1
|
Manimaran KS, Semjanov SK, White KF, Adcock JL, Doeven EH, Hayne DJ, Francis PS, Barnard PJ. Exploiting a New Strategy to Prepare Water-Soluble Heteroleptic Iridium(III) Complexes to Control Electrochemiluminescence Reaction Pathways in Aqueous Solution. Chemistry 2025:e202500701. [PMID: 40210605 DOI: 10.1002/chem.202500701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
The direct derivatization of heteroleptic iridium(III) complexes with sulfonate groups removes the limitations of prior strategies for the preparation of water-soluble analogues, in which complexes were prepared from a narrow range of ligands with suitably polar or charged functional groups. Phenylpyridine, phenylpyrazole, and phenylbenzothiazole ligands were selectively sulfonated opposite to their cyclometalated carbon within iridium(III) complexes containing bipyridine or N-heterocyclic carbene ancillary ligands. Altering reaction conditions enabled additional sulfonation of the benzothiazole fragments. Informed by the electrochemical and photophysical properties of the parent complexes in organic solvents, we adopted this strategy to design six novel luminophores that proceeded through three different sets of coreactant electrochemiluminescence (ECL) reaction pathways under aqueous conditions. The intensity of the indirect coreactant ECL of one of the iridium(III) luminophores was enhanced by over an order of magnitude by introducing a redox mediator, extending this promising analytical approach beyond the conventional [Ru(bpy)3]2+ electrochemiluminophore.
Collapse
Affiliation(s)
- Kesha Sriee Manimaran
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Shelby K Semjanov
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Jacqui L Adcock
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Egan H Doeven
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - Paul S Francis
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Peter J Barnard
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
2
|
Zhao C, Yang H, Xu K, Liu Y, Tian Y, Li X, Cheng D, Xu X. Photocatalytic Synthesis of Isoquinolinediones via the Cascade Reaction of N-Alkyl- N-methylacrylamides with Diazo Compounds. Org Lett 2025; 27:3396-3401. [PMID: 40130540 DOI: 10.1021/acs.orglett.5c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Carbon radicals generated from acceptor diazo compounds prefer to add to electron-rich olefins and heteroarenes due to their containing electron-withdrawing groups. Herein, a cascade reaction of acceptor diazo compounds with electron-deficient olefins is developed. In the presence of visible light and Ru catalyst, diazo compounds generate carbon radicals via proton-coupled electron transfer process, followed by addition with various N-alkyl-N-methylacrylamides and subsequent cyclization to give a series of acyl-substituted isoquinolinediones.
Collapse
Affiliation(s)
- Chenyue Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Heran Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kaiao Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yaqian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yurong Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xin Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dongping Cheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoliang Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Pfund B, Wenger OS. Excited Organic Radicals in Photoredox Catalysis. JACS AU 2025; 5:426-447. [PMID: 40017739 PMCID: PMC11862960 DOI: 10.1021/jacsau.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity. We summarize mechanistic studies of structurally similar photocatalysts indicating different reaction pathways for some catalytic systems, addressing cases where the proposed radical photocatalysts exceed their theoretical maximum reactivity. Additionally, we perform a kinetic analysis to explain the photoinduced electron transfer observed in excited radicals on subpicosecond time scales. We further rationalize the potential anti-Kasha reactivity from higher excited states with femtosecond lifetimes, highlighting how future photocatalysis advancements could unlock new photochemical pathways.
Collapse
Affiliation(s)
- Björn Pfund
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Abe R, Nagao K, Seki T, Hata D, Sasaki Y, Ohmiya H. Photoredox-Catalyzed Site-Selective Intermolecular C(sp 3)-H Alkylation of Tetrahydrofurfuryl Alcohol Derivatives. Org Lett 2025; 27:795-801. [PMID: 39806873 PMCID: PMC11773563 DOI: 10.1021/acs.orglett.4c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp3)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
Collapse
Affiliation(s)
- Reiji Abe
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazunori Nagao
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiro Seki
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Dai Hata
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Sasaki
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohisa Ohmiya
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Ikeda K, Yano N, Handa M, Kataoka Y. Luminescent Iridium-Terpyridine Complexes with Various Bis-Cyclometalated Ligands. Molecules 2025; 30:193. [PMID: 39795249 PMCID: PMC11722081 DOI: 10.3390/molecules30010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir(C^N)2(tpy)]PF6 (C^N = 2-phenylpyridinate (ppy) for 1; benzo[h]quinolinate (bzq) for 2; 1-phenylisoquinolinate (piq) for 3; and 2-phenylbenzothiazolate (pbt) for 4), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of 1-4 are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of 1-4 form intramolecular π-π stacking interactions with a phenyl moiety of C^N ligands. In addition, the pendant pyridine ring in the tpy ligand of 1 forms an intramolecular hydrogen bonding interaction, unlike in 2-4. Of interest, the photophysical properties of 1-4 are strongly influenced by the C^N ligands; 1 shows a luminescence band at 572 nm, with a short lifetime (τ) value of 80 nsec and a lower absolute luminescence quantum yield (Φ) of 3.72%, whereas 3 exhibits an intense luminescence band at 588 nm with a long τ value of 1965 nsec and a moderate Φ value of 9.57%. The density functional theory calculations revealed that the luminescence originates from the triplet metal-ligand to ligand charge transfer (3MLL'CT) excited state.
