1
|
Li J, Tan Q, Li J, Qin W, Li C, Teng Q, Yang Y, Wang Y, Cao Y, Hu Y, Zhang J, Yuan F. Helical coassembly enables full-color efficient circularly polarized light emission from carbon dots with high dissymmetry factors. SCIENCE ADVANCES 2025; 11:eadt8219. [PMID: 40378219 PMCID: PMC12083528 DOI: 10.1126/sciadv.adt8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Printing materials with circularly polarized light (CPL) emission holds promise for flexible stereoscopic displays and multilevel anticounterfeiting solutions. However, a key challenge lies in developing printable CPL materials that exhibit both high photoluminescence quantum yield (PLQY) and luminescence dissymmetry factor (glum) values. In this study, we present the macroscopic and controllable production of efficient full-color CPL carbon dot (CDs) photonic paint materials. These printable CPL materials, consisting of heavy metal-free CDs as emitters, and liquid crystals as host matrices, are produced using a helical coassembly strategy. Our CPL systems based on CDs achieve high PLQY (more than 80%) and glum values (more than 1.4), with a figure of merit (a key performance indicator for CPL properties calculated by multiplying PLQY and glum) of 1.12, outperforming other CPL material systems. Furthermore, the full-color CDs-CPL is successfully used for printing flexible circularly polarized luminous patterns and multilevel anticounterfeiting features. This research provides insights into advanced CPL materials, highlighting their broad potential applications.
Collapse
Affiliation(s)
- Jinsui Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qinghua Tan
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jinyang Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wendi Qin
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenhao Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qian Teng
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyue Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yifeng Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ye Cao
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuchen Hu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Ghorai S, Show S, Das A. Hydrogen Bonding-Induced Inversion and Amplification of Circularly Polarized Luminescence (CPL) in Supramolecular Assemblies of Axially Chiral Luminogens. Angew Chem Int Ed Engl 2025; 64:e202500879. [PMID: 39943890 DOI: 10.1002/anie.202500879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Herein, we report the self-assembly and chiroptical properties of two axially chiral π-conjugated luminogens, R-NMI and S-NMI, each equipped with two pyridyl moieties for hydrogen (H)-bonding with chiral diacids. The two enantiomers display aggregation-induced emission enhancement (AIEE) and increased CD and CPL signals in the self-assembled state with a high glum value of 1.5 (±0.06)×10-2 in 1:9 dioxane:methylcyclohexane. Crystallographic analysis confirmed mirror-image helical structures for R-NMI and S-NMI involving both intra- and intermolecular π-π stacking, leading to elongated hexagonal platelets. Supramolecular co-assembly of R-NMI with D- and L-tartaric acids (D-TA and L-TA) could remarkably modulate and invert the chiroptical properties of R-NMI, which is unachievable with control chiral monoacids. The co-assembled structures were driven by pyridine-carboxylic acid H-bonding as revealed from the crystal structure analysis, which was also supported by computational studies. Strikingly, R-NMI+D-TA leads to an exceptionally high fourfold amplification in the glum value [5.4 (±0.04)×10-2] with an inverted sign, which additionally demonstrates intriguing temperature-dependent switching. In contrast, R-NMI+L-TA results in a threefold reduction in the glum value [0.54 (±0.015)×10-3], also with an inverted sign compared to R-NMI alone, establishing a clear strategy for chiral discrimination between the two enantiomers of TA.
Collapse
Affiliation(s)
- Sandipan Ghorai
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| | - Soumyadip Show
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| |
Collapse
|
3
|
Zhou Y, Yin F, Hu SJ, Zhou LP, Yang J, Sun QF. Supramolecular Eu(III) 4L 4 Tetrahedra-Based Films for Luminescence Sensing of Volatile Amines with Sub-ppt-Level Detection Limit. Inorg Chem 2025; 64:6927-6934. [PMID: 40146921 DOI: 10.1021/acs.inorgchem.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Metal-organic cages are a class of discrete supramolecular architectures endowed with a well-defined cavity and diverse functionalities, offering a broad range of applications that, however, are predominantly confined to liquid phases. In this study, we present the self-assembly of supramolecular Eu(III)4L4 tetrahedra, constructed from triarylborane-cored tritopic tridentate ligands, which were fabricated into spin-coated films with bright emission, smooth surfaces, and uniform thickness. These films demonstrated ultralow detection limits for a series of volatile amines, reaching the sub-ppt level. This work serves as a compelling example of the preparation and application of metal-organic-cage-based films, paving the way for broader application scenarios.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Jian Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Yao Z, Gao T, Yan P, Zhou Y, Li H. Strong upconverted circularly polarized emission from a chiral tetrahedral Yb/Eu cage. Dalton Trans 2025; 54:5731-5738. [PMID: 40079846 DOI: 10.1039/d5dt00219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Upconverted circularly polarized luminescence (UC-CPL) materials have attracted significant attention due to their potential in optical sensing and bioimaging. However, achieving UC-CPL in lanthanide supramolecular systems remains a challenge due to the extended distances between lanthanide ions. Here, enantiopure tetrahedral cages, (Yb/Eu)4L4(R/S-BINAPO)4, are assembled using achiral C3-symmetric ligands, Ln(III) ions and chiral ancillary ligands. Upon 980 nm excitation, the heterometallic tetrahedral cages exhibit strong UC-CPL (glum = 0.22) and high ΦUC of 3.50 × 10-6. Moreover, through femtosecond transient absorption spectroscopy, we reveal that the ligand's triplet state (T1) serves as a critical mediator in the upconversion energy transfer process within the lanthanide complex, facilitating the efficient transfer of energy from the excited state of Yb3+ to the Eu3+ center via the mechanistic pathway Yb** → T1 → Eu*.
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| |
Collapse
|
5
|
Li YQ, Fu L, Jiang Z, Han E, Li T, Bai Q, Xie TZ, Zhang Z, Wang P, Wu T. Controlling the Chirality of Metallo-Cages by Manipulating the Stereochemistry of the Metal Centers. Angew Chem Int Ed Engl 2025:e202503833. [PMID: 40162992 DOI: 10.1002/anie.202503833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Precise control over the chirality of metallo-cages by manipulating the stereochemistry of metal centers is important in many practical applications, but is extremely challenging. In this study, two isostructural metallo-cuboctahedra (1-ZnII 12L18 and 2-CdII 12L18) have been assembled using ligand L1 and two kinds of metal ions (ZnII and CdII) with similar coordination lability. The chiral-induction by the same guests (D-/L-camphorsulfonate, D-/L-SCS) results in a completely opposing stereochemical output of 1 and 2: D-SCS induced host-guest complex of [D-SCS⊂Δ12-1] and [D-SCS⊂Λ12-2], respectively, with reverse handedness. The distinct stereochemical configuration of metallo-cuboctahedra can be manipulated by participant metal ions that exhibit similar dynamics. Furthermore, a subtle variation of the ligand peripheral substituent group facilitates spontaneous resolution of metallo-cuboctahedra 3-ZnII 12L28 from a racemic mixture as (R24, Λ12)-3/(S24, Δ12)-3 enantiopure entities. The dynamic stereochemistry of MII 12L8 cuboctahedra described in this work allows a chiral manipulation based on the nature of metal centers and ligands, enabling the design and control of the chirality of metallo-cages.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Fu
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tian Li
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Qixia Bai
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Zhe Zhang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tun Wu
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institution Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Preda G, Ciccarello EM, Bianchi A, Zinna F, Botta C, Di Bari L, Pasini D. Flexible and rigid "chirally distorted" π-systems: binaphthyl conjugates as organic CPL-active chromophores. Org Biomol Chem 2025; 23:2918-2924. [PMID: 39991978 DOI: 10.1039/d5ob00086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The inclusion of high-performance dyes into chiral π-conjugated systems is an effective strategy for activating significant chiroptical properties. We report the preparation and characterization of configurationally stable, axially-chiral π-conjugated systems in which acridone or 2,5-diarylamino-terephthalate has been fused into the chiral scaffold of a 1,1'-binaphthyl moiety. The high-yielding synthesis afforded π-conjugated systems with characteristics essentially matching those of the parent dyes while introducing detectable CPL activity in solution. In the acridone conjugate, good fluorescence is maintained in solution, but in the solid state, the distortion introduced by the binaphthyl system does not substantially help in restoring emissive properties; the flexibility and the emissive properties of the 2,5-diphenylamino-terephthalate chromophore are maintained in the conjugate. The new chiral chromophoric systems show absorption in the UV-vis domain, with good fluorescence properties in the visible range (quantum yields up to 23% and glum values up to 4 × 10-4).
