1
|
Chen SS, Zheng Y, Xing ZX, Huang HM. Borylated strain rings synthesis via photorearrangements enabled by energy transfer catalysis. Nat Commun 2025; 16:3724. [PMID: 40253362 PMCID: PMC12009410 DOI: 10.1038/s41467-025-58353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
Borylated carbocycles occupy a pivotal position as essential components in synthetic chemistry, drug discovery, and materials science. Herein, we present a photorearrangement that uniquely involves a boron atom enabled by energy transfer catalysis under visible light conditions. The boron functional group could be translocated through energy transfer mechanism and valuable borylated cyclopropane scaffolds could be generated smoothly. Furthermore, we showcase a 1,5-HAT (hydrogen atom transfer)/cyclization reaction, which is also enhanced by energy transfer catalysis excited by visible light. This method enables the synthesis of borylated cyclobutane frameworks. These boron-involved photorearrangement and cyclization reactions represent two techniques for synthesizing highly desirable borylated strained ring structures, which offering avenues for the synthesis of complex organic molecules with medicinal and material science applications.
Collapse
Affiliation(s)
- Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Zhu C, Lin J, Bao X, Wu J. Development of N-centered radical scavengers that enables photoredox-catalyzed transition-metal-free radical amination of alkyl pinacol boronates. Nat Commun 2025; 16:3225. [PMID: 40185738 PMCID: PMC11971404 DOI: 10.1038/s41467-025-58347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
In recent years, amination of alkylboronates through ionic copper catalysis or boron-ate complex 1,2-metalation has been well established, but complementary radical processes remain less studied before. Herein, based on rational design, we develop several imine-type N-centered radical scavengers and apply them to the radical amination of alkylboronates. The reaction proceeds under mild photoredox-catalyzed transition-metal-free conditions and features excellent functional group tolerance. It also enables the preparation of a range of medicinally valuable amine derivatives from complex natural products. Further application of this reagent in C-H amination, deoxygenative amination, decarboxylative amination and three component trifluoromethylative/sulfonylative aminations are also realized. Further mechanistic studies and DFT calculations are conducted to provide detailed evidence for the mechanism.
Collapse
Affiliation(s)
- Changlei Zhu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Lin
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
| | - Jingjing Wu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Chen YM, Li X, Xu ZG. Strategic 1,n-migration of boronate complexes: a novel platform for remote C-C bond construction. Mol Divers 2025:10.1007/s11030-025-11169-8. [PMID: 40175845 DOI: 10.1007/s11030-025-11169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Organoboron compounds play a pivotal role in diverse scientific disciplines, including chemistry, materials science, energy research, and medicinal chemistry. In recent years, research efforts have predominantly focused on 1,2-metallate migrations of tetracoordinate boronate complexes, while remote migrations, particularly 1,n-metallate migrations (n > 2), remain challenging due to their inherent complexity. This comprehensive review systematically examines seminal contributions to the field of 1,n-metallate migration reactions (n > 2). Our critical analysis reveals that progress in this domain has been fundamentally driven by the strategic design and synthesis of novel tetracoordinate boron complexes, with a notable evolution from conventional O-B coordination motifs to more sophisticated C-B-bonded architectures. Recent methodological advancements have further expanded the structural diversity and mechanistic understanding of these transformations. Although the number of reported cases remains limited and the research landscape is somewhat fragmented, the existing systems underscore the significance of these migration reactions, drawing considerable attention to this area and inspiring further exploration.
Collapse
Affiliation(s)
- Yi-Ming Chen
- College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xue Li
- College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zhi-Gang Xu
- College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
4
|
Yao T, Zhao C, Li C, Song Q. Photoinduced Assembly of Diverse Homoallylic Boronates from gem-Diborons. Org Lett 2025; 27:2597-2601. [PMID: 40052281 DOI: 10.1021/acs.orglett.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In comparison to alkyl monoboron or 1,2-diboron, which can generate alkyl radicals via tetracoordinate boron species under photocatalytic conditions, the participation of gem-diborons as substrates in such reactions remains to be developed. Herein, we report a method utilizing gem-diborons as starting materials to generate α-boryl radicals, which then react with various olefins, successfully and efficiently constructing a diverse range of high-value homoallylic boronates; meanwhile, the gem-difluorohomoallylic skeletons could also be smoothly obtained. This transformation demonstrates broad substrate scope and excellent tolerance toward functional groups, enhancing the utility of gem-diboron as precursors for C-C bond construction and the production of valuable products.
