1
|
Zhu P, Zhao L, Liu L, Huang Y, Zheng W, Li J. Double-emulsion synthesis of reactive epoxy nanospheres for advanced lithium-ion battery binders. J Colloid Interface Sci 2025; 691:137434. [PMID: 40158320 DOI: 10.1016/j.jcis.2025.137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The rapid advancement of electric vehicles imposes significant challenges on lithium-ion battery (LIBs) technology. Polymer binders offer a promising low-cost solution. However, for anode materials, the conventional styrene butadiene latex/carboxymethyl cellulose (SBR/CMC) binders exhibit inherent issues, including binder flotation during solvent evaporation and undesired film formation on anode surfaces. Herein, ultra-small reactive epoxy nanospheres (EPS, 70 nm) were successfully synthesized using a customized double emulsion (DE) demulsification method. The structural design of the internal water phase, two consecutive emulsifications and an innovative phase inversion strategy are crucial to achieve ultra-small particle size. By eliminating the binder migration phenomenon and establishing a covalent cross-linked network within the electrode, the EPS bonded electrode achieved a peel strength of 7.03 N cm-1, surpassing the 4.53 N cm-1 observed in the SBR bonded electrode. Furthermore, EPS can optimize the electrode pore structure and increase the electrode's wettability to the electrolyte, thereby improving the electrode rate performance. At a current density of 10C, the EPS bonded electrode achieved a capacity retention of 50.4 %, which is much higher than that of the SBR bonded electrode (21.2 %). Consequently, reactive EPS presents an effective way to enhance the overall performance of LIBs through the strategic design of polymer binders.
Collapse
Affiliation(s)
- Pingwei Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Li Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Zheng
- Beijing Institute of Astronautical Systems Engineering, Beijing 10076, China.
| | - Jun Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Luo J, Cui M, Lian X, Yuan B, Song C, Ma Y, Wang Y. One-Step Multiple Emulsions Driven by Interfacial Neutralization Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10197-10204. [PMID: 40233362 DOI: 10.1021/acs.langmuir.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The multicomponent structure and the large area of oil-water interfaces make multiple emulsions promising for use in cosmetic manufacturing, food industries, and agricultural production. However, the high energy input and extensive use of emulsifiers in the process of multiple emulsion preparation severely limit their application. In this work, we propose a simple but highly efficient emulsification strategy to realize one-step multiple emulsions. To this end, the interfacial acid-base neutralization reaction by oleic acid and ammonia is employed as the driving force to construct a spontaneous emulsifying system, thus realizing emulsion formation in a low-energy manner. Moreover, the products generated by the interfacial neutralization reaction can act as emulsifiers to stabilize both the O/W and W/O interfaces and construct multiple emulsions with an O/W/O structure. Compared to conventional methods of multiple emulsion formation, the one-step multiple emulsion method driven by an interfacial neutralization reaction can significantly reduce the energy consumption and the emulsifier dosage during the emulsifying process, thus avoiding the probable environmental problems caused by the residual emulsifiers. This study not only provides a new idea for the preparation of multiple emulsions but also effectively promotes the development of low-surfactant emulsification methods.
Collapse
Affiliation(s)
- Jingwen Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Mingshuo Cui
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Xiaodong Lian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
- School of Information Resources Management, Renmin University of China, Beijing 100872, PR China
| | - Bin Yuan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Chenhao Song
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| |
Collapse
|
3
|
Zhang H, Pan M, Qin S, Zheng Z, Xu H, Ning L, Zhang S, Jia S, Wang X, Su Z. A fully sustainable, flexible, and degradable lignocellulose-based composite film enabled by a bio-based polyimine vitrimer. Int J Biol Macromol 2025; 307:141946. [PMID: 40074105 DOI: 10.1016/j.ijbiomac.2025.141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Traditionally unsustainable and nondegradable fossil-based plastics have resulted in serious environment pollution problem. Renewable and biodegradable lignocellulose biomass is a promising raw martial for developing environmentally friendly plastic alternatives. However, lignocellulose biomass itself is non-thermoplastic crosslinking networks consisting of cellulose, lignin, and hemicellulose, resulting in a huge challenge to thermoform its into plastic alternatives. Vitrimers which own dynamic network exchange character can enable polymer materials excellent thermo-processability and recyclability. Herein, a thermoforming strategy of lignocellulose biomass was successfully developed by integrating wood powders (WPs) including natural wood powder (NWP), oxidized wood powder (OWP), and aminated wood powder (AWP) into the dynamic networks of a bio-based polyimine vitrimer (Bio-PI). The resulting WPs/Bio-PI mixtures can be easily processed into a fully sustainable lignocellulose-based composite film (LCF) by hot-pressing. The obtained LCF shows good flexibility and strength with the highest tensile strain, toughness, and tensile strength of 61 %, 365 MJ m-3, and 9 MPa, respectively. The LCF also exhibits heat-triggered re-shaping capability, ultralow water absorption ratio (<1 %), high water stability, and excellent resistance to dilute acid/alkali solutions. Moreover, the LCF can be completely chemical-degraded because of the reversible crosslinking performance of Bio-PI. Such LCF represents an environmentally friendly plastic alternative.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingrui Pan
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shizhen Qin
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zuli Zheng
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiyan Xu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Ning
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaobo Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Jia
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Song P, Chen J, Zhao D, Shi K, Xu R, Zhu M, Zhao L, Pashuck ET, Ouyang L, Jiao F, Lin Y. Evolving Emulsion Microcompartments via Enzyme-Mimicking Amyloid-Mediated Interfacial Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409601. [PMID: 39670696 DOI: 10.1002/smll.202409601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Living organisms take in matter and energy from their surroundings, transforming these inputs into forms that cells can use to sustain metabolism and power various functions. A significant advancement in the development of protocells and life-like materials has been the creation of cell-like microcompartments capable of evolving into higher-order structures characterized by hierarchy and complexity. In this study, a smart emulsion system is designed to digests chemical substrates and generates organic or inorganic products, driving the self-organization and structuration of microcompartments. Central to this system is a lipase-derived peptide that undergoes amyloid fibrillation, exhibiting hydrolase-like activity and stabilizing Pickering emulsions. Through catalytic hydrolysis or silicatein-inspired mineralization, these emulsion microcompartments generate self-organized surfactant layers from organic substrates or silica scaffolds from inorganic substrates at the oil-water interface, respectively, helping to prevent coalescence. This process further facilitates a structural evolution into high-internal phase emulsion gels that are suitable for direct-ink-writing 3D printing. The findings underscore the potential for designing self-evolving soft materials that replicate the structures and functions of living organisms.