Collapse
Affiliation(s)
| | - Natsumi Yano
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | | | - Yusuke Kataoka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
6
|
Franov LJ, Wilsdon TL, Czyz ML, Polyzos A. Electroinduced Reductive and Dearomative Alkene-Aldehyde Coupling. J Am Chem Soc 2024; 146:29450-29461. [PMID: 39417706 DOI: 10.1021/jacs.4c08691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The direct coupling of alkene feedstocks with aldehydes represents an expedient approach to the generation of new and structurally diverse C(sp3)-hybridized alcohols that are primed for elaboration into privileged architectures. Despite their abundance, current disconnection strategies enabling the direct coupling of carbon-carbon π-bonds and aldehydes remain challenging because contemporary methods are often limited by substrate or functional group tolerance and compatibility in complex molecular environments. Here, we report a coupling between simple alkenes, heteroarenes and unactivated aliphatic aldehydes via an electrochemically induced reductive activation of C-C π-bonds. The cornerstone of this approach is the discovery of rapid alternating polarity (rAP) electrolysis to access and direct highly reactive radical anion intermediates derived from conjugated alkenes and heterocyclic compounds. Our developed catalyst-free protocol enables direct access to new and structurally diverse C(sp3)-hybridized alcohol products. This is achieved by the controlled reduction of conjugated alkenes and the C2-C3 π-bond in heteroarenes via an unprecedented reductive dearomative functionalization for heterocyclic compounds. Experimental mechanistic studies demonstrate a kinetically biased single-electron reduction of C-C π-bonds over aldehydes. Application of rAP enables chemoselective generation of olefinic radical anion intermediates and avoids undesired saturative overreduction. Overall, this technology provides a versatile approach to the reductive coupling of olefin and heterocycle feedstocks with aliphatic aldehydes, offering straightforward access to diverse C(sp3)-rich oxygenated scaffolds.
Collapse
Affiliation(s)
- Liam J Franov
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tayla L Wilsdon
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milena L Czyz
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Draper F, DiLuzio S, Sayre HJ, Pham LN, Coote ML, Doeven EH, Francis PS, Connell TU. Maximizing Photon-to-Electron Conversion for Atom Efficient Photoredox Catalysis. J Am Chem Soc 2024; 146:26830-26843. [PMID: 39302225 DOI: 10.1021/jacs.4c07396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photoredox catalysis is a powerful tool to access challenging and diverse syntheses. Absorption of visible light forms the excited state catalyst (*PC) but photons may be wasted if one of several unproductive pathways occur. Facile dissociation of the charge-separated encounter complex [PC•-:D•+], also known as (solvent) cage escape, is required for productive chemistry and directly governs availability of the critical PC•- intermediate. Competitive charge recombination, either inside or outside the solvent cage, may limit the overall efficiency of a photochemical reaction or internal quantum yield (defined as the moles of product formed per mole of photons absorbed by PC). Measuring the cage escape efficiency (ϕCE) typically requires time-resolved spectroscopy; however, we demonstrate how to estimate ϕCE using steady-state techniques that measure the efficiency of PC•- formation (ϕPC). Our results show that choice of electron donor critically impacts ϕPC, which directly correlates to improved synthetic and internal quantum yields. Furthermore, we demonstrate how modest structural differences between photocatalysts may afford a sizable effect on reactivity due to changes in ϕPC, and by extension ϕCE. Optimizing experimental conditions for cage escape provides photochemical reactions with improved atom economy and energy input, paving the way for sustainable design of photocatalytic systems.
Collapse
Affiliation(s)
- Felicity Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hannah J Sayre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
8
|
Bokosi FRB, Shiels OJ, Trevitt AJ, Keaveney ST. Photoactivated Reactions without Traditional Photocatalysts: Electron-Donor Complexation of 1,2,3-Triazoles Initiates Denitrogenative Transformations. J Org Chem 2024; 89:13243-13252. [PMID: 39255955 DOI: 10.1021/acs.joc.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We present a set of visible-light-promoted denitrogenative transformations of 1,2,3-triazoles that generate high product yields without the use of a traditional, external photocatalyst, with the reaction viable for both benzotriazole and benzotriazinone. Mechanistic studies using UV-vis absorption, 1H NMR spectroscopy, and density functional theory indicate that these reactions are initiated by an electron donor-acceptor (EDA) complex which forms between N,N-diisopropylethylamine (DIPEA) and the 1,2,3-triazole. A comprehensive analysis of how irradiation wavelength impacts reactivity was obtained using an online photochemical reactor coupled mass spectrometer, indicating a lack of correlation between absorptivity and photoreactivity for the reaction between benzotriazinone and methyl acrylate. The reaction was photoinitiated by light-emitting diodes (LEDs) at wavelengths longer than 400 nm, which is unexpected on the basis of solely the absorption spectra of the starting materials.