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM, University of Pavia Via Taramelli 12, 27100 Pavia, Italy.
| | - Elisa Maria Ciccarello
- Department of Chemistry and INSTM, University of Pavia Via Taramelli 12, 27100 Pavia, Italy.
| | - Alessio Bianchi
- Department of Chemistry and INSTM, University of Pavia Via Taramelli 12, 27100 Pavia, Italy.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Botta
- SCITEC-CNR, Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche 'G. Natta', Via A. Corti 12, 20133 Milano, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM, University of Pavia Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Zhao T, Zhang YF, Wang GH, Wang XX, Feng PF, Zang SQ. Amino-Acid-Induced Circularly Polarized Luminescence of Octahedral Lanthanide Cage. Angew Chem Int Ed Engl 2025; 64:e202421426. [PMID: 39789903 DOI: 10.1002/anie.202421426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu6(C21H6F15O6)8(H2O)6 exhibited red light emission with high quantum yields of 61 %. Then, we successfully synthesized lanthanide compounds with circularly polarized luminescent activity by chiral induction of the racemic mixture with arginine. The luminescence asymmetry factor was 0.53, and the circularly polarized luminescent merit figure reached 0.323. High-performance circularly polarized luminescent of racemic cage like compound systems have achieved using cheap and readily available chiral amino acid molecules through chiral induction.
Collapse
Affiliation(s)
- Teng Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Fei Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guang-Hao Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuan-Xuan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng-Fei Feng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Yang Q, Zhang B, Tu B, Dong W, Zhou X, Song J, Xiang H. Metal-Induced Distally Axial Chirality of Vertical Binuclear Platinum(II) Complexes: Chirality Self-Sorting and Chiral Stability/Phosphorescence Enhancement. Chem Asian J 2025:e202500344. [PMID: 40019345 DOI: 10.1002/asia.202500344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Chirality is a fundamental property of nature. Herein, we demonstrate a straightforward strategy to build a new kind of metal-induced distally axial chirality based on vertical binuclear platinum(II) complexes. The strong and balanced steric hindrance between the four methyl substituents of sym-tetraacetylethane bridging ligand causes the two Pt-containing hexatomic rings in these binuclear Pt(II) complexes to be orthogonally linked by a C-C single bond. Although the two heterobidentate 2-phenylpyridine (C N) ligands are spatially distant from the C-C single bond, they are strictly orthogonal to each other, resulting in metal-induced distally axial chirality. Moreover, such distally axial chirality can reduce the synthesis difficulty of asymmetric bridging ligands, extend axially chiral plane without distorting the coordination configuration, and enhance rotational barriers for high phosphorescent quantum yield and racemization energy barrier. The enantiomers of complexes can be separated by chiral high-performance liquid chromatography (HPLC) and their absolute configurations were confirmed by X-ray diffraction, circular dichroism, and density functional theory calculation. Furthermore, without the use of chiral HPLC, enantiopure complexes can be prepared using chiral binaphthalene- and estrone-based C N ligands through chirality self-sorting. The estrone groups can also facilitate the formation of supramolecular gels by self-assembly.
Collapse
Affiliation(s)
- Qingping Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Tu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenjing Dong
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jintong Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
9
|
Wang X, Ma Q, Yin S, Gao T, Yan P, Zhou Y, Li H. Solvent induced self-assembly of a dinuclear Eu(III) helicate and emergent strong CPL. Dalton Trans 2025; 54:1343-1347. [PMID: 39782891 DOI: 10.1039/d4dt02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Herein, we report the influence of solvent on the self-assembly of a dinuclear helicate, (NMe4)2[Eu2(LR)4]. A multiple species mixture with the chemical composition of [Eu2(LR)2n]n- present in CH3CN can be transformed into a helicate upon increasing the content of CHCl3, accompanied by a significant enhancement in circularly polarized luminescence activity.
Collapse
Affiliation(s)
- Xinglu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Qing Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Sen Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| |
Collapse
|
10
|
Wang X, Gao X, Zhong H, Yang K, Zhao B, Deng J. Three-Level Chirality Transfer and Amplification in Liquid Crystal Supramolecular Assembly for Achieving Full-Color and White Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412805. [PMID: 39487629 DOI: 10.1002/adma.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Chiral liquid crystal supramolecular assembly provides an ideal strategy for constructing excellent circularly polarized luminescence (CPL) materials. However, the chirality transfer in chiral liquid crystals normally occurs at two levels from the configurational chirality to the supramolecular phase chirality. The more precise and more levels of chirality transmission are fascinating but remain challenging. The present work reports the first success of three-level chirality transfer and amplification from configurationally point chirality of small molecules to conformationally helical chirality of helical polymers and finally to supramolecular phase chirality of cholesteric liquid crystals composed of chiral nonfluorescent polymers (P46) and nematic liquid crystals. Noticeably, the helical twisting power of P46 is five-fold larger than its monomer. Full-color and white CPL with maximum luminescence dissymmetry factor up to 1.54 and photoluminescence quantum yield up to 63.8% are realized utilizing helical supramolecular assembly combined with selective reflection mechanism. Also significantly, the electrically stimuli-responsive CPL switching device as well as anti-counterfeiting security, information encryption, and chiral logic gate applications are developed. This study deepens the understanding of chirality transfer and amplification across different hierarchical levels.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Imayoshi A, Fujio S, Nagaya Y, Sakai M, Terazawa A, Sakura M, Okada K, Kimoto T, Mori T, Imai Y, Hada M, Tsubaki K. Inversion of circularly polarized luminescence by electric current flow during transition. Phys Chem Chem Phys 2024; 27:77-82. [PMID: 39569563 DOI: 10.1039/d4cp02968b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The development of chiral compounds exhibiting circularly polarized luminescence (CPL) has advanced remarkably in recent years. Designing CPL-active compounds requires an understanding of the electric transition dipole moment (μ) and the magnetic transition dipole moment (m) in the excited state. However, while the direction and magnitude of μ can, to some extent, be visually inferred from chemical structures, m remains elusive, posing challenges for direct predictions based on structural information. This study utilized binaphthol, a prominent chiral scaffold, and achieved CPL-sign inversion by strategically varying the substitution positions of phenylethynyl (PE) groups on the binaphthyl backbone, while maintaining consistent axial chirality. Theoretical investigation revealed that the substitution position of PE groups significantly affects the orientation of m in the excited state, leading to CPL-sign inversion. Furthermore, we propose that this CPL-sign inversion results from a reversal in the rotation of instantaneous current flow during the S1 → S0 transition, which in turn alters the orientation of m. The current flow can be predicted from the chemical structure, allowing anticipation of the properties of m and, consequently, the characteristics of CPL. This insight provides a new perspective in designing CPL-active compounds, particularly for C2-symmetric molecules where the S1 → S0 transition predominantly involves LUMO → HOMO transitions. If μ represents the directionality of electron movement during transitions, i.e., the "difference" in electron locations before and after transitions, then m could be represented as the "path" of electron movement based on the current flow during the transition.