Collapse
Affiliation(s)
- Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Zhao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runze Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyue Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhao
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Liu X, Huang R, Peng L, Yang J, Yan J, Zhai B, Luo Y, Zhang C, Tan S, Liu X, Ding L, Fang Y. Interfacially Fabricated Covalent Organic Framework Membranes for Film-Based Fluorescence Humidity Sensors and Moisture Driven Actuators. Angew Chem Int Ed Engl 2025; 64:e202414472. [PMID: 39292509 DOI: 10.1002/anie.202414472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, β-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junbao Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuwen Tan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
6
|
Xu Q, Ma F, Xia D, Li X, Chen J, Xie HB, Francisco JS. Two-Step Noncatalyzed Hydrolysis Mechanism of Imines at the Air-Water Interface. J Am Chem Soc 2024; 146:28866-28873. [PMID: 39378311 DOI: 10.1021/jacs.4c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The hydrolysis of imines has long been assumed to be their main atmospheric fate, based on early studies in the field of organic chemistry. However, the hydrolysis mechanism and kinetics of atmospheric imines remain unclear. Here, an advanced Born-Oppenheimer molecular dynamics method was employed to investigate the noncatalyzed hydrolysis mechanism and kinetics at the air-water interface by selecting CH2NH as a model molecule. The results indicate that CH2NH exhibits a pronounced surface preference. The noncatalyzed hydrolysis of CH2NH follows a unique two-step reaction mechanism involving first proton transfer and then OH- transfer through the water bridge at the air-water interface, in contrast to the traditional one-step mechanism. The calculated reaction rate for the rate-determining step is 3.32 × 105 s-1, which is 2 orders of magnitude greater than that of the bulk phase. In addition, the involvement of the interfacial electric field further enhances the reaction rate by approximately 3 orders of magnitude. The noncatalyzed hydrolysis rate at both the air-water interface and the bulk phase is higher than that of the possible acid-catalyzed one, clarifying noncatalyzed hydrolysis as the dominant mechanism for CH2NH. This study elucidates that the noncatalyzed hydrolysis of atmospheric imines is feasible at the air-water interface and that the revealed unique two-step hydrolysis mechanism has significant implications in atmospheric and water environmental chemistry.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaojing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
7
|
de Visser PJ, Karagrigoriou D, Nguindjel AC, Korevaar PA. Quorum Sensing in Emulsion Droplet Swarms Driven by a Surfactant Competition System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307919. [PMID: 38887869 PMCID: PMC11321703 DOI: 10.1002/advs.202307919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Quorum sensing enables unicellular organisms to probe their population density and perform behavior that exclusively occurs above a critical density. Quorum sensing is established in emulsion droplet swarms that float at a water surface and cluster above a critical density. The design involves competition between 1) a surface tension gradient that is generated upon release of a surfactant from the oil droplets, and thereby drives their mutual repulsion, and 2) the release of a surfactant precursor from the droplets, that forms a strong imine surfactant which suppresses the surface tension gradient and thereby causes droplet clustering upon capillary (Cheerios) attraction. The production of the imine-surfactant depends on the population density of the droplets releasing the precursor so that the clustering only occurs above a critical population density. The pH-dependence of the imine-surfactant formation is exploited to trigger quorum sensing upon a base stimulus: dynamic droplet swarms are generated that cluster and spread upon spatiotemporally varying acid and base conditions. Next, the clustering of two droplet subpopulations is coupled to a chemical reaction that generates a fluorescent signal. It is foreseen that quorum sensing enables control mechanisms in droplet-based systems that display collective responses in contexts of, e.g., sensing, optics, or dynamically controlled droplet-reactors.
Collapse
Affiliation(s)
- Pieter J. de Visser
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dimitrios Karagrigoriou
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Anne‐Déborah C. Nguindjel
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
8
|
Lee M, Choi W, Lee JM, Lee ST, Koh WG, Hong J. Flavor-switchable scaffold for cultured meat with enhanced aromatic properties. Nat Commun 2024; 15:5450. [PMID: 38982039 PMCID: PMC11233498 DOI: 10.1038/s41467-024-49521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Cultured meat is emerging as a new type of food that can provide animal protein in a sustainable way. Many previous studies employed various types of scaffolds to develop cultured meat with similar properties to slaughtered meat. However, important properties such as flavor were not discussed, even though they determine the quality of food. Flavor characteristics vary dramatically depending on the amount and types of amino acids and sugars that produce volatile compounds through the Maillard reaction upon cooking. In this study, a flavor-switchable scaffold is developed to release meaty flavor compounds only upon cooking temperature mimicking the Maillard reaction of slaughtered meat. By introducing a switchable flavor compound (SFC) into a gelatin-based hydrogel, we fabricate a functional scaffold that can enhance the aromatic properties of cultured meat. The temperature-responsive SFC stably remains in the scaffold during the cell culture period and can be released at the cooking temperature. Surprisingly, cultured meat fabricated with this flavor-switchable scaffold exhibits a flavor pattern similar to that of beef. This research suggests a strategy to develop cultured meat with enhanced sensorial characteristics by developing a functional scaffold which can mimic the natural cooking flavors of conventional meat.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Nie G, Wei D, Ding Z, Ge L, Guo R. Controllable enzymatic hydrolysis in reverse Janus emulsion microreactors. J Colloid Interface Sci 2024; 663:591-600. [PMID: 38428116 DOI: 10.1016/j.jcis.2024.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
HYPOTHESIS The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.
Collapse
Affiliation(s)
- Guangju Nie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ziyu Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
10
|
Min F, Dreiss CA, Chu Z. Dynamic covalent surfactants and their uses in the development of smart materials. Adv Colloid Interface Sci 2024; 327:103159. [PMID: 38640843 DOI: 10.1016/j.cis.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/08/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Dynamic covalent chemistry, which leverages the dynamic nature of reversible covalent bonds controlled by the conditions of reaction equilibrium, has demonstrated great potential in diverse applications related to both the stability of covalent bonds and the possibility of exchanging building blocks, imparting to the systems the possibility of "error checking" and "proof-reading". By incorporating dynamic covalent bonds into surfactant molecular architectures, combinatorial libraries of surfactants with bespoke functionalities can be readily fabricated through a facile strategy, with minimum effort in organic synthesis. Consequently, a multidisciplinary field of research involving the creation and application of dynamic covalent surfactants has recently emerged, which has aroused great attention in surfactant and colloid science, supramolecular chemistry, self-assembly, smart materials, drug delivery, and nanotechnology. This review reports results in this field published over recent years, discusses the possibilities presented by dynamic covalent surfactants and their applications in developing smart self-assembled materials, and outlines some future perspectives.