Collapse
Affiliation(s)
- Fostino R B Bokosi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sinead T Keaveney
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
DiLuzio S, Baumer M, Guzman R, Kagalwala H, Lopato E, Talledo S, Kangas J, Bernhard S. Exploring the Photophysics and Photocatalytic Activity of Heteroleptic Rh(III) Transition-Metal Complexes Using High-Throughput Experimentation. Inorg Chem 2024; 63:14267-14277. [PMID: 39031763 PMCID: PMC11304382 DOI: 10.1021/acs.inorgchem.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
High-throughput synthesis and screening (HTSS) methods were used to investigate the photophysical properties of 576 heteroleptic Rh(III) transition-metal complexes through measurement of the UV-visible absorption spectra, deaerated excited-state lifetime, and phosphorescent emission spectra. While 4d transition-metal photophysics are often highly influenced by deleterious metal-centered deactivation channels, the HTSS of structurally diverse cyclometalating and ancillary ligands attached to the metal center facilitated the discovery of photoactive complexes exhibiting long-lived charge-transfer phosphorescence (0.15-0.95 μs) spanning a substantial portion of the visible region (546-620 nm) at room temperature. Further photophysical and electrochemical investigations were then carried out on select complexes with favorable photophysics to understand the underlying features controlling these superior properties. Heteroleptic Ir(III) complexes with identical ligand morphology were also synthesized to compare these features to this family of well understood chromophores. A number of these Rh(III) complexes contained the requisite properties for photocatalytic activity and were consequently tested as photocatalysts (PCs) in a water reduction system using a Pd water reduction cocatalyst. Under certain conditions, the activity of the Rh(III) PC actually surpassed that of the Ir(III) PC, uncovering the potential of this often-overlooked class of transition metals as both efficient photoactive chromophores and PCs.
Collapse
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mitchell Baumer
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rafael Guzman
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Husain Kagalwala
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eric Lopato
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Savannah Talledo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joshua Kangas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Lin Z, Zhou Q, Liu Y, Chen C, Jie J, Su H. Multiphoton tandem photoredox catalysis of [Ir(dFCF 3ppy) 2(dtbbpy)] + facilitating radical acylation reactions. Chem Sci 2024; 15:11919-11927. [PMID: 39092118 PMCID: PMC11290445 DOI: 10.1039/d4sc03183k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Photoredox catalytic radical acylation reactions, utilizing [Ir(dFCF3ppy)2(dtbbpy)]+ (IrIII) as the photocatalyst and α-keto acids as the starting substrates, have recently emerged as an attractive strategy for preparing ketone derivatives. While there is consensus on the importance of detailed mechanistic insights to maximize the formation of desired products, efforts focused on uncovering the underlying elementary mechanisms of IrIII photocatalytic radical acylation reactions are still lacking. Herein, using time-resolved spectroscopy, we observed the efficient quenching of the triplet state, 3IrIII*, via electron transfer from α-keto acids, resulting in the generatation of the reduced IrII. Subsequently, IrII rapidly transforms into a stable IrH+ species through protonation, with α-keto acid acting as a proton donor. Upon absorbing additional photon(s), IrH+ is expected to transform into IrH3, involving further hydrogenation/protonation. Emission and Fourier transform infrared (FTIR) spectroscopy, together with global analysis, identify the character of IrH3/3IrH3* and corroborate its contribution to representative radical acylation reactions (decarboxylative 1,4-addition of α-keto acids with Michael acceptors, decarboxylative coupling of α-keto acids with aryl halides, and decarboxylative cyclization of 2-alkenylarylisocyanides with α-keto acids), where IrH3/3IrH3* serves as the key species to trigger the second photoredox cycle. These results elucidate the existence and generality of the tandem photoredox catalysis mechanism for IrIII photocatalytic radical acylation reactions, providing advanced insights into the mechanism of IrIII-based photoredox processes and potentially expanding their application in the design and development of new synthetic methodologies.
Collapse
Affiliation(s)
- Zhicong Lin
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yan Liu
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Chenli Chen
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
11
|
Bryden MA, Crovini E, Comerford T, Studer A, Zysman-Colman E. Organic Donor-Acceptor Thermally Activated Delayed Fluorescence Photocatalysts in the Photoinduced Dehalogenation of Aryl Halides. Angew Chem Int Ed Engl 2024; 63:e202405081. [PMID: 38600037 DOI: 10.1002/anie.202405081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
We report a family of donor-acceptor thermally activated delayed fluorescent (TADF) compounds based on derivatives of DMAC-TRZ, that are strongly photoreducing. Both Eox and thus E*ox could be tuned via substitution of the DMAC donor with a Hammett series of p-substituted phenyl moieties while Ered remained effectively constant. These compounds were assessed in the photoinduced dehalogenation of aryl halides, and analogues bearing electron withdrawing groups were found to produce the highest yields. Substrates of up to Ered=-2.72 V could be dehalogenated at low PC loading (1 mol %) and under air, conditions much milder than previously reported for this reaction. Spectroscopic and chemical studies demonstrate that all PCs, including literature reference PCs, photodegrade, and that it is these photodegradation products that are responsible for the reactivity.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Armido Studer
- Organisch-Chemisches Institut, University of Münster, Corrensstaße 40, 48149, Münster, Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
12
|
