
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise‐and‐Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
18
|
Li K, Wang Y, Guo F, He L, Zhang L. Sliding dynamics of multi-rings on a semiflexible polymer in poly[ n]catenanes. SOFT MATTER 2021; 17:2557-2567. [PMID: 33514985 DOI: 10.1039/d0sm02084b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sliding dynamics of one- or multi-ring structures along a semiflexible cyclic polymer in radial poly[n]catenanes is investigated using molecular dynamics simulations. The fixed and fluctuating (non-fixed) semiflexible central cyclic polymers are considered, respectively. With increasing bending energy of the central cyclic polymer, for the fixed case, the diffusion coefficient increases monotonically due to the reduction of the tortuous sliding path, while for the fluctuating case, the diffusion coefficient decreases. This indicates that the contribution of the polymer fluctuation is suppressed by a further increase in the stiffness of the central cyclic chain. Compared with the one ring case, the mean-square displacement of the multiple rings exhibits a unique sub-diffusive behavior at intermediate time scales due to the repulsion between two neighboring rings. In addition, for the multi-ring system, the whole set of rings exhibit relatively slower diffusion, but faster local dynamics of threading rings and rotational diffusion of the central cyclic polymer arise. These results may help us to understand the diffusion motion of rings in radial poly[n]catenanes from a fundamental point of view and control the sliding dynamics in molecular designs.
Collapse
Affiliation(s)
- Ke Li
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Yaxin Wang
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Fuchen Guo
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| |
Collapse
|
19
|
Kato K, Ohara A, Michishio K, Ito K. Effects of Ring Size on the Dynamics of Polyrotaxane Glass. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuaki Kato
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Akihiro Ohara
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Koji Michishio
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
20
|
Hanafusa A, Ando S, Ozawa S, Ito M, Hasegawa R, Mayumi K, Ito K. Viscoelastic relaxation attributed to the molecular dynamics of polyrotaxane confined in an epoxy resin network. Polym J 2020. [DOI: 10.1038/s41428-020-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Akae Y, Iijima K, Tanaka M, Tarao T, Takata T. Main Chain-Type Polyrotaxanes Derived from Cyclodextrin-Based Pseudo[3]rotaxane Diamine and Macromolecular Diisocyanate: Synthesis, Modification, and Characterization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yosuke Akae
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Keisuke Iijima
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Mami Tanaka
- Sports Business Headquarters, Sumitomo Rubber Industries, Ltd., 6-9, 3-chome, Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Toshiyuki Tarao
- Sports Business Headquarters, Sumitomo Rubber Industries, Ltd., 6-9, 3-chome, Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Toshikazu Takata
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
22
|
Shen L, Li Y, Lu Q, Qi X, Wu X, Shen J. Facile preparation of one-dimensional nanostructures through polymerization-induced self-assembly mediated by host–guest interaction. Polym Chem 2020. [DOI: 10.1039/d0py00676a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A RAFT aqueous dispersion polymerization of ferrocenylmethyl acrylate mediated by host–guest interaction was investigated and a series of peculiar one-dimensional morphologies can be readily obtained.
Collapse
Affiliation(s)
- Liangliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Yahui Li
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Qunzan Lu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| |
Collapse
|