Collapse
Affiliation(s)
- Fan Min
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Zonglin Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|
11
|
Solra M, Kapila R, Das S, Bhatt P, Rana S. Transient Metallo-Lipidoid Assemblies Amplify Covalent Catalysis of Aqueous and Non-Aqueous Reactions. Angew Chem Int Ed Engl 2024; 63:e202400348. [PMID: 38315883 DOI: 10.1002/anie.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Dissipative supramolecular assemblies are hallmarks of living systems, contributing to their complex, dynamic structures and emerging functions. Living cells can spatiotemporally control diverse biochemical reactions in membrane compartments and condensates, regulating metabolite levels, signal transduction or remodeling of the cytoskeleton. Herein, we constructed membranous compartments using self-assembly of lipid-like amphiphiles (lipidoid) in aqueous medium. The new double-tailed lipidoid features Cu(II) coordinated with a tetravalent chelator that dictates the binding of two amphiphilic ligands in cis-orientation. Hydrophobic interactions between the lipidoids coupled with intermolecular hydrogen bonding led to a well-defined bilayer vesicle structure. Oil-soluble SNAr reaction is efficiently upregulated in the hydrophobic cavity, acting as a catalytic crucible. The modular system allows easy incorporation of exposed primary amine groups, which augments the catalysis of retro aldol and C-N bond formation reactions. Moreover, a higher-affinity chelator enables consumption of the Cu(II) template leveraging the differential thermodynamic stability, which allows a controllable lifetime of the vesicular assemblies. Concomitant temporal upregulation of the catalytic reactions could be tuned by the metal ion concentration. This work offers new possibilities for metal ion-mediated dynamic supramolecular systems, opening up a massive repertoire of functionally active dynamic "life-like" materials.
Collapse
Affiliation(s)
- Manju Solra
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Rohit Kapila
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Sourav Das
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Preeti Bhatt
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Subinoy Rana
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| |
Collapse
|
12
|
Yang J, Gu Z, Cheng L, Li Z, Li C, Hong Y, Qian JY. Formation Mechanism of Starch-Based Double Emulsions from the Interfacial Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17154-17164. [PMID: 37974415 DOI: 10.1021/acs.langmuir.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Double emulsions are of significant practical value in protecting the core material owing to their multicomponent structure and have thus been applied in various fields, such as food, cosmetics, and drugs. However, the mechanism of double emulsion formation by native starch is not well established. Herein, we demonstrate a facile route to develop type-A, type-B, and type-C double emulsions using native starch and develop an innovative design for a carrier. Interfacial interaction, enthalpy changes of starch, and interfacial properties are key factors governing the formation of double emulsions and controlling the type of double emulsions formed. Therefore, the results of this study provide a better understanding of how and what type of starch-based double emulsions are formed.
Collapse
Affiliation(s)
- Jie Yang
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhengbiao Gu
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
13
|
Baryzewska A, Roth C, Seeberger PH, Zeininger L. In situ Tracking of Exoenzyme Activity Using Droplet Luminescence Concentrators for Ratiometric Detection of Bacteria. ACS Sens 2023; 8:4143-4151. [PMID: 37933952 PMCID: PMC10683504 DOI: 10.1021/acssensors.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We demonstrate a novel, rapid, and cost-effective biosensing paradigm that is based on an in situ visualization of bacterial exoenzyme activity using biphasic Janus emulsion droplets. Sensitization of the droplets toward dominant extracellular enzymes of bacterial pathogens is realized via selective functionalization of one hemisphere of Janus droplets with enzyme-cleavable surfactants. Surfactant cleavage results in an interfacial tension increase at the respective droplet interface, which readily transduces into a microscopically detectable change of the internal droplet morphologies. A macroscopic fluorescence read-out of such morphological transitions is obtained via ratiometrically recording the angle-dependent anisotropic emission signatures of perylene-containing droplets from two different angles. The optical read-out method facilitates detection of marginal morphological responses of polydisperse droplet samples that can be easily produced in any environment. The performance of Janus droplets as powerful optical transducers and signal amplifiers is highlighted by rapid (<4 h) and cost-effective antibody and DNA-free identification of three major foodborne pathogens, with detection thresholds of below 10 CFU mL-1 for Salmonella and <102 to 103 CFU mL-1 for Listeria and Escherichia coli.
Collapse
Affiliation(s)
- Agata
W. Baryzewska
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Situ B, Zhang Z, Zhao L, Tu Y. Graphene oxide-based large-area dynamic covalent interfaces. NANOSCALE 2023; 15:17739-17750. [PMID: 37916524 DOI: 10.1039/d3nr04239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Dynamic materials, being capable of reversible structural adaptation in response to the variation of external surroundings, have experienced significant advancements in the past several decades. In particular, dynamic covalent materials (DCMs), where the dynamic covalent bonds (DCBs) can reversibly break and reform under defined conditions, present superior dynamic characteristics, such as self-adaptivity, self-healing and shape memory. However, the dynamic characteristics of DCBs are mainly limited within the length scale of covalent bonds, due to the local position exchange or the inter-distance variation between the chemical compositions involved in the reversible covalent reactions. In this minireview, a discussion regarding the realization of long-range migration of chemical compositions along the interfaces of graphene oxide (GO)-based materials via the spatially connected and consecutive occurrence of DCB-based reversible covalent reactions is presented, and the interfaces are termed "large-area dynamic covalent interfaces (LDCIs)". The effective strategies, including water adsorption, interfacial curvature and metal-substrate support, as well as the potential applications of LDCIs in water dissociation and humidity sensing are summarized. Additionally, we also give an outlook on potential strategies to realize LDCIs on other 2D carbon-based materials, including the interfacial morphology and periodic element doping. This minireview provides insights into the realization of LDCIs on a wider range of 2D materials, and offers a theoretical perspective for advancing materials with long-range dynamic characteristics and improved performance, including controlled drug delivery/release and high-efficiency (bio)sensing.