Yamamoto K, Arita K, Kuriyama M, Onomura O. Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation. Beilstein J Org Chem 2024; 20:1327-1333. [PMID: 38887578 PMCID: PMC11181238 DOI: 10.3762/bjoc.20.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The radical hydroarylation of alkenes is an efficient strategy for accessing linear alkylarenes with high regioselectivity. Herein, we report the electroreductive hydroarylation of electron-deficient alkenes and styrene derivatives using (hetero)aryl halides under mild reaction conditions. Notably, the present hydroarylation proceeded with high efficiency under transition-metal-catalyst-free conditions. The key to success is the use of 1,3-dicyanobenzene as a redox mediator and visible-light irradiation, which effectively suppresses the formation of simple reduction, i.e., hydrodehalogenation, products to afford the desired products in good to high yields. Mechanistic investigations proposed that a reductive radical-polar crossover pathway is likely to be involved in this transformation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhisa Arita
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
13
|
Jia J, Zhumagazy S, Zhu C, Lee SC, Alsharif S, Yue H, Rueping M. Selective Mono-Defluorinative Cross-Coupling of Trifluoromethyl arenes via Multiphoton Photoredox Catalysis. Chemistry 2024; 30:e202302927. [PMID: 38573029 DOI: 10.1002/chem.202302927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 04/05/2024]
Abstract
A new cross-coupling of trifluoromethyl arenes has been realized via multiphoton photoredox catalysis. Trifluoromethyl arenes were demonstrated to undergo selective mono-defluorinative alkylation under mild reaction conditions providing access to a series of valuable α,α-difluorobenzylic compounds. The reaction shows broad substrate scope and general functional group tolerance. In addition to the electron-deficient trifluoromethyl arenes that are easily reduced to the corresponding radical anion, more challenging electron-rich substrates were also successfully applied. Steady-State Stern-Volmer quenching studies indicated that the trifluoromethyl arenes were reduced by the multiphoton excited Ir-based photocatalyst.
Collapse
Affiliation(s)
- Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Serik Zhumagazy
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shao-Chi Lee
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salman Alsharif
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Peng Y, Bao H, Zheng L, Zhou Y, Ni Q, Chen X, Li Y, Yan P, Yang YF, Liu Y. Cu(I)-Photosensitizer-Catalyzed Olefin-α-Amino Radical Metathesis/Demethylenative Cyclization of 1,7-Enynes. Org Lett 2024; 26:3218-3223. [PMID: 38587936 DOI: 10.1021/acs.orglett.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A demethylenative En-Yne radical cyclization of 1,7-enynes has been successfully developed to chemoselectively afford 3,4-dihyroquinolin-2-ones or quinolin-2-ones under the catalysis of Cu(I) photosensitizers PS3 and PS6 with different redox potentials. The preliminary mechanistic experiments revealed that the reaction underwent an unprecedented olefin-α-amino radical metathesis-type process. A reasonable mechanism was proposed to illustrate the catalyst-controlled chemoselectivity of the reaction based on preliminary mechanistic experiments and DFT calculations.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanqiang Li
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Pucha Yan
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
15
|
Hoving M, Haaksma JJ, Stoppel A, Chronc L, Hoffmann J, Beil SB. Triplet Energy Transfer Mechanism in Copper Photocatalytic N- and O-Methylation. Chemistry 2024; 30:e202400560. [PMID: 38363220 DOI: 10.1002/chem.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Methylation reactions are chemically simple but challenging to perform under mild and non-toxic conditions. A photochemical energy transfer strategy was merged with copper catalysis to enable fast reaction times of minutes and broad applicability to N-heterocycles, (hetero-)aromatic carboxylic acids, and drug-like molecules in high yields and good functional group tolerance. Detailed mechanistic investigations, using kinetic analysis, aprotic MS, UV/Vis, and luminescence quenching experiments revealed a triplet-triplet energy transfer mechanism between hypervalent iodine(III) reagents and readily available photosensitizers.
Collapse
Affiliation(s)
- Martijn Hoving
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jacob-Jan Haaksma
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Anne Stoppel
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Lukas Chronc
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jonas Hoffmann
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sebastian B Beil
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
16
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Kang WJ, Zhang Y, Li B, Guo H. Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides. Nat Commun 2024; 15:655. [PMID: 38253534 PMCID: PMC10803379 DOI: 10.1038/s41467-024-45015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| |
Collapse
|
18
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
19
|
Liu R, Cheng SC, Ng CO, Xiao Y, Tang KM, Tong KM, Lei NY, Ko CC. An Ir(III) cyclometalate-functionalized molecularly imprinted polymer: photophysics, photochemistry and chemosensory applications. Dalton Trans 2023; 52:15071-15077. [PMID: 37812405 DOI: 10.1039/d3dt02347h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A luminescent trimethylamine (TMA) sensor, PTMA-Ir, has been designed and synthesized through immobilizing a phosphorescent iridium(III) complex on a TMA-imprinted polymer. Detailed study shows that the quenching of phosphorescence of PTMA-Ir can serve as a reporter for the binding of TMA on the imprinting sites, thus providing a sensitive, selective, and rapid detection of TMA in both aqueous solutions and gaseous states. Loading PTMA-Ir on filter paper produced a deposition T-Ir, the phosphorescence of which is quenched within 5 s upon exposure to TMA vapor with detection limits of 9.0 ± 0.1 ppm under argon and 15.0 ± 0.1 ppm in an air atmosphere. This work provided an effective method for establishing an imprinting polymer-immobilized luminescent amine sensor.