Collapse
Affiliation(s)
- Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shinya Fujio
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Yuuki Nagaya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misato Sakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Atsushi Terazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misa Sakura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Keita Okada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takahiro Kimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahiko Hada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
12
|
Xue W, Benchimol E, Walther A, Ouyang N, Holstein JJ, Ronson TK, Openy J, Zhou Y, Wu K, Chowdhury R, Clever GH, Nitschke JR. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible Zn II4L 4 Cages. J Am Chem Soc 2024; 146:32730-32737. [PMID: 39541177 PMCID: PMC11613429 DOI: 10.1021/jacs.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Here, we report the synthesis of a family of chiral ZnII4L4 tetrahedral cages by subcomponent self-assembly. These cages contain a flexible trialdehyde subcomponent that allows them to adopt stereochemically distinct configurations. The incorporation of enantiopure 1-phenylethylamine produced Δ4 and Λ4 enantiopure cages, in contrast to the racemates that resulted from the incorporation of achiral 4-methoxyaniline. The stereochemistry of these ZnII4L4 tetrahedra was characterized by X-ray crystallography and chiroptical spectroscopy. Upon binding the enantiopure natural product podocarpic acid, the ZnII stereocenters of the enantiopure Δ4-ZnII4L4 cage retained their Δ handedness. In contrast, the metal stereocenters of the enantiomeric Λ4-ZnII4L4 cage underwent inversion to a Δ configuration upon encapsulation of the same guest. Insights gained about the stereochemical communication between host and guest enabled the design of a process for acid/base-responsive guest uptake and release, which could be followed by chiroptical spectroscopy.
Collapse
Affiliation(s)
- Weichao Xue
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Elie Benchimol
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandre Walther
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Nianfeng Ouyang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Julian J. Holstein
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Joseph Openy
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Yujuan Zhou
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Guido H. Clever
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
13
|
Walther A, Tusha G, Schmidt B, Holstein JJ, Schäfer LV, Clever GH. Solvent-Directed Social Chiral Self-Sorting in Pd 2L 4 Coordination Cages. J Am Chem Soc 2024; 146:32748-32756. [PMID: 39550724 PMCID: PMC11626499 DOI: 10.1021/jacs.4c12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
A family of Pd2L4 cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative ("social") chiral self-sorting, exclusively yielding the meso-trans product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form. The experimental (solvent-dependent NMR, single-crystal X-ray diffraction) observations of this cooperative interaction could be explained by computational analyses only when explicit solvation was considered. Furthermore, we prepared a larger chiral ligand with isoquinoline donors, which, unlike the first one, does not undergo social self-sorting from its racemic mixture, further highlighting the importance of solvents bridging short distances between the amino groups. Homochiral cages formed from this larger ligand, however, furnish a cavity that can bind anionic and neutral metal complexes such as [Pt(CN)6]2- and Cr(CO)6 and discriminate between the two enantiomers of chiral guest camphor sulfonate.
Collapse
Affiliation(s)
- Alexandre Walther
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto Hahn Str. 6, 44227 Dortmund, Germany
| | - Gers Tusha
- Center
for Theoretical Chemistry, Ruhr University
Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| | - Björn Schmidt
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto Hahn Str. 6, 44227 Dortmund, Germany
| | - Julian J. Holstein
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto Hahn Str. 6, 44227 Dortmund, Germany
| | - Lars V. Schäfer
- Center
for Theoretical Chemistry, Ruhr University
Bochum, Universitätsstr.
150, 44801 Bochum, Germany
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto Hahn Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Liu J, Song W, Niu H, Lu Y, Yang H, Li W, Zhao YZ, Miao Z. Superior Circularly Polarized Luminescence Brightness Achieved with Chiral Heteroleptic Nine-Coordinate Coumarin-Based Tb 3+ Complexes. Inorg Chem 2024; 63:18429-18437. [PMID: 39270127 DOI: 10.1021/acs.inorgchem.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness (BCPL) must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb3+ complexes, [Tb(Coum)3(1R,2R-Ph-PyBox)] (2) and [Tb(Coum)3(1S,2S-Ph-PyBox)] (5), combining 3-acetyl-4-hydroxy-coumarin (Coum) and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (1R,2R/1S,2S-Ph-PyBox). The photophysical properties of these novel complexes have been fully characterized. The combined point-chiral induction capability of chiral bis(oxazoline) derivatives and the outstanding photophysical properties of the coumarin-derived ligand have resulted in an intense excited-state chiroptical activity (|glum| = 0.097-0.103) for both Tb3+ enantiomers, with a bright Tb3+-centered high-purity green emission (ΦPL = 74%) and enhanced antenna-centered absorption behavior (ε320 nm = 47820-47940 M-1 cm-1). A superior BCPL (1132.7-1205.8 M-1 cm-1 at 5D4 → 7F5) has been established for complexes 2 and 5. The strategy adopted in this work provides a new route to chiroptical organo-Tb3+ luminophores with outstanding comprehensive performance.
Collapse
Affiliation(s)
- Jiaxiang Liu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Huizhe Niu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Ying Lu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Haiyan Yang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wentao Li
- College of Big Data and Information Engineering, Institute of Advanced Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, PR China
| | - Yu-Zhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
15
|
Yang T, Duan H, Nian H, Wang P, Yan C, Cao F, Li Q, Cao L. Unraveling the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in aqueous host-guest complexation. Biosens Bioelectron 2024; 258:116342. [PMID: 38705071 DOI: 10.1016/j.bios.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In biological systems, nucleosides play crucial roles in various physiological processes. In this study, we designed and synthesized four achiral anthracene-based tetracationic nanotubes (1-4) as artificial hosts and chiroptical sensors for nucleosides in aqueous media. Notably, different nanotubes exhibit varied chirality sensing on circular dichroism (CD)/circularly polarized luminescence (CPL) spectra through the host-guest complexation, which prompted us to explore the factors influencing their chiroptical responses. Through systematic host-guest experiments, the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in the host-guest complexation was unraveled. Firstly, the CD response originates from the anthracene rings situated at the side-wall position, resulting from the right-handed (P)- or left-handed (M)-twisted conformation of the macrocyclic structure. Secondly, the CPL signal is influenced by the presence of anthracene rings at the linking-wall position, which results from intermolecular chiral twisted stacking between these anthracene rings. Therefore, these nanotubes can serve as chiroptical sensor arrays to enhance the accuracy of nucleotide recognition through principal component analysis (PCA) analysis based on the diversified CD spectra. This study provides insights for the construction of adaptive chirality from achiral nanotubes with dynamic conformational nature and might facilitate further design of chiral functional materials for several applications.