Collapse
Affiliation(s)
- Boyi Situ
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Zhe Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Liang Zhao
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
15
|
Almutairi MD, He F, Alshammari YL, Alnahdi SS, Khan MA. Analysis of the Self-Healing Capability of Thermoplastic Elastomer Capsules in a Polymeric Beam Structure Based on Strain Energy Release Behaviour during Crack Growth. Polymers (Basel) 2023; 15:3384. [PMID: 37631441 PMCID: PMC10458547 DOI: 10.3390/polym15163384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to investigate the elastic and plastic responses of 3D-printed thermoplastic elastomer (TPE) beams under various bending loads. The study also aimed to develop a self-healing mechanism using origami TPE capsules embedded within an ABS structure. These cross-shaped capsules have the ability to be either folded or elastically deformed. When a crack occurs in the ABS structure, the strain is released, causing the TPE capsule to unfold along the crack direction, thereby enhancing the crack resistance of the ABS structure. The enhanced ability to resist cracks was confirmed through a delamination test on a double cantilever specimen subjected to quasi-static load conditions. Consistent test outcomes highlighted how the self-healing process influenced the development of structural cracks. These results indicate that the suggested self-healing mechanism has the potential to be a unique addition to current methods, which mostly rely on external healing agents.
Collapse
Affiliation(s)
- Mohammed Dukhi Almutairi
- School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (F.H.); (Y.L.A.); (S.S.A.)
- Centre for Life-Cycle Engineering and Management, Cranfield University, College Road, Cranfield MK43 0AL, UK
| | - Feiyang He
- School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (F.H.); (Y.L.A.); (S.S.A.)
- Centre for Life-Cycle Engineering and Management, Cranfield University, College Road, Cranfield MK43 0AL, UK
| | - Yousef Lafi Alshammari
- School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (F.H.); (Y.L.A.); (S.S.A.)
- Mechanical Engineering Department, Engineering College, Northern Border University, King Fahad Road, Arar 92341, Saudi Arabia
| | - Sultan Saleh Alnahdi
- School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (F.H.); (Y.L.A.); (S.S.A.)
- Centre for Life-Cycle Engineering and Management, Cranfield University, College Road, Cranfield MK43 0AL, UK
| | - Muhammad Ali Khan
- School of Aerospace, Transport, and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK; (F.H.); (Y.L.A.); (S.S.A.)
- Centre for Life-Cycle Engineering and Management, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
16
|
Zeininger L. Responsive Janus droplets as modular sensory layers for the optical detection of bacteria. Anal Bioanal Chem 2023:10.1007/s00216-023-04838-w. [PMID: 37450000 PMCID: PMC10404245 DOI: 10.1007/s00216-023-04838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The field of biosensor development is fueled by innovations in new functional transduction materials and technologies. Material innovations promise to extend current sensor hardware limitations, reduce analysis costs, and ensure broad application of sensor methods. Optical sensors are particularly attractive because they enable sensitive and noninvasive analyte detection in near real-time. Optical transducers convert physical, chemical, or biological events into detectable changes in fluorescence, refractive index, or spectroscopic shifts. Thus, in addition to sophisticated biochemical selector designs, smart transducers can improve signal transmission and amplification, thereby greatly facilitating the practical applicability of biosensors, which, to date, is often hampered by complications such as difficult replication of reproducible selector-analyte interactions within a uniform and consistent sensing area. In this context, stimuli-responsive and optically active Janus emulsions, which are dispersions of kinetically stabilized biphasic fluid droplets, have emerged as a novel triggerable material platform that provides as a versatile and cost-effective alternative for the generation of reproducible, highly sensitive, and modular optical sensing layers. The intrinsic and unprecedented chemical-morphological-optical coupling inside Janus droplets has facilitated optical signal transduction and amplification in various chemo- and biosensor paradigms, which include examples for the rapid and cost-effective detection of major foodborne pathogens. These initial demonstrations resulted in detection limits that rival the capabilities of current commercial platforms. This trend article aims to present a conceptual summary of these initial efforts and to provide a concise and comprehensive overview of the pivotal kinetic and thermodynamic principles that govern the ability of Janus droplets to sensitively and selectively respond to and interact with bacteria.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
17
|
Cibotaru S, Nicolescu A, Marin L. Dynamic PEGylated phenothiazine imines; synthesis, photophysical behavior and reversible luminescence switching in response to external stimuli. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
19
|
Ma H, Xia S, Sun C, Yu F, Cameron A, Zheng W, Shu Q, Pei H, Han Y. Novel Strategy of Polymers in Combination with Silica Particles for Reversible Control of Oil-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2216-2227. [PMID: 36576434 DOI: 10.1021/acsami.2c19037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid smart emulsification systems are highly applicable in manipulating oil-in-water (O/W) droplets. Herein, novel switchable block polymers containing both zwitterionic and tertiary amine pendent groups were designed and synthesized to combine with charged silica particles to stabilize the O/W emulsion responsive to pH. This study was carried out in O/W emulsions stabilized with the polymer and silica particles under different pH conditions. The emulsion system was also simulated using molecular dynamics simulation to reveal the mechanism at molecular levels, thus gaining insight into the relationships between the emulsifying properties and the molecular interaction of the mixed system. Upon acidification of the continuous aqueous phase, protonated polymers with excellent hydrophilicity were induced by charged silica particles to cause rapid emulsion coalescence. In alkaline media, the mixed system conversely stabilized the O/W emulsions, cutting polymer consumption by over three-quarters. The emulsification and demulsification can be switched alternately by tuning the pH conditions. The applications exhibited excellent efficiency in separating heavy oil/water emulsions and proved the high conversion rate in emulsion polymerization. Overall, with this novel strategy to relieve tedious modifications on particle surfaces and massive consumption of polymers, the designed responsive emulsification systems can impart intelligent and controllable chemical reactivity to emulsions on demand in a more affordable and sustainable way.