Collapse
Affiliation(s)
- Ruoyang Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Shun-Cheung Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chi-On Ng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Yelan Xiao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Kin-Man Tang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Ka-Ming Tong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Ngai-Yu Lei
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chi-Chiu Ko
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
21
|
Edgecomb JM, Alektiar SN, Cowper NGW, Sowin JA, Wickens ZK. Ketyl Radical Coupling Enabled by Polycyclic Aromatic Hydrocarbon Electrophotocatalysts. J Am Chem Soc 2023; 145:20169-20175. [PMID: 37676728 PMCID: PMC10787642 DOI: 10.1021/jacs.3c06347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we report a new class of electrophotocatalysts, polycyclic aromatic hydrocarbons, that promote the reduction of unactivated carbonyl compounds to generate versatile ketyl radical intermediates. This catalytic platform enables previously challenging intermolecular ketyl radical coupling reactions, including those that classic reductants (e.g., SmI2/HMPA) have failed to promote. More broadly, this study outlines an approach to fundamentally expand the array of reactive radical intermediates that can be generated via electrophotocatalysis by obviating the need for rapid mesolytic cleavage following substrate reduction.
Collapse
Affiliation(s)
- Joseph M. Edgecomb
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas G. W. Cowper
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jennifer A. Sowin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
23
|
Horsewill S, Hierlmeier G, Farasat Z, Barham JP, Scott DJ. Shining Fresh Light on Complex Photoredox Mechanisms through Isolation of Intermediate Radical Anions. ACS Catal 2023; 13:9392-9403. [PMID: 37497378 PMCID: PMC10367049 DOI: 10.1021/acscatal.3c02515] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Photoredox catalysis (PRC) has gained enormous and wide-ranging interest in recent years but has also been subject to significant mechanistic uncertainty, even controversy. To provide a method by which the missing understanding can begin to be filled in, we demonstrate herein that it is possible to isolate as authentic materials the one-electron reduction products of representative PRC catalysts (PCs). Specifically, KC8 reduction of both 9,10-dicyanoanthracene and a naphthalene monoamide derivative in the presence of a cryptand provides convenient access to the corresponding [K(crypt)+][PC·-] salts as clean materials that can be fully characterized by techniques including EPR and XRD. Because PC·- states are key intermediates in PRC reactions, such isolation allows for highly controlled study of these anions' specific reactivity and hence their mechanistic roles. As a demonstration of this principle, we show that these salts can be used to conveniently interrogate the mechanisms of recent, high-profile "conPET" and "e-PRC" reactions, which are currently the subject of both significant interest and acute controversy. Using very simple experiments, we are able to provide striking insights into these reactions' underlying mechanisms and to observe surprising levels of hidden complexity that would otherwise have been very challenging to identify and that emphasize the care and control that are needed when interrogating and interpreting PRC mechanisms. These studies provide a foundation for the study of a far broader range of questions around conPET, e-PRC, and other PRC reaction mechanisms in the future, using the same strategy of PC·- isolation.
Collapse
Affiliation(s)
- Samuel
J. Horsewill
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Gabriele Hierlmeier
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Zahra Farasat
- Professor
Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry,
College of Sciences, Shiraz University, Shiraz, Fars 71467-13565, Iran
| | - Joshua P. Barham
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg, Bayern 93053, Germany
| | - Daniel J. Scott
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
24
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
25
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
26
|
Jia T, Meng D, Duan R, Ji H, Sheng H, Chen C, Li J, Song W, Zhao J. Single-Atom Nickel on Carbon Nitride Photocatalyst Achieves Semihydrogenation of Alkynes with Water Protons via Monovalent Nickel. Angew Chem Int Ed Engl 2023; 62:e202216511. [PMID: 36625466 DOI: 10.1002/anie.202216511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Prospects in light-driven water activation have prompted rapid progress in hydrogenation reactions. We describe a Ni2+ -N4 site built on carbon nitride for catalyzed semihydrogenation of alkynes, with water supplying protons, powered by visible-light irradiation. Importantly, the photocatalytic approach developed here enabled access to diverse deuterated alkenes in D2 O with excellent deuterium incorporation. Under visible-light irradiation, evolution of a four-coordinate Ni2+ species into a three-coordinate Ni+ species was spectroscopically identified. In combination with theoretical calculations, the photo-evolved Ni+ is posited as HO-Ni+ -N2 with an uncoordinated, protonated pyridinic nitrogen, formed by coupled Ni2+ reduction and water dissociation. The paired Ni-N prompts hydrogen liberation from water, and it renders desorption of alkene preferred over further hydrogenation to alkane, ensuring excellent semihydrogenation selectivity.