Collapse
Affiliation(s)
- Ting Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Xian North Qinghua Electrical Co., Ltd, Xi'an, 710054, China
| | - Hao Nian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fan Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Yu Y, Hu Y, Ning C, Shi W, Yang A, Zhao Y, Cao ZY, Xu Y, Du P. BINOL-Based Chiral Macrocycles and Cages. Angew Chem Int Ed Engl 2024; 63:e202407034. [PMID: 38708741 DOI: 10.1002/anie.202407034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.
Collapse
Affiliation(s)
- Yabing Yu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yaning Hu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Chengbing Ning
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Wudi Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Ao Yang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Yibo Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Pingwu Du
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, 475004, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China
| |
Collapse
|
17
|
Lu Y, Ding XX, Zhong JS, Jiang ZG, Zhan CH. Enantioselective Synthesis of Homochiral Hierarchical Nd 8Fe 3-Oxo Cluster from Racemic Nd 9Fe 2-Oxo Cluster. Inorg Chem 2024; 63:12935-12942. [PMID: 38941590 DOI: 10.1021/acs.inorgchem.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Enantioselective synthesis of homochiral rare earth clusters is still a great challenge. In this work, we developed an efficient "cluster to cluster" approach, that is, a pair of enantiomerical R/S-{Nd8Fe3}-oxo clusters were successfully obtained from the presynthesized racemic {Nd9Fe2}-oxo cluster. R/S-hydrobenzoin ligands trigger the transformation of the pristine clusters by an SN2-like mechanism. Compared to the pristine cluster with an achiral core, the new cluster exhibits hierarchical chirality, from ligand chirality to interface chirality, then to helix chirality, and finally to supramolecular double helix chirality. The spectral experiments monitored the transformation and confirmed distinctly structure-related optical activity. The enantiomeric pure cluster also exhibits a potential asymmetric catalytic activity.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiu-Xia Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Suo Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
18
|
Guo S, Zhan WW, Yang FL, Zhou J, Duan YH, Zhang D, Yang Y. Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D 2h-symmetric anions. Nat Commun 2024; 15:5628. [PMID: 38965215 PMCID: PMC11224320 DOI: 10.1038/s41467-024-49964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The control of a molecule's geometry, chirality, and physical properties has long been a challenging pursuit. Our study introduces a dependable method for assembling D3-symmetric trigonal bipyramidal coordination cages. Specifically, D2h-symmetric anions, like oxalate and chloranilic anions, self-organize around a metal ion to form chiral-at-metal anionic complexes, which template the formation of D3-symmetric trigonal bipyramidal coordination cages. The chirality of the trigonal bipyramid is determined by the point chirality of chiral amines used in forming the ligands. Additionally, these cages exhibit chiral selectivity for the included chiral-at-metal anionic template. Our method is broadly applicable to various ligand systems, enabling the construction of larger cages when larger D2h-symmetric anions, like chloranilic anions, are employed. Furthermore, we successfully produce enantiopure trigonal bipyramidal cages with anthracene-containing backbones using this approach, which would be otherwise infeasible. These cages exhibit circularly polarized luminescence, which is modulable through the reversible photo-oxygenation of the anthracenes.
Collapse
Affiliation(s)
- Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng-Lei Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Hao Duan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Zhang X, Chen X, Fu S, Cao Z, Gong W, Liu Y, Cui Y. Homochiral π-Rich Covalent Organic Frameworks Enabled Chirality Imprinting in Conjugated Polymers: Confined Polymerization and Chiral Memory from Scratch. Angew Chem Int Ed Engl 2024; 63:e202403878. [PMID: 38506535 DOI: 10.1002/anie.202403878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Optically active π-conjugated polymers (OACPs) have garnered increasing research interest for their resemblance to biological helices and intriguing chirality-related functions. Traditional methods for synthesizing involve decorating achiral conjugated polymer architectures with enantiopure side substituents through complex organic synthesis. Here, we report a new approach: the templated synthesis of unsubstituted OACPs via supramolecularly confined polymerizations of achiral monomers within nanopores of 2D or 3D chiral covalent organic frameworks (CCOFs). We show that the chiral π-rich nanospaces facilitate the in situ enantiospecific polymerization and self-propagation, akin to nonenzymatic polymerase chain reaction (PCR) system, resulting in chiral imprinting. The stacked polymer chains are kinetically inert enough to memorize the chiral information after liberating from CCOFs, and even after treatment at temperature up to 200 °C. The isolated OACPs demonstrate robust enantiodiscrimination, achieving up to 85 % ee in separating racemic amino acids. This underscores the potential of utilizing CCOFs as templates for supramolecularly imprinting optical activity into CPs, paving the way for synthetic evolution and advanced functional exploration of OACPs.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinfa Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziping Cao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Mobian P, Pham DJ, Chaumont A, Barloy L, Khalil G, Kyritsakas N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J Am Chem Soc 2024; 146:14067-14078. [PMID: 38728688 DOI: 10.1021/jacs.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.
Collapse
Affiliation(s)
- Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - David-Jérôme Pham
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140 (team MSM), F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Georges Khalil
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Nathalie Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 (team LTM), F-67000 Strasbourg, France
| |
Collapse
|
21
|
Caffrey DF, Gorai T, Rawson B, Martínez‐Calvo M, Kitchen JA, Murray NS, Kotova O, Comby S, Peacock RD, Stachelek P, Pal R, Gunnlaugsson T. Ligand Chirality Transfer from Solution State to the Crystalline Self-Assemblies in Circularly Polarized Luminescence (CPL) Active Lanthanide Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307448. [PMID: 38447160 PMCID: PMC11095229 DOI: 10.1002/advs.202307448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.