Collapse
Affiliation(s)
- Hao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Shuqian Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Caixia Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Fuce Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Alexandre Cameron
- School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Wangang Zheng
- Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Co., Ltd., Dongying, Shandong257067, China
| | - Qinglin Shu
- Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Co., Ltd., Dongying, Shandong257067, China
| | - Haihua Pei
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| |
Collapse
|
20
|
Xue Y, Dong J, Li X. Fabricating switchable Pickering emulsions by dynamic covalent copolymer amphiphiles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Recyclable, malleable, tunable cross-linked elastomers based on boroxines and acetoacetyl. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Heras-Mozos R, Gavara R, Hernández-Muñoz P. Responsive packaging based on imine-chitosan films for extending the shelf-life of refrigerated fresh-cut pineapple. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Qureshi MH, Njardarson JT. Anionic Amino-Cope Rearrangement Cascade Synthesis of 2,4-Substituted Benzoate Esters from Acyclic Building Blocks. Org Lett 2022; 24:7978-7982. [PMID: 36268999 DOI: 10.1021/acs.orglett.2c03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new anionic cascade for assembling 2,4-substituted benzoate esters in one pot from racemic β-fluoro-substituted conjugated tert-butylsulfinyl imines and 3-substituted methyl 2-butenoates. Dienolate formation triggers a Mannich addition followed by an amino-Cope like rearrangement, which results in immediate elimination of fluoride by a lithiated enamine. The newly formed 1,4-diene intermediate contains a highly acidic proton which is spontaneously deprotonated, leading to a facile intramolecular cyclization followed by sulfinamide group elimination and aromatization.
Collapse
Affiliation(s)
- M Haziq Qureshi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
pH-responsive water-in-oil emulsions with reversible phase inversion behavior stabilized by a novel dynamic covalent surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Kumar A, Kaur R, Kumar V, Kumar S, Gehlot R, Aggarwal P. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Lai TT, Kuntz D, Wilson AK. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J Chem Inf Model 2022; 62:4569-4578. [PMID: 36154169 DOI: 10.1021/acs.jcim.2c00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.
Collapse
Affiliation(s)
- Thanh T Lai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - David Kuntz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
27
|
Agashe C, Varshney R, Sangwan R, Gill AK, Alam M, Patra D. Anisotropic Compartmentalization of the Liquid-Liquid Interface using Dynamic Imine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8296-8303. [PMID: 35762368 DOI: 10.1021/acs.langmuir.2c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid-liquid interface offers a fascinating avenue for generating hierarchical compartments. Herein, the dynamic imine chemistry is employed at the oil-water interface to investigate the effect of dynamic covalent bonds for modulating the droplet shape. The imine bond formation between oil-soluble aromatic aldehydes and water-soluble polyethyleneimine greatly stabilized the oil-water interface by substantially lowering the interfacial tension. The successful jamming of imine-mediated assemblies was observed when a compressive force was applied to the droplet. Thus, the anisotropic compartmentalization of the liquid-liquid interface was created, and it was later altered by changing the pH of the surrounding environment. Finally, a proof-of-concept demonstration of a pH-triggered cargo release across the interfacial membrane confirmed the feasibility of stimuli-responsive behavior of dynamic imine assemblies.
Collapse
Affiliation(s)
- Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rohit Varshney
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Arshdeep K Gill
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
28
|
Wei D, Jin H, Ge L, Nie G, Guo R. Construction and regulation of aqueous-based Cerberus droplets by vortex mixing. J Colloid Interface Sci 2022; 627:194-204. [DOI: 10.1016/j.jcis.2022.06.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
29
|
Davis HC, Pan X, Kirsch ZJ, Vachet RW, Tew GN. Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer-Protein Complexation. ACS Biomater Sci Eng 2022; 8:2489-2499. [PMID: 35608244 PMCID: PMC9205173 DOI: 10.1021/acsbiomaterials.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of functional proteins to the intracellular space offers tremendous advantages for the development of new therapeutics but is limited by the passage of these large polar biomacromolecules through the cell membrane. Noncovalent polymer-protein binding that is driven by strong carrier-cargo interactions, including electrostatics and hydrophobicity, has previously been explored in the context of delivery of functional proteins. Appropriately designed polymer-based carriers can take advantage of the heterogeneous surface of protein cargoes, where multiple types of physical binding interactions with polymers can occur. Traditional methods of assessing polymer-protein binding, including dynamic light scattering, circular dichroism spectroscopy, and fluorescence-based assays, are useful in the study of new polymer-based carriers but face a number of limitations. We implement for the first time the method of covalent labeling-mass spectrometry (CL-MS) to probe intermolecular surface interactions within noncovalent polymer-protein complexes. We demonstrate the utility of CL-MS for establishing binding of an amphiphilic block copolymer to negatively charged and hydrophobic surface patches of a model protein, superfolder green fluorescent protein (sfGFP), using diethylpyrocarbonate as a pseudo-specific labeling reagent. In addition, we utilize this method to explore differences at the intermolecular surface as the ratio of polymer to protein increases, particularly in the context of defining effective protein delivery regimes. By promoting an understanding of the intermolecular interactions in polymer-protein binding and identifying sites where polymers bind to protein surfaces, noncovalent polymer carriers can be more effectively designed for protein delivery applications.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zachary J Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Ji R, Shen J. Chirality Transformation in Metathesis Reactions of Salicylaldehyde/Pyridoxal‐Based Imines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Xue Ji
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| | - Jiang‐Shan Shen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| |
Collapse
|
31
|
Ionic liquids filled hybrid capsules by harnessing interfacial imine chemistry of Janus nanosheets stabilized pickering emulsion for removal of chlorophenols. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Raju RR, Koetz J. Inner Rotation of Pickering Janus Emulsions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3312. [PMID: 34947662 PMCID: PMC8708173 DOI: 10.3390/nano11123312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022]
Abstract
Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core-shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles.