Collapse
Affiliation(s)
- Tongtong Jia
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Schreier MR, Pfund B, Steffen DM, Wenger OS. Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorg Chem 2023; 62:7636-7643. [PMID: 36731131 DOI: 10.1021/acs.inorgchem.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine nucleotide (NADH) is involved in many biologically relevant redox reactions, and the photochemical regeneration of its oxidized form (NAD+) under physiological conditions is of interest for combined photo- and biocatalysis. Here, we demonstrate that tri-anionic, water-soluble variants of typically very lipophilic iridium(III) complexes can photo-catalyze the reduction of an NAD+ mimic in a comparatively efficient manner. In combination with a well-known rhodium co-catalyst to facilitate regioselective reactions, these iridium(III) photo-reductants outcompete the commonly used [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer in water by up to 1 order of magnitude in turnover frequency. This improved reactivity is attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III) sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water solubility can be essential.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Debora M Steffen
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
28
|
Blom SJ, Connell TU, Doeven EH, Hayne DJ, Kerr E, Henderson LC, Francis PS. Cathodic Co-reactant Electrogenerated Chemiluminescence of Water-soluble Heteroleptic Iridium(III) Complexes Bearing N–Methyl(pyridyl)pyridinium Cyclometalating Ligands. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
29
|
Sherborne GJ, Kemmitt P, Prentice C, Zysman-Colman E, Smith AD, Fallan C. Visible Light-Mediated Cyclisation Reaction for the Synthesis of Highly-Substituted Tetrahydroquinolines and Quinolines. Angew Chem Int Ed Engl 2023; 62:e202207829. [PMID: 36342443 DOI: 10.1002/anie.202207829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Condensation of 2-vinylanilines and conjugated aldehydes followed by an efficient light-mediated cyclisation selectively yields either substituted tetrahydroquinolines with typically high dr, or in the presence of an iridium photocatalyst the synthesis of quinoline derivatives is demonstrated. These atom economical processes require mild conditions, with the substrate scope demonstrating excellent site selectivity and functional group tolerance, including azaarene-bearing substrates. A thorough experimental mechanistic investigation explores multiple pathways and the key role that imine and iminium intermediates play in the absorption of visible light to generate reactive excited states. The synthetic utility of the reactions is demonstrated on gram scale quantities in both batch and flow, alongside further manipulation of the medicinally relevant products.
Collapse
Affiliation(s)
- Grant J Sherborne
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Paul Kemmitt
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Callum Prentice
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.,EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Charlene Fallan
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| |
Collapse
|
30
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
31
|
Ayare PJ, Watson N, Helton MR, Warner MJ, Dilbeck T, Hanson K, Vannucci AK. Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles. J Am Chem Soc 2022; 144:21568-21575. [DOI: 10.1021/jacs.2c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pooja J. Ayare
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Noelle Watson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Maizie R. Helton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Matthew J. Warner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Tristan Dilbeck
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
32
|
Pinosa E, Bassan E, Cetin S, Villa M, Potenti S, Calogero F, Gualandi A, Fermi A, Ceroni P, Cozzi PG. Light-Induced Access to Carbazole-1,3-dicarbonitrile: A Thermally Activated Delayed Fluorescent (TADF) Photocatalyst for Cobalt-Mediated Allylations. J Org Chem 2022; 88:6390-6400. [DOI: 10.1021/acs.joc.2c01825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emanuele Pinosa
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Elena Bassan
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sultan Cetin
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Villa
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simone Potenti
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francesco Calogero
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Fermi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Paola Ceroni
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
33
|
Connell TU. The forgotten reagent of photoredox catalysis. Dalton Trans 2022; 51:13176-13188. [PMID: 35997070 DOI: 10.1039/d2dt01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light powers an ever-expanding suite of reactions to both make and break chemical bonds under otherwise mild conditions. As a reagent in photochemical synthesis, light is obviously critical for reactivity but rarely optimized other than in light/dark controls. This Frontier Article presents an overview of recent research that investigates the unique ways light may be manipulated, and its unusual interactions with homogeneous transition metal and organic photocatalysts.
Collapse
Affiliation(s)
- Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
34
|
Ben-Tal Y, Lloyd-Jones GC. Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNi II(L)Br and Rate/Selectivity Factors. J Am Chem Soc 2022; 144:15372-15382. [PMID: 35969479 PMCID: PMC9413222 DOI: 10.1021/jacs.2c06831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The Ni/Ir-photocatalyzed coupling of an aryl bromide
(ArBr) with
an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr],
[Ni], [Ir]) are found to control the rate of ArBr consumption, but
not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not
the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to
show that the complex undergoes Ir-photocatalyzed conversion to products
(Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr.
A range of competing absorption and quenching effects lead to complex
correlations between the Ir and Ni catalyst loadings and the reaction
rate. Differences in the Ir/Ni Beer–Lambert absorption profiles
allow the rate to be increased by the use of a shorter-wavelength
light source without compromising the selectivity. A minimal kinetic
model for the process allows simulation of the reaction and provides
insights for optimization of these processes in the laboratory.
Collapse
Affiliation(s)
- Yael Ben-Tal
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
35
|
Tian X, Kaur J, Yakubov S, Barham JP. α-Amino Radical Halogen Atom Transfer Agents for Metallaphotoredox-Catalyzed Cross-Electrophile Couplings of Distinct Organic Halides. CHEMSUSCHEM 2022; 15:e202200906. [PMID: 35587725 PMCID: PMC9541218 DOI: 10.1002/cssc.202200906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/15/2023]
Abstract
α-Amino radicals from simple tertiary amines were employed as halogen atom transfer (XAT) agents in metallaphotoredox catalysis for cross-electrophile couplings of organic bromides with organic iodides. This XAT strategy proved to be efficient for the generation of carbon radicals from a range of partners (alkyl, aryl, alkenyl, and alkynyl iodides). The reactivities of these radical intermediates were captured by nickel catalysis with organobromides including aryl, heteroaryl, alkenyl, and alkyl bromides, enabling six diverse C-C bond formations. Classic named reactions including Negishi, Suzuki, Heck, and Sonogashira reactions were readily achieved in a net-reductive fashion under mild conditions. More importantly, the cross coupling was viable with either organic bromide or iodide as limiting reactant based on the availability of substrates, which is beneficial to the late-stage functionalization of complex molecules. The scalability of this method in batch and flow was investigated, further demonstrating its applicability.