Collapse
Affiliation(s)
- David F. Caffrey
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- Present address:
Department of Polymers and Functional MaterialsCSIR‐Indian Institute of Chemical TechnologyHyderabad500007India
| | - Bláithín Rawson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Miguel Martínez‐Calvo
- Departamento de Química Inorgánica, Facultade de QuímicaCampus VidaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Jonathan A. Kitchen
- Chemistry, Institute of Natural and Mathematical SciencesMassey UniversityAuckland0632New Zealand
| | - Niamh S. Murray
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| | - Steve Comby
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
| | | | | | - Robert Pal
- Department of ChemistryDurham UniversityDurhamDH1 3LEUK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)Trinity College DublinThe University of DublinDublin2Ireland
- AMBER (Advanced Materials and Bioengineering Research) CentreTrinity College DublinThe University of DublinDublin2Ireland
| |
Collapse
|
22
|
Li YL, Wang HL, Zhu ZH, Wang YF, Liang FP, Zou HH. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat Commun 2024; 15:2896. [PMID: 38575592 PMCID: PMC10994944 DOI: 10.1038/s41467-024-47246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Yu-Feng Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
23
|
He X, Zheng Y, Luo Z, Wei Y, Liu Y, Xie C, Li C, Peng D, Quan Z. Bright Circularly Polarized Mechanoluminescence from 0D Hybrid Manganese Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309906. [PMID: 38228314 DOI: 10.1002/adma.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Hybrid metal halides (HMHs) with efficient circularly polarized luminescence (CPL) have application prospects in many fields, due to their abundant host-guest structures and high photoluminescence quantum yield (PLQY). However, CPLs in HMHs are predominantly excited by light or electricity, limiting their use in multivariate environments. It is necessary to explore a novel excitation method to extend the application of chiral HMHs as smart stimuli-responsive optical materials. In this work, an enantiomeric pair of 0D hybrid manganese bromides, [H2(2R,4R)-(+)/(2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane]MnBr4 [(R/S)-1] is presented, which exhibits efficient CPL emissions with near-unity PLQYs and high dissymmetry factors of ± 2.0 × 10-3. Notably, (R/S)-1 compounds exhibit unprecedented and bright circularly polarized mechanoluminescence (CPML) emissions under mechanical stimulation. Moreover, (R/S)-1 possess high mechanical force sensitivities with mechanoluminescence (ML) emissions detectable under 0.1 N force stimulation. Furthermore, this ML emission exhibits an extraordinary antithermal quenching effect in the temperature range of 300-380 K, which is revealed to originate from a thermal activation energy compensation mechanism from trap levels to Mn(II) 4T1 level. Based on their intriguing optical properties, these compounds as chiral force-responsive materials are demonstrated in multilevel confidential information encryption.
Collapse
Affiliation(s)
- Xin He
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhishan Luo
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chenlong Xie
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chen Li
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zewei Quan
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
24
|
Song Q, Yang J, Zheng K, Zhang T, Yuan C, Yuan LM, Hou X. Chiral Memory in Dynamic Transformation from Porous Organic Cages to Covalent Organic Frameworks for Enantiorecognition Analysis. J Am Chem Soc 2024; 146:7594-7604. [PMID: 38462726 DOI: 10.1021/jacs.3c13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The preservation of chirality during a transformation process, known as the "chiral memory" effect, has garnered significant attention across multiple research disciplines. Here, we first report the retention of the original chiral structure during dynamic covalent chemistry (DCC)-induced structural transformation from porous organic cages into covalent organic frameworks (COFs). A total of six two-dimensional chiral COFs constructed by entirely achiral building blocks were obtained through the DCC-induced substitution of chiral linkers in a homochiral cage (CC3-R or -S) using achiral amine monomers. Homochirality of these COFs resulted from the construction of 3-fold-symmetric benzene-1,3,5-methanimine cores with a propeller-like configuration of one single-handedness throughout the cage-to-COF transformation. The obtained chiral COFs can be further utilized as fluorescence sensors or chiral stationary phases for gas chromatography with high enantioselectivity. The present study thus highlighted the great potential to expand the scope of functional chiral materials via DCC-induced crystal-to-crystal transformation with the chiral memory effect.
Collapse
Affiliation(s)
- Qinyi Song
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, PR China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ji Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Kangni Zheng
- Department of Chemistry, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Tong Zhang
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Chen Yuan
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, PR China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Xiandeng Hou
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, PR China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
25
|
Guo XQ, Zhou LP, Hu SJ, Sun QF. Subtle adjustments for constructing multi-nuclear luminescent lanthanide organic polyhedra with triazole-based chelates. Dalton Trans 2024; 53:4772-4780. [PMID: 38363173 DOI: 10.1039/d3dt03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Controlled self-assembly of predetermined multi-nuclear lanthanide organic polyhedra (LOPs) still presents a challenge, primarily due to the unpredictable coordination numbers and labile coordination geometries of lanthanide ions. In this study, through introducing triazole-based chelates to increase the chelating angle of C2-symmetric linear ligands and stabilize the coordination geometry of Eu(III) centers, M4L6-type (M = EuIII, L = ligand) tetrahedra were efficiently synthesized, especially a biphenyl-bridged ligand which is well known to form M2L3-type helicates. A series of LOPs were formed and characterized by high-resolution electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and X-ray crystallography. Moreover, the europium complexes exhibit bright emission (luminescence quantum yield up to 42.4%) and circularly polarized luminescence properties (|glum| up to 4.5 × 10-2). This study provides a feasible strategy for constructing multi-nuclear luminescent LOPs towards potential applications.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
26
|
Grasser M, Le Guennic B. Ab initio investigations of circularly polarised luminescence in Samarium(III)-based complexes. Phys Chem Chem Phys 2024; 26:7203-7210. [PMID: 38349763 DOI: 10.1039/d3cp05695c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The present study aims to gain insight into the circularly polarised luminescence (CPL) of lanthanide complexes through the angle of one of their elements, namely Samarium. The simulation of luminescent properties of Samarium(III) complexes remains a challenge for computational chemistry, considering the multiconfigurational character of the electronic structure, the importance of the spin-orbit coupling and the fact that its emissive level is high in energy and preceded by numerous states of various multiplicity. Herein, a methodology based on CASSCF/RASSI-SO calculations is exposed and applied to simulate the CPL properties of two different Samarium(III) complexes, presenting either a rigid or a flexible architecture around the centre ion.
Collapse
Affiliation(s)
- Maxime Grasser
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
27
|
Zhu H, Pesce L, Chowdhury R, Xue W, Wu K, Ronson TK, Friend RH, Pavan GM, Nitschke JR. Stereocontrolled Self-Assembly of a Helicate-Bridged Cu I12L 4 Cage That Emits Circularly Polarized Light. J Am Chem Soc 2024; 146:2379-2386. [PMID: 38251985 PMCID: PMC10835658 DOI: 10.1021/jacs.3c11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luca Pesce
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | - Rituparno Chowdhury
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weichao Xue
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
- Department
of Applied Science and Techology, Politecnico
di Torino, 10129 Torino, Italy
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
29
|
Shang W, Wang Y, Zhu X, Liang T, Du C, Xiang J, Liu M. Helical Cage Rotors Switched on by Brake Molecule with Variable Fluorescence and Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:27639-27649. [PMID: 38054305 DOI: 10.1021/jacs.3c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
While chiral molecular rotors have unique frames and cavities to possibly generate switchable chiroptical functions, it still remains a formidable challenge to precisely restrict their rotations to activate certain functions such as fluorescence as well as circularly polarized luminescence (CPL), which are strongly related to the local molecular rotations. Herein, we design a pair of enantiopure helical cage rotors, which emit light neither at the molecular state nor in the crystal or aggregation states, although they contain luminophore groups. However, upon mounting with fluoroaromatic borane (TFPB) as a molecular brake, the phenyl rotation of the helical cage can be effectively hindered and fluorescence and CPL activities of the molecular cage are switched on. Crystal structure analysis reveals that the rotation is restricted through synergistic B-O-H-N bonding and a fluoroaromatic-aromatic (ArF-Ar) dipole interaction. Moreover, the helical cages are switched on stepwise with color-variable fluorescence and CPL by the inner brake in the molecular state and the outer brake in the supramolecular assemblies, respectively. This work not only provides the design idea of chiroptical molecular rotors but also unveils how fluorescence and CPL could be generated in cage rotor systems.