Collapse
Affiliation(s)
| | - Joachim Koetz
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany;
| |
Collapse
|
33
|
Bai X, Wang Y, Li H, Tian X, Ma Y, Pan J. Stalagmites in karst cave inspired construction: lotus root-type adsorbent with porous surface derived from CO 2-in-water Pickering emulsion for selective and ultrafast uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126398. [PMID: 34175700 DOI: 10.1016/j.jhazmat.2021.126398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous construction of porous and hollow adsorbent, especially from gas-in-water Pickering emulsion (PE) reactor, is vital for improving mass transfer kinetics and uptake amount. Inspired by the formation process of stalagmites in karst cave, amino and amidoxime bifunctionalized lotus root-type microsphere with porous surface (NH2@AO-PLRMS) is prepared by the silica nanoparticles (SPs)-stabilized CO2-in-water Pickering emulsion reactor and subsequent two-step grafting polymerization. The important roles of SPs acting as Pickering emulsifier, surface pore-forming agent, and adjusting internal lotus root structure are confirmed. Lotus root-type pores are dependent on the interface intensity and the permeability for compressed CO2 bubbles in PE droplets. Benefitting from the lotus root-type structure and abundant affinity sites, the maximum uranium adsorption capacity of NH2@AO-PLRMS is 1214.5 mg·g-1 at 298 k, and an ultrafast uptake process can be achieved in the first 30 min. Both thermodynamic and kinetic studies indicate a spontaneous, entropy increased, and exothermic chemisorption process, and the synergies of amidoxime and amino groups can enhance the adsorption selectivity. Remarkably, NH2@AO-PLRMS displays a high uranium adsorption capacity and desorption efficiency after seven cycles. These findings provide a way to obtain adsorbents with enhanced uranium extraction performance from gas-in-water PE reactor.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
34
|
Rational design of dynamic imine surfactants for oil-water emulsions: Learning from oil-induced reversible dynamic imine bond formation. J Colloid Interface Sci 2021; 607:163-170. [PMID: 34506998 DOI: 10.1016/j.jcis.2021.08.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS Dynamic imine surfactants (DIS) can be constructed by the formation of dynamic imine bonds (Dibs) between aromatic aldehydes and aliphatic amines in water. Because of the nature of Dibs in water, a thermodynamic equilibrium state was achieved between the DIS and aldehyde and amine precursors to form a dynamic combinatorial library (DCL). When the DIS served as sole emulsifier to form oil-H2O emulsions, the precursors migrated between the H2O phase and the oil phase, which altered the DCL equilibrium. The DIS concentration and emulsion stability also changed. EXPERIMENTS By mixing 4-(2-sulfobetaine-ethoxy)-benzaldehyde (SBBA) and aliphatic amines of CnH2n+1NH2 (n = 4, BA; n = 6, HA; n = 8, OA; n = 10, DA) in water, four amphoteric DIS (SBBA-BA/HA/OA/DA) were prepared. Dib formation was characterized using 1H NMR. The DIS surface activity was studied by surface tension and fluorescence probe methods. The reversible switching of DIS and its wormlike micelles were explored. FINDINGS SBBA-OA (or SBBA-DA) DIS was not a suitable emulsifier for stable hydrocarbon (HC)-H2O emulsions. OA and DA were more soluble in the HC phase than the H2O phase. The precursors of OA and DA migrated from the H2O to the HC phase, and the thermodynamic equilibrium state of DCL shifted towards Dib dissociation. The Dib could be regenerated by HC phase removal. A novel strategy where volatile HC (such as pentane) was used as a trigger was developed to switch the DIS reversibly and its self-assemblies (such as wormlike micelles) in water without inorganic salt accumulation. The SBBA-HA (or SBBA-BA) DIS was a suitable emulsifier for stable emulsions because HA and BA were more soluble in the H2O phase.
Collapse
|
35
|
Li J, Concellón A, Yoshinaga K, Nelson Z, He Q, Swager TM. Janus Emulsion Biosensors for Anti-SARS-CoV-2 Spike Antibody. ACS CENTRAL SCIENCE 2021; 7:1166-1175. [PMID: 34341770 PMCID: PMC8231659 DOI: 10.1021/acscentsci.1c00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 05/06/2023]
Abstract
The spread of the COVID-19 pandemic around the world has revealed that it is urgently important to develop rapid and inexpensive assays for antibodies in general and anti-SARS-CoV-2 IgG antibody (anti-SARS-CoV-2 spike glycoprotein S1 antibody) in particular. Herein we report a method to detect the anti-SARS-CoV-2 spike antibody level by using Janus emulsions or Janus particles as biosensors. Janus emulsions are composed of two immiscible hydrocarbon and fluorocarbon oils. The hydrocarbon/water interfaces are functionalized with a secondary antibody of IgG protein and SARS-CoV-2 spike receptor binding domain (RBD), to produce two different Janus emulsions. Mixtures of these Janus droplets enable the detection of the anti-SARS-CoV-2 spike IgG antibody in an agglutination assay caused by the antibody's binding to both the secondary antibody of IgG antibody and SARS-CoV-2 spike protein RBD. Both qualitative optical images and quantitative fluorescence spectra are able to detect the level of anti-SARS-CoV-2 spike antibody at concentrations as low as 0.2 μg/mL in 2 h. The detection results of clinical human serum samples using this agglutination assay confirm that this method is applicable to clinical samples with good sensitivity and specificity. The reported method is generalizable and can be used to detect other analytes by attaching different biomolecular recognition elements to the surface of the Janus droplets.
Collapse
|
36
|
Tchakalova V, Lutz E, Lamboley S, Moulin E, Benczédi D, Giuseppone N, Herrmann A. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 2): Fragrance-Releasing Cleavable Surfactants in Functional Perfumery Applications. Chemistry 2021; 27:13468-13476. [PMID: 34270131 DOI: 10.1002/chem.202102051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/11/2022]
Abstract
Amphiphilic imines prepared by condensation of a hydrophobic fragrance aldehyde with a hydrophilic amine derived from a poly(propylene oxide) and poly(ethylene oxide) diblock copolymer were investigated as cleavable surfactant profragrances in applications of functional perfumery. In water, the cleavable surfactants assemble into micelles that allow solubilization of perfume molecules that are not covalently attached to the surfactant. Dynamic headspace analysis on a glass surface showed that solubilized perfume molecules evaporated in a similar manner in the presence of the cleavable surfactant as compared with a non-cleavable reference surfactant. Under application conditions, the cleavable surfactant imine hydrolysed to release the covalently linked fragrance aldehyde. The profragrances were stable during storage in aqueous media, and upon dilution showed a blooming effect for the hydrolytical fragrance release and a more balanced performance of a solubilized perfume by retaining the more volatile fragrances and boosting the evaporation of the less volatile fragrances.
Collapse
Affiliation(s)
- Vera Tchakalova
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Eric Lutz
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Serge Lamboley
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Emilie Moulin
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Daniel Benczédi
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Nicolas Giuseppone
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Andreas Herrmann
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| |
Collapse
|
37
|
Ngo QP, He M, Concellón A, Yoshinaga K, Luo SXL, Aljabri N, Swager TM. Reconfigurable Pickering Emulsions with Functionalized Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8204-8211. [PMID: 34190561 DOI: 10.1021/acs.langmuir.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pickering emulsions (PEs) achieve interfacial stabilization by colloidal particle surfactants and are commonly used in food, cosmetics, and pharmaceuticals. Carbon nanotubes (CNTs) have recently been used as stabilizing materials to create dynamic single emulsions. In this study, we used the formation of Meisenheimer complexes on functionalized CNTs to fabricate complex biphasic emulsions containing hydrocarbons (HCs) and fluorocarbons (FCs). The reversible nature of Meisenheimer complex formation allows for further functionalization at the droplet-water interface. The strong affinity of fluorofluorescent perylene bisimide (F-PBI) to the CNTs was used to enhance the assembly of CNTs on the FC-water interface. The combination of different concentrations of the functionalized CNTs and the pelene additive enables predictable complex emulsion morphologies. Reversible morphology reconfiguration was explored with the addition of molecular surfactants. Our results show that the interfacial properties of functionalized CNTs have considerable utility in the fabrication of complex dynamic emulsions.