Collapse
Affiliation(s)
- Xianhai Tian
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Jaspreet Kaur
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Shahboz Yakubov
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Joshua P. Barham
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| |
Collapse
|
36
|
Forni JA, Gandhi VH, Polyzos A. Carbonylative Hydroacylation of Styrenes with Alkyl Halides by Multiphoton Tandem Photoredox Catalysis in Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José A. Forni
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vir H. Gandhi
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Dr A. Polyzos CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
37
|
Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. Ketone-Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. J Am Chem Soc 2022; 144:11888-11896. [PMID: 35737516 PMCID: PMC10031806 DOI: 10.1021/jacs.2c04822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketone-olefin coupling reactions are common methods for the formation of carbon-carbon bonds. This reaction class typically requires stoichiometric or super stoichiometric quantities of metal reductants, and catalytic variations are limited in application. Photoredox catalysis has offered an alternative method toward ketone-olefin coupling reactions, although most methods are limited in scope to easily reducible aromatic carbonyl compounds. Herein, we describe a mild, metal-free ketone-olefin coupling reaction using an excited-state acridine radical super reductant as a photoredox catalyst. We demonstrate both intramolecular and intermolecular ketone-olefin couplings of aliphatic and aromatic ketones and aldehydes. Mechanistic evidence is also presented supporting an "olefin first" ketone-olefin coupling mechanism.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Yiyang S Liang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Roukaya K El Mokadem
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
38
|
Bawden JC, Francis PS, DiLuzio S, Hayne DJ, Doeven EH, Truong J, Alexander R, Henderson LC, Gómez DE, Massi M, Armstrong BI, Draper FA, Bernhard S, Connell TU. Reinterpreting the Fate of Iridium(III) Photocatalysts─Screening a Combinatorial Library to Explore Light-Driven Side-Reactions. J Am Chem Soc 2022; 144:11189-11202. [PMID: 35704840 DOI: 10.1021/jacs.2c02011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.
Collapse
Affiliation(s)
- Joseph C Bawden
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Johnny Truong
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Richard Alexander
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Blake I Armstrong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Felicity A Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
39
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
40
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
41
|
Accumulation of mono-reduced [Ir(piq) 2(LL)] photosensitizers relevant for solar fuels production. Photochem Photobiol Sci 2022; 21:1433-1444. [PMID: 35595935 DOI: 10.1007/s43630-022-00233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
A series of nine [Ir(piq)2(LL)]+.PF6- photosensitizers, where piqH = 1-phenylisoquinoline, was developed and investigated for excited-state electron transfer with sacrificial electron donors that included triethanolamine (TEOA), triethylamine (TEA) and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) in acetonitrile. The photosensitizers were obtained in 57-82% yield starting from the common [Ir(piq)2µ-Cl]2 precursor and were all characterized by UV-Vis absorption as well as by steady-state, time-resolved spectroscopies and electrochemistry. The excited-state lifetimes ranged from 250 to 3350 ns and excited-state electron transfer quenching rate constants in the 109 M-1 s-1 range were obtained when BIH was used as electron donor. These quenching rate constants were three orders of magnitude higher than when TEA or TEOA was used. Steady-state photolysis in the presence of BIH showed that the stable and reversible accumulation of mono-reduced photosensitizers was possible, highlighting the potential use of these Ir-based photosensitizers in photocatalytic reactions relevant for solar fuels production.
Collapse
|
42
|
Aragón J, Sun S, Pascual D, Jaworski S, Lloret-Fillol J. Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross-Coupling with Aromatic Alkenes. Angew Chem Int Ed Engl 2022; 61:e202114365. [PMID: 35289039 DOI: 10.1002/anie.202114365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/08/2022]
Abstract
The inertness of chloroalkanes has precluded them as coupling partners for cross-coupling reactions. Herein we disclose a general strategy for the activation of inert alkyl chlorides through photoredox catalysis and their use as coupling partners with alkenes. The catalytic system is formed by [Ni(OTf)(Py2 Ts tacn)](OTf) (1Ni ), which is responsible for the Csp3 -Cl bond activation, and [Ir(NMe2 bpy)(ppy)2 ]PF6, (PCIr NMe2 ), which is the photoredox catalyst. Combined experimental and theoretical studies show an in situ photogenerated NiI intermediate ([Ni(Py2 Ts tacn)]+ ) which is catalytically competent for the Csp3 -Cl bond cleavage via a SN 2 mechanism for primary alkyl chlorides, forming carbon-centered free radicals, which react with the olefin leading to the formation of the Csp3 -Csp3 bond. These results suggest inert alkyl chlorides can be electrophiles for developing new intermolecular strategies in which low-valent aminopyridine nickel complexes act as key catalytic species.