Collapse
Affiliation(s)
- Weili Shang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Tongling Liang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Junfeng Xiang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|
30
|
Bell DJ, Zhang T, Geue N, Rogers CJ, Barran PE, Bowen AM, Natrajan LS, Riddell IA. Hexanuclear Ln 6 L 6 Complex Formation by Using an Unsymmetric Ligand. Chemistry 2023; 29:e202302497. [PMID: 37733973 PMCID: PMC10946940 DOI: 10.1002/chem.202302497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.
Collapse
Affiliation(s)
- Daniel J. Bell
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Tongtong Zhang
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Niklas Geue
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Ciarán J. Rogers
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- National Research Facility for Electron Paramagnetic ResonancePhoton Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass SpectrometryDepartment of ChemistryThe University of Manchester131 Princess StreetManchesterM17DNUK
| | - Alice M. Bowen
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- National Research Facility for Electron Paramagnetic ResonancePhoton Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Louise S. Natrajan
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Imogen A. Riddell
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
31
|
Shi J, Xu W, Yu H, Wang X, Jin F, Zhang Q, Zhang H, Peng Q, Abdurahman A, Wang M. A Highly Luminescent Metallo-Supramolecular Radical Cage. J Am Chem Soc 2023; 145:24081-24088. [PMID: 37796113 DOI: 10.1021/jacs.3c07477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage (LMRC) constructed by the assembly of a tritopic terpyridinyl ligand RL with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn2+. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. LMRC exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of RL; meanwhile, LMRC also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration LMRC (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped LMRC film vanishes, revealing negligible spin-spin interactions between two radical centers in LMRC.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xing Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, Jiangsu 211816, China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Changchun, Jilin 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
32
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
33
|
Duan XF, Zhou LP, Li HR, Hu SJ, Zheng W, Xu X, Zhang R, Chen X, Guo XQ, Sun QF. Excited-Multimer Mediated Supramolecular Upconversion on Multicomponent Lanthanide-Organic Assemblies. J Am Chem Soc 2023; 145:23121-23130. [PMID: 37844009 DOI: 10.1021/jacs.3c06775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
Collapse
Affiliation(s)
- Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hao-Ran Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Bai Q, Guan YM, Wu T, Liu Y, Zhai Z, Long Q, Jiang Z, Su P, Xie TZ, Wang P, Zhang Z. Anion-Regulated Hierarchical Self-Assembly and Chiral Induction of Metallo-Tetrahedra. Angew Chem Int Ed Engl 2023; 62:e202309027. [PMID: 37552154 DOI: 10.1002/anie.202309027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.
Collapse
Affiliation(s)
- Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
35
|
Gao WB, Li Z, Tong T, Dong X, Qu H, Yang L, Sue ACH, Tian ZQ, Cao XY. Chiral Molecular Cage with Tunable Stereoinversion Barriers. J Am Chem Soc 2023; 145:17795-17804. [PMID: 37527407 DOI: 10.1021/jacs.3c04761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.
Collapse
Affiliation(s)
- Wen-Bin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianyi Tong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Andrew C-H Sue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
De Rosa DF, Stachelek P, Black DJ, Pal R. Rapid handheld time-resolved circularly polarised luminescence photography camera for life and material sciences. Nat Commun 2023; 14:1537. [PMID: 36941271 PMCID: PMC10027819 DOI: 10.1038/s41467-023-37329-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Circularly polarised luminescence (CPL) is gaining a rapidly increasing following and finding new applications in both life and material sciences. Spurred by recent instrumental advancements, the development of CPL active chiral emitters is going through a renaissance, especially the design and synthesis of CPL active luminescent lanthanide complexes owing to their unique and robust photophysical properties. They possess superior circularly polarised brightness (CPB) and can encode vital chiral molecular fingerprints in their long-lived emission spectrum. However, their application as embedded CPL emitters in intelligent security inks has not yet been fully exploited. This major bottleneck is purely hardware related: there is currently no suitable compact CPL instrumentation available, and handheld CPL photography remains an uncharted territory. Here we present a solution: an all solid-state small footprint CPL camera with no moving parts to facilitate ad hoc time-resolved enantioselective differential chiral contrast (EDCC) based one-shot CPL photography (CPLP).
Collapse
Affiliation(s)
- Davide F De Rosa
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Patrycja Stachelek
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Dominic J Black
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
37
|
Xue W, Pesce L, Bellamkonda A, Ronson TK, Wu K, Zhang D, Vanthuyne N, Brotin T, Martinez A, Pavan GM, Nitschke JR. Subtle Stereochemical Effects Influence Binding and Purification Abilities of an Fe II4L 4 Cage. J Am Chem Soc 2023; 145:5570-5577. [PMID: 36848676 PMCID: PMC9999408 DOI: 10.1021/jacs.3c00294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | | | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université Lyon, Ens de Lyon, CNRS UMR 5182, Lyon F69342, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland.,Department of Applied Science and Techology, Politecnico di Torino, 10129 Torino, Italy
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
38
|
Louis M, Tan YB, Reine P, Katao S, Nishikawa Y, Asanoma F, Kawai T. Conglomerate, Racemate, and Achiral Crystals of Polymetallic Europium(III) Compounds of Bis- or Tris-β-diketonate Ligands and Circularly Polarized Luminescence Study. ACS OMEGA 2023; 8:5722-5730. [PMID: 36816710 PMCID: PMC9933189 DOI: 10.1021/acsomega.2c07310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
This work reports (a) conglomerate and racemic crystal structures of [(Δ,Δ,Δ,Δ,Δ,Δ)- or/and (Λ,Λ,Λ,Λ,Λ,Λ)-EuIII 6(TTP)8(OH2)6Na4] n coordination polymers, (b) racemic crystal structures of (Δ,Δ,Δ,Δ)-/(Λ,Λ,Λ,Λ)-EuIII 4(TTP)4(bipy)4(MEK)2(OH2)2 tetrahedral clusters, and (c) the achiral crystal structure of the [EuIII 2(BTP)4(OH2)2Na2] n coordination polymer (where BTP = dianionic bis-β-diketonate, TTP = trianionic tris-β-diketonate, and bipy = 2,2'-bipyridine). The screw coordination arrangement of the TTP ligand has led to the formation of homoconfigurational racemic EuIII products. The conglomerate crystallization of [EuIII 6(TTP)8(OH2)6Na4] n appears to be caused by the presence of the sodium, Na+ counterions, and interactions between oxygen atoms and the trifluoromethyl unit of the TTP ligand and Na+ ions. All the EuIII compounds exhibit characteristic red luminescence (5D0 → 7FJ, J = 0-4) in solution or in the solid crystalline state. Circularly polarized luminescence (CPL) was observed in the chiral EuIII 6(TTP)8(OH2)6Na4] n species, displaying a |g lum| value in the range of 0.15 to 0.68 at the 5D0 → 7F1 emission band. Subtle changes of the [EuIII 6(TTP)8(OH2)6Na4] n structure which may be due to selection of twinned crystals or crystals that do not correspond to a perfect spontaneous resolution, are considered to be responsible for the variation in the observed CPL values.