Collapse
Affiliation(s)
- Quynh P Ngo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maggie He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nouf Aljabri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Exploration Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
|
39
|
Ren G, Li B, Ren L, Lu D, Zhang P, Tian L, Di W, Shao W, He J, Sun D. pH-Responsive Nanoemulsions Based on a Dynamic Covalent Surfactant. NANOMATERIALS 2021; 11:nano11061390. [PMID: 34070322 PMCID: PMC8227844 DOI: 10.3390/nano11061390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Developing solid-free nanoemulsions with pH responsiveness is desirable in enhanced oil recovery (EOR) applications. Here, we report the synthesis of an interfacial activity controllable surfactant (T−DBA) through dynamic imine bonding between taurine (T) and p-decyloxybenzaldehyde (DBA). Instead of macroemulsions, nanoemulsions can be prepared by using T−DBA as an emulsifier. The dynamic imine bond of T−DBA enables switching between the active and inactive states in response to pH. This switching of interfacial activity was used to gate the stability of nanoemulsions, thus enabling us to turn the nanoemulsions off and on. Using such dynamic imine bonds to govern nanoemulsion stability could enable intelligent control of many processes such as heavy oil recovery and interfacial reactions.
Collapse
Affiliation(s)
- Gaihuan Ren
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Bo Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Lulu Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Dongxu Lu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Pan Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Lulu Tian
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Wenwen Di
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| |
Collapse
|
40
|
Xie Y, Xu Y, Xu J. pH-responsive pickering foam created from self-aggregate polymer using dynamic covalent bond. J Colloid Interface Sci 2021; 597:383-392. [PMID: 33894546 DOI: 10.1016/j.jcis.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Responsive surfactant systems based on dynamic covalent bond exhibit an unsatisfactory foamability and foam stability, despite their documented functionality in emulsions. As such we anticipate that the foaming performance should be improved by introducing Pickering effect, which is possible when the responsiveness of the dynamic covenant bonds controls not only the hydrophobicity of polymers but also their aggregation behavior (to form nanoparticles). EXPERIMENTS Here we created surface active nanoparticles made from self-aggregated polymers consisting of PAH (polyallylamine hydrochloride)-BA (benzaldehyde). The covalent imine bonds between originally hydrophilic PAH and hydrophobic BA are dynamic in that their formation and breakage is a function of solution pH, confirmed by 1H NMR and dynamic interfacial tension measurement. FINDINGS At pH 7.4, a stable foam is achieved in the PAH-BA (amino to aldehyde ratio at 1:0.2) solution; while at pH 2.5, it defoams due to breakage of dynamic bonds corresponding to the measured diminishing surface activity. The reversibility of foaming-defoaming has been demonstrated by alternatively changing pH for multiple cycles, with the foaming performance persistent. The foam stability can be improved by more hydrophobic compounds e.g. at a lower amino to aldehyde ratio or using PAH-cinnamaldehyde (CA). The reversible and responsive foaming demonstrated in a Pickering system provides a new method to create novel foaming systems with properties desirable to many applications.
Collapse
Affiliation(s)
- Yiqian Xie
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China.
| | - Yuan Xu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jian Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China.
| |
Collapse
|
41
|
Fong D, Swager TM. Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. J Am Chem Soc 2021; 143:4397-4404. [PMID: 33724029 DOI: 10.1021/jacs.1c00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen peroxide is a dynamic signaling molecule in biological systems. We report herein a versatile double emulsion sensor that can detect femtomolar quantities of aqueous hydrogen peroxide. The mechanism responsible for this sensitivity is a peroxide induced change in double emulsion structure, which results in a modified directional emission from dyes dissolved in the high index organic phase. The morphology (structure) of the double emulsion is controlled via interfacial tensions and a methyltrioxorhenium catalyzed sulfide oxidation results in an enhancement of the surfactant effectiveness. The incipient polar sulfoxide induced decrease of the interfacial tension at the organic-water (O-W) interface results in an increased interfacial area between the organic phase and water and a diminished emission perpendicular to the supporting substrate. The modularity of our sensory system is demonstrated through cascade catalysis between methyltrioxorhenium and oxidase enzymes, with the latter producing hydrogen peroxide as a byproduct to enable for the selective and sensitive detection of molecular and ionic enzymatic substrates.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202014259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fei Liu
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Yosuke Niko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- Research and Education Faculty, Multidisciplinary Science Cluster Interdisciplinary Science Unit Kochi University 2-5-1, Akebono-cho, Kochi-shi Kochi 780-8520 Japan
| | - Redouane Bouchaala
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Luc Mercier
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
- Current address: Interdisciplinary Institute for Neuroscience University of Bordeaux, CNRS UMR 5297 33077 Bordeaux France
| | - Olivier Lefebvre
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Bohdan Andreiuk
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Thierry Vandamme
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Jacky G. Goetz
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Andrey Klymchenko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| |
Collapse
|
43
|
Ku KH, McDonald BR, Vijayamohanan H, Zentner CA, Nagelberg S, Kolle M, Swager TM. Dynamic Coloration of Complex Emulsions by Localization of Gold Rings Near the Triphase Junction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007507. [PMID: 33605015 DOI: 10.1002/smll.202007507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Multiphase microscale emulsions are a material platform that can be tuned and dynamically configured by a variety of chemical and physical phenomena, rendering them inexpensive and broadly programmable optical transducers. Interface engineering underpins many of these sensing schemes but typically focuses on manipulating a single interface, while engineering of the multiphase junctions of complex emulsions remains underexplored. Herein, multiphilic triblock copolymer surfactants are synthesized and assembled at the triphase junction of a dynamically reconfigurable biphasic emulsion. Tailoring the linear structure and composition of the polymer surfactants provides affinity to each phase of the complex emulsion (hydrocarbon, fluorocarbon, and continuous water phase), yielding selective localization of polymers around the triphase junction. Conjugation of these polymers with gold nanoparticles, forming structured rings, affords a dynamic reflected isotropic structural color that tracks with emulsion morphology, demonstrating the uniquely enabling nature of a functionalized triphase interface. This color is the result of interference of light along the internal hydrocarbon/fluorocarbon interface, with the gold nanoparticles scattering and redirecting light into total internal reflection competent paths. Thus, the functionalization of the triphase junction renders complex emulsions colorimetric sensors, a powerful tool toward sensitive and simple sensing platforms.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Benjamin R McDonald