Collapse
Affiliation(s)
- Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Suyun Sun
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Sebastian Jaworski
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
43
|
Han G, Li G, Huang J, Han C, Turro C, Sun Y. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat Commun 2022; 13:2288. [PMID: 35484148 PMCID: PMC9051202 DOI: 10.1038/s41467-022-29981-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λirr > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C-C coupling reactions.
Collapse
Affiliation(s)
- Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Huang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chuang Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Claudia Turro
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Yang CH, Liu YH, Peng SM, Liu ST. Photoaccelerated Suzuki–Miyaura and Sonogashira coupling reactions catalyzed by an Ir-Pd binuclear complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Liao LL, Song L, Yan SS, Ye JH, Yu DG. Highly reductive photocatalytic systems in organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Aragón J, Sun S, Pascual D, Jaworski S, Lloret‐Fillol J. Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross‐Coupling with Aromatic Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Suyun Sun
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Sebastian Jaworski
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
47
|
Zhao Z, Niu F, Li P, Wang H, Zhang Z, Meyer GJ, Hu K. Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. J Am Chem Soc 2022; 144:7043-7047. [PMID: 35271254 DOI: 10.1021/jacs.2c00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photoexcitation of molecular radicals can produce strong reducing agents; however, the limited lifetimes of the doublet excited states preclude many applications. Herein, we propose and demonstrate a general strategy to translate a highly energetic electron from a doublet excited state to a ZrO2 insulator, thereby increasing the lifetime by about 6 orders of magnitude while maintaining a reducing potential less than -2.4 V vs SCE. Specifically, red light excitation of a salicylic acid modified perylene diimide radical anion PDI•- anchored to a ZrO2 insulator yields a ZrO2(e-)|PDI charge separated state with an ∼10 μs lifetime in 23% yield. The ZrO2(e-)s were shown to drive CO2 → CO reduction with a Re catalyst present in micromolar concentrations. More broadly, this strategy provides new opportunities to reduce important reagents and catalysts at low concentrations through diffusional electron transfer.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Fushuang Niu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Hanqi Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Zhenghao Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| |
Collapse
|
48
|
Serafino A, Chiminelli M, Balestri D, Marchiò L, Bigi F, Maggi RM, Malacria M, Maestri G. Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C-C double bonds. Chem Sci 2022; 13:2632-2639. [PMID: 35340858 PMCID: PMC8890112 DOI: 10.1039/d1sc06719b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
The visible-light-promoted activation of conjugated C-C double bonds is well developed, while that of cumulated systems is underexplored. We present the feasibility of this challenging approach. The localization of a triplet on an allenamide arm can be favored over that on a conjugated alkene. Allenamides with an arylacryloyl arm dimerize at room temperature in the presence of visible light and an iridium(iii) photocatalyst. Two orthogonal polycyclizations took place and their outcome is entirely dictated by the substitution of the alkene partner. Both cascades afford complex molecular architectures with high selectivity. Products form through the ordered rearrangement of twelve π electrons, providing a [3.2.0] bicyclic unit tethered to a fused tricycle, whose formation included an aryl C-H functionalization step, using disubstituted alkenes. The outcome was reverted with trisubstituted ones, which gave rise to taxane-like bridged tricycles that had two six-membered lactams flanking a cyclooctane ring, which was established through the creation of four alternate C-C bonds.
Collapse
Affiliation(s)
- Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Davide Balestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
- IMEM-CNR Parco Area Delle Scienze 37/A 43124 Parma Italy
| | - Rai-Mondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Max Malacria
- Sorbonne Université, Faculty of Science and Engineering, IPCM (UMR CNRS 8232) 4 Place Jussieu 75252 Paris Cedex 05 France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
49
|
Zheng Y, Yang H, Zhao L, Bai Y, Chen X, Wu K, Liu S, Shen Y, Zhang Y. Lighting Up Electrochemiluminescence-Inactive Dyes via Grafting Enabled by Intramolecular Resonance Energy Transfer. Anal Chem 2022; 94:3296-3302. [PMID: 35143169 DOI: 10.1021/acs.analchem.1c05235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to near-zero optical background and photobleaching, electrochemiluminescence (ECL), an optical phenomenon excited by electrochemical reactions, has drawn extensive attention, especially for ultrasensitive bioassays. Developing diverse ECL emitters is crucial to unlocking their multiformity and performances but remains a formidable challenge due to the rigorous requirements for ECL. Herein, we report a general strategy to light up ECL-inactive dyes in an aqueous solution via grafting, a well-developed concept for plant propagation since 500 BCE. As a proof of concept, a series of luminol donor-dye acceptor-based ECL emitters were grafted with near-unity resonance energy transfer (RET) efficiency and coarse/fine-tunable emission wavelengths. Rather than the sophisticated design of new skeleton-based molecules to meet all of the prerequisites for ECL in a constrained manner, each unit in the proposed ECL ensemble performed its functions maximally. As a result, beyond traditional two-dimensional (2D) ones, a three-dimensional (3D) coordinate biosensing system, simultaneously showing a calibration curve and selectivity, was established using the new ECL emitter. This lighting up strategy would generally address the scarcity of ECL emitters and enable unprecedented functions.
Collapse
Affiliation(s)
- Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Hong Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Lufang Zhao
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yuhan Bai
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Xinghua Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Kaiqing Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Songqin Liu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
50
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|