Collapse
|
39
|
Tang X, Meng C, Rampal N, Li A, Chen X, Gong W, Jiang H, Fairen-Jimenez D, Cui Y, Liu Y. Homochiral Porous Metal-Organic Polyhedra with Multiple Kinds of Vertices. J Am Chem Soc 2023; 145:2561-2571. [PMID: 36649535 DOI: 10.1021/jacs.2c12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metal-organic polyhedra featuring non-Archimedean/Platonic architectures with multiple kinds of vertices have aroused great attention for their fascinating structures and properties but are yet challenging to achieve. Here, we report a combinatorial strategy to make such nonclassic polyhedral cages by combining kinetically labile metal ions with non-planar organic linkers instead of the usual only inert metal centers and planar ligands. This facilitates the synthesis of an enantiopure twisted tetra(3-pyridyl)-based TADDOL (TADDOL = tetraaryl-1,3-dioxolane-4,5-dimethanol) ligand (L) capable of binding Ni(II) ions to produce a regular convex cage, Ni6L8, with two mixed metal/organic vertices and three rarely reported concave cages Ni14L8, Ni18L12, and Ni24L16 with three or four mixed vertices. Each of the cages has an amphiphilic cavity decorated with chiral dihydroxyl functionalities and packs into a three-dimensional structure. The enantioselective adsorption and separation performances of the cages are strongly dependent on their pore structure features. Particularly, Ni14L8 and Ni18L12 with wide openings can be solid adsorbents for the adsorptive and solid-phase extractive separation of a variety of racemic spirodiols with up to 98% ee, whereas Ni6L8 and Ni24L16 with smaller pore apertures cannot adsorb the racemates. The combination of single-crystal X-ray diffraction analysis of the host-guest adduct and GCMC simulation indicates that the enantiospecific recognition capabilities originate from the well-organized chiral inner sphere as well as multiple interactions within the chiral microenvironment. This work therefore provides an attractive strategy for the rational design of polyhedral cages, showing geometrically fascinating structures with properties different from those of classic assemblies.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlong Meng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nakul Rampal
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Aurelia Li
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Dhbaibi K, Grasser M, Douib H, Dorcet V, Cador O, Vanthuyne N, Riobé F, Maury O, Guy S, Bensalah‐Ledoux A, Baguenard B, Rikken GLJA, Train C, Le Guennic B, Atzori M, Pointillart F, Crassous J. Multifunctional Helicene-Based Ytterbium Coordination Polymer Displaying Circularly Polarized Luminescence, Slow Magnetic Relaxation and Room Temperature Magneto-Chiral Dichroism. Angew Chem Int Ed Engl 2023; 62:e202215558. [PMID: 36449410 PMCID: PMC10107653 DOI: 10.1002/anie.202215558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.
Collapse
Affiliation(s)
- Kais Dhbaibi
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Maxime Grasser
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Haiet Douib
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH)Département des sciences de la matièreUniversité Larbi Tébessi de TébessaRoute de Constantine12002TébessaAlgérie
| | - Vincent Dorcet
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Olivier Cador
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | | | - François Riobé
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Olivier Maury
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Stéphan Guy
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Amina Bensalah‐Ledoux
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Bruno Baguenard
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Geert L. J. A. Rikken
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Boris Le Guennic
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Fabrice Pointillart
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| |
Collapse
|
41
|
Tailored Supramolecular Cage for Efficient Bio-Labeling. Int J Mol Sci 2023; 24:ijms24032147. [PMID: 36768471 PMCID: PMC9916613 DOI: 10.3390/ijms24032147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Fluorescent chemosensors are powerful imaging tools used in a broad range of biomedical fields. However, the application of fluorescent dyes in bioimaging still remains challenging, with small Stokes shifts, interfering signals, background noise, and self-quenching on current microscope configurations. In this work, we reported a supramolecular cage (CA) by coordination-driven self-assembly of benzothiadiazole derivatives and Eu(OTf)3. The CA exhibited high fluorescence with a quantum yield (QY) of 38.57%, good photoluminescence (PL) stability, and a large Stokes shift (153 nm). Furthermore, the CCK-8 assay against U87 glioblastoma cells verified the low cytotoxicity of CA. We revealed that the designed probes could be used as U87 cells targeting bioimaging.
Collapse
|
42
|
Liu WD, Li GJ, Xu H, Deng YK, Du MH, Long LS, Zheng LS, Kong XJ. Circularly polarized luminescence and performance modulation of chiral europium-titanium (Eu 2Ti 4)-oxo clusters. Chem Commun (Camb) 2023; 59:346-349. [PMID: 36514971 DOI: 10.1039/d2cc05816b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The designed synthesis of chiral luminescent molecules with excellent circularly polarized luminescence (CPL) performance and high quantum yield (QY) levels has attracted great interest but remains very challenging. Herein, we report three pairs of chiral europium-titanium-oxo clusters featuring both modest CPL characteristics and high QY levels (up to 79%), which can be regulated by switching between different ligand substituents.
Collapse
Affiliation(s)
- Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Guan-Jun Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yong-Kai Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. .,School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
43
|
Li W, Zhou Y, Gao T, Li J, Yin S, Huang W, Li Y, Ma Q, Yao Z, Yan P, Li H. Circularly Polarized Luminescent Eu 4( LR) 4 Cage for Enantiomeric Excess and Concentration Simultaneous Determination of Chiral Diamines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55979-55988. [PMID: 36472626 DOI: 10.1021/acsami.2c17967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Undoubtably, it is challenging to simultaneously determine the identity, enantiomeric excess (ee), and total concentration of an enantiomer by just one optical measurement. Herein, we design a chiral tetrahedron Eu4(LR)4 with circularly polarized luminescence (CPL), which presents highly selective/stereoselective, rapid, and "turn-on" CPL response to chiral diamines, rather than the monoamino compounds, such as monoamines or amino alcohols. By recording the left- and right-CPL intensities of the Eu3+ ion at 591 nm, the enantiomeric composition and concentration of chiral diamines can be simultaneously determined by monitoring the glum value and total emission intensity (IL + IR), respectively. Spectroscopy analyses demonstrate that the variations of glum depend on the inversion and maintenance of configuration around the Eu3+ ion (Δ ↔ Λ), while the "turn-on" response arises from the raising of the T1 state of the ligand. The molecule/electron structural variations are proposed from the synergetic supramolecular interactions of NH2 groups with pendant diols and trifluoroacetyl groups.