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Harikrishnan Vijayamohanan
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Cassandra A Zentner
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Sara Nagelberg
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
Recent development of magnetic nanomaterial-supported M(Salen) composites as recyclable heterogeneous catalysts. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01549-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Liu
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Yosuke Niko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- Research and Education Faculty, Multidisciplinary Science Cluster Interdisciplinary Science Unit Kochi University 2-5-1, Akebono-cho, Kochi-shi Kochi 780-8520 Japan
| | - Redouane Bouchaala
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Luc Mercier
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
- Current address: Interdisciplinary Institute for Neuroscience University of Bordeaux, CNRS UMR 5297 33077 Bordeaux France
| | - Olivier Lefebvre
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Bohdan Andreiuk
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Thierry Vandamme
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Jacky G. Goetz
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Andrey Klymchenko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| |
Collapse
|
46
|
Zhou Y, Yang H, Wang C, Xue Y, Wang X, Bao C, Zhu L. In situ formation of a biomimetic lipid membrane triggered by an aggregation-enhanced photoligation chemistry. Chem Sci 2021; 12:3627-3632. [PMID: 34163636 PMCID: PMC8179432 DOI: 10.1039/d0sc06049f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Nature or synthetic systems that can self-assemble into biomimetic membranes and form compartments in aqueous solution have received extensive attention. However, these systems often have the problems of requiring complex processes or lacking of control in simulating lipid synthesis and membrane formation of cells. This paper demonstrates a conceptually new strategy that uses a photoligation chemistry to convert nonmembrane molecules to yield liposomes. Lysosphingomyelin (Lyso) and 2-nitrobenzyl alcohol derivatives (NBs) are used as precursors and the amphiphilic character of Lyso promotes the formation of mixed aggregates with NBs, bringing the lipid precursors into close proximity. Light irradiation triggers the conversion of NBs into reactive aldehyde intermediates, and the preassembly facilitates the efficient and specific ligation between aldehyde and Lyso amine over other biomolecules, thereby accelerating the synthesis of phospholipids and forming membrane compartments similar to natural lipids. The light-controllable transformation represents the use of an external energy stimulus to form a biomimetic phospholipid membrane, which has a wide range of applications in medicinal chemistry, synthetic biological and abiogenesis.
Collapse
Affiliation(s)
- Yaowu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Chenxi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Yuan Xue
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Xuebin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Chunyan Bao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130# Meilong Road Shanghai 200237 China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130# Meilong Road Shanghai 200237 China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| |
Collapse
|
47
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
48
|
|
49
|
Jin H, Ge L, Li X, Guo R. Destabilization mechanism of (W 1+W 2)/O reverse Janus emulsions. J Colloid Interface Sci 2020; 585:205-216. [PMID: 33285459 DOI: 10.1016/j.jcis.2020.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Reverse Janus emulsion, with droplets composed by "two rooms" of water phases, is a novel multiple emulsion attributed to excellent integration capability and biocompatibility. However, significant instability compared with normal Janus emulsions renders the stability issue of great importance. Moreover, the ultra-low aqueous-aqueous inner interfacial tension, the anisotropic nature of the droplets with distinct lobe composition, and the random orientation in the continuous phase endow the complicated and various demulsification mechanisms. EXPERIMENTS Reverse Janus emulsion of (W1+W2)/O, employing typical salt-alcohol aqueous two-phase system (ATPS) as inner phases, is prepared in batch scale by conventional one-step vortex mixing. The demulsification process is detected by multiple light scattering technique, which provides real-time, in-situ, and quantitative information of emulsion evolution. Moreover, the fusion pattern of the anisotropic droplets is illustrated by the combination with light microscopy and size distribution measurement. FINDINGS Coalescence and sedimentation are found to be two main demulsification processes. Two salt "body" lobes of the "snowman" shaped Janus droplets combine first resulting in an intermediate Cerberus topology with two alcohol "heads" on one salt "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. Ultimately, the Gibbs free energy leads to a final state with three separated liquids. In addition, the variation in lobe viscosity, density, and properties of interfacial film greatly affect the demulsification rate and fusion pattern. A critical alcohol/surfactant mass ratio of 2 is found, beyond which a completely different fusion pattern occurs. Two alcohol "body" lobes combine first resulting in an intermediate Cerberus topology with two salt "heads" on one alcohol "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. The findings are instructive in the stability of aqueous based multiple emulsions with advanced morphologies and meanwhile, promote the future application of this novel emulsion in food science, pharmacy, and biomimetic compartmentalization.
Collapse
Affiliation(s)
- Haimei Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| |
Collapse
|
50
|
Zentner C, Concellón A, Swager TM. Controlled Movement of Complex Double Emulsions via Interfacially Confined Magnetic Nanoparticles. ACS CENTRAL SCIENCE 2020; 6:1460-1466. [PMID: 32875087 PMCID: PMC7453569 DOI: 10.1021/acscentsci.0c00686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/03/2023]
Abstract
Controlled, dynamic movement of materials through noncontacting forces provides interesting opportunities in systems design. Confinement of magnetic nanoparticles to the interfaces of double emulsions introduces exceptional control of double emulsion movement. We report the selective magnetic functionalization of emulsions by the in situ selective reactions of amine-functionalized magnetic nanoparticles and oil-soluble aldehydes at only one of the double emulsion's interfaces. We demonstrate morphology-dependent macroscopic ferromagnetic behavior of emulsions induced by the interfacial confinement of the magnetic nanoparticles. The attraction and repulsion of the emulsions to applied magnetic fields results in controlled orientation changes and rotational movement. Furthermore, incorporation of liquid crystals into the double emulsions adds additional templating capabilities for precision assembly of magnetic nanoparticles, both along the interface and at point defects. Applying a magnetic field to liquid crystal complex emulsions can produce movement as well as reorganization of the director field in the droplets. The combination of interfacial chemistry and precise assembly of magnetic particles creates new systems with potentially useful field-responsive properties.
Collapse
|