Collapse
Affiliation(s)
- Wenwen Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yanyan Zhou
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Ting Gao
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Jingya Li
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization Institution, Baotou 014030, China
| | - Sen Yin
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Wenru Huang
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yuying Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Qing Ma
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Zhiwei Yao
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Pengfei Yan
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Hongfeng Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| |
Collapse
|
44
|
Design of lanthanide based metal–organic polyhedral cages for application in catalysis, sensing, separation and magnetism. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Guo F, Li DF, Gao F, Xu K, Zhang J, Yi XG, Li DP, Li YX. Highly Stable Europium(III) Tetrahedral (Eu 4L 4)(phen) 4 Cage: Structure, Luminescence Properties, and Cellular Imaging. Inorg Chem 2022; 61:17089-17100. [PMID: 36240513 DOI: 10.1021/acs.inorgchem.2c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescent lanthanide cages have many potential applications in guest recognition, sensing, magnetic resonance imaging (MRI), and bioimaging. However, these polynuclear lanthanide assemblies' poor stability, dispersity, and luminescence properties have significantly constrained their practical applications. Furthermore, it is still a huge challenge to simultaneously synthesize and design lanthanide organic polyhedra with high stability and quantum yield. Herein, we demonstrate a simple and robust strategy to improve the rigidity, chemical stability, and luminescence of an Eu(III) tetrahedral cage by introducing the conjugated planar auxiliary phen ligand. The self-assembled tetrahedral cage, (Eu4L4)(phen)4 [L = (4,4',4″-tris(4,4,4-trifluoro-1,3-dioxobutyl)-triphenylamine), phen = 1,10-phenanthroline], exhibited characteristic luminescence of Eu3+ ions with high quantum yield (41%) and long lifetime (131 μs) in toluene (1.0 × 10-6 M). Moreover, the Eu(III) cage was stable in water and even in an aqueous solution with a pH range of 1-14. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cellular imaging revealed that the Pluronic F127-coated hybrid material, (Eu4L4)(phen)4@F127, exhibited low cytotoxicity, good biocompatibility, and cellular imaging ability, which may inspire more insights into the development of lanthanide organic polyhedra (LOPs) for potential biomedical applications.
Collapse
Affiliation(s)
- Feng Guo
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Duo-Fu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Fang Gao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, China
| | - Jun Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei230601, China
| | - Xiu-Guang Yi
- School of Chemistry and Chemical Engineering, Jinggangshan University, Jian343009, China
| | - Dong-Ping Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| | - Yong-Xiu Li
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang330031, China
| |
Collapse
|
46
|
Yim K, Yeung C, Wong MY, Probert MR, Law G. Differentiable Formation of Chiroptical Lanthanide Heterometallic Ln n Ln' 4-n (L 6 ) (n=0-4) Tetrahedra with C 2 -Symmetrical Bis(tridentate) Ligands. Chemistry 2022; 28:e202201655. [PMID: 35778773 PMCID: PMC9805037 DOI: 10.1002/chem.202201655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/09/2023]
Abstract
Construction of lanthanide heterometallic complex is important for engineering multifunction molecular containers. However, it remains a challenge because of the similar ionic radii of lanthanides. Herein we attempt to prepare chiral lanthanide heterometallic tetrahedra. Upon crystallization with a mixture of [Eu2 L3 ] and [Ln2 L3 ] (Ln=Gd, Tb and Dy) helicates, a mixture of heterometallic Eun Ln'4-n (L6 ) (n=0-4) tetrahedra was prepared. Selective formation of heterometallic tetrahedron was observed as MS deconvolution results deviated from statistical results. The formation of heterometallic tetrahedron was found to be sensitive to ionic radii as well as the ratio of the two helicates used in the crystallization.
Collapse
Affiliation(s)
- King‐Him Yim
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Chi‐Tung Yeung
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Melody Yee‐Man Wong
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Michael R. Probert
- ChemistrySchool of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Ga‐Lai Law
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518000P. R. China
| |
Collapse
|
47
|
|
48
|
Okayasu Y, Wakabayashi K, Yuasa J. Anion-Driven Circularly Polarized Luminescence Inversion of Unsymmetrical Europium(III) Complexes for Target Identifiable Sensing. Inorg Chem 2022; 61:15108-15115. [PMID: 36106989 PMCID: PMC9516667 DOI: 10.1021/acs.inorgchem.2c02202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Anion-responsive sign inversion of circularly polarized luminescence (CPL) was successfully achieved by N3O6-type nona-coordinated europium(III) (Eu3+) complexes [(R)-1 and (S)-1] composed of a less-hindered unsymmetrical N3-tridentate ligand (a chiral bis(oxazoline) ligand) and three O2-chelating (β-diketonate) ligands. Here, (R)-1 exhibited a positive CPL signal (IL - IR > 0) at the 5D0 → 7F1 transition of Eu3+, which can be changed to a negative sign (i.e., IL - IR > 0 → IL - IR < 0) by the coordination of trifluoroacetic anions (CF3COO-) to the Eu3+ center. However, (R)-1 preserved the original positive CPL signal (i.e., IL - IR > 0 → IL - IR > 0) in the presence of a wide range of competing anions (Cl-, Br-, I-, BF4-, ClO4-, ReO4-, PF6-, OTf-, and SbF6-). Thus, (R)-1 acts as a smart target identifiable probe, where the CPL measurement (IL - IR) can distinguish the signals from the competing anions (i.e., IL - IR < 0 vs IL - IR > 0) and eliminate the background emission (i.e., IL - IR = 0) from the background emitter (achiral luminescent compounds). The presented approach is also promising in terms of bio-inspired optical methodology because it enables nature's developed chiral sensitivity to use circularly polarized light for object identification (i.e., IL - IR = 0 vs | IL - IR | > 0).
Collapse
Affiliation(s)
- Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Wakabayashi
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
49
|
Harada K, Sekiya R, Haino T. Chirality Induction on a Coordination Capsule for Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202209340. [DOI: 10.1002/anie.202209340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kentaro Harada
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Ryo Sekiya
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
50
|
Zhu T, Weng W, Ji C, Zhang X, Ye H, Yao Y, Li X, Li J, Lin W, Luo J. Chain-to-Layer Dimensionality Engineering of Chiral Hybrid Perovskites to Realize Passive Highly Circular-Polarization-Sensitive Photodetection. J Am Chem Soc 2022; 144:18062-18068. [PMID: 36150159 DOI: 10.1021/jacs.2c07891] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chiral hybrid perovskites (CHPs), aggregating chirality and favorable semiconducting properties in one, have taken a prominent position in direct circularly polarized light detection (CPL). However, passive high circular polarization sensitivity (gres) photodetection in CHPs is still elusive and challenging. Benefitting from efficient control and turning of carrier transport of CHPs by dimensional engineering, here, we unprecedentedly proposed a chain-to-layer dimensionality engineering to realize high-gres passive photodetection. Two novel 2D layered CHPs (R/S-PPA)EAPbBr4 (2R/2S) (PPA = 1-phenylpropylamine, EA = ethylammonium) are successfully synthesized by alloying an EA cation with small steric hindrance into the chained CHPs (R/S-PPA)PbBr3 (1R/1S). Particularly, compared with the neglectable photoresponse in 1R, the obtained 2R by chain-to-layer dimensionality engineering gives rise to an excellent photoconductivity and robust polar photovoltage effect (PPE) with a giant open-circuit voltage of 2.5 V. Furthermore, such PPE promotes realizing an impressive gres in 2R up to 0.42 at zero bias because of the independent separation of photoexcited carriers, which is the highest value among the reported layered chiral perovskites. This work paves the way for the vigorous development of higher dimensional CHPs and will reveal their applications in the field of passive high-gres CPL detection.
Collapse
Affiliation(s)
- Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Weng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinling Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junlin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wenxiong Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|