Collapse
Affiliation(s)
- Tangfeng Yao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Chenchen Zhao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Chaokun Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Jiang C, Meng Y, Huang Y, Liu C, Yin Y, Zhao X, Cao S, Jiang Z. Chiral Primary Amine-Catalyzed Asymmetric Photochemical Reactions of Pyridotriazoles with Boronic Acids to Access Triarylmethanes. J Am Chem Soc 2025; 147:5320-5329. [PMID: 39881495 DOI: 10.1021/jacs.4c16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities. This method not only exhibits a broad substrate scope and outstanding functional group tolerance but also enables the precise synthesis of deuterated derivatives using inexpensive D2O as the deuterium source. Mechanistic studies reveal that an unusual 1,4-boron shift is a critical step in generating the boronated enamine intermediate, while also shedding light on the potential enantiocontrol mechanisms facilitated by the chiral catalyst.
Collapse
Affiliation(s)
- Chenyang Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Youlan Meng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yinwa Huang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Chan Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaowei Zhao
- Pharmacy College, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Pharmacy College, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
6
|
Fang H, Manoj N, Popescu MV, Noble A, Paton RS, Aggarwal VK. Platinum-Catalyzed Regio- and Enantioselective Diboration of Unactivated Alkenes with (pin)B-B(dan). Angew Chem Int Ed Engl 2025; 64:e202413504. [PMID: 39140613 DOI: 10.1002/anie.202413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Asymmetric diboration of terminal alkenes is well established, and subsequent selective functionalization of the less hindered primary boronic ester is commonly achieved. Conversely, selective functionalization of the sterically less accessible secondary boronic ester remains challenging. An alternative way to control chemoselective functionalization of bis(boron) compounds is by engendering different Lewis acidity to the two boryl moieties, since reactivity would then be dictated by Lewis acidity instead of sterics. We report herein the regio- and enantioselective Pt-catalyzed diboration of unactivated alkenes with (pin)B-B(dan). A broad range of terminal and cyclic alkenes undergo diboration to furnish the differentiable 1,2-bis(boron) compounds with high levels of regio- and enantiocontrol, giving access to a wide variety of novel building blocks from a common intermediate. The reaction places the less Lewis acidic B(dan) group at the less hindered position and the resulting 1,2-bisboryl alkanes undergo selective transformations of the B(pin) group located at the more hindered position. The regioselectivity of the diboration has been studied by DFT calculations and is believed to originate from the trans influence, which lowers the activation barrier for formation of the regioisomer that places the weaker electron donor [B(pin) vs B(dan)] opposite the strong electron donor (alkyl group) in the platinum complex.
Collapse
Affiliation(s)
- Huaquan Fang
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| | - Niket Manoj
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 80523-1872, Ft. Collins, Colorado, US
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, Bristol, UK
| |
Collapse
|
7
|
Zhao J, Chen A, Zou X, Ji C, Feng H, Gao D. Catalytic Selective Functionalization of Poly(organoborons) †. CHINESE J CHEM 2024; 42:3484-3498. [DOI: 10.1002/cjoc.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Comprehensive SummaryOrganoborons are commonly used building blocks for rapidly increasing molecular complexity. Although significant progress has been made in the selective functionalization of mono‐organoborons, the site‐selective functionalization of poly(organoborons) has attracted substantial interest in organic synthesis, pharmaceuticals, and agrochemicals due to the presence of multiple potential reaction sites. This review discusses various activation modes of the target C–B bond, with diverse transformations being achieved in both a selective and efficient manner. Recent advances in the catalytic selective transformations of 1,n‐diboronates through ionic and radical pathways are highlighted. Furthermore, we summarize the existing challenges and future research directions in this field.
Key ScientistsIn 1993, Suzuki, Miyaura and coworkers developed a pioneering example of selective arylation towards cis‐1,2‐bis(boryl) alkenes, marking the inception of this field. The Morken group has made significant contributions to the asymmetric diboration of alkenes and realized elegant catalytic functionalization of these compounds since 2004. In 2016, Fernández and colleagues achieved the selective arylation of the internal C–B bond of tri(boronates). Since 2019, the Aggarwal group has developed efficient Giese‐type addition and selective arylation at the more substituted C–B bond of 1,2‐bis(boronic) esters through photoredox catalysis. The controllable regiodivergent alkynylation of 1,3‐bis(boronic) esters was developed by Gao and coworkers in 2023. Recently, Qin conducted elegant research on the programmable late‐stage functionalization of bridge‐substituted bicyclo[1.1.1]pentane (BCP) bis‐boronates. Since 2013, catalytic stereoselective transformations have been developed by several groups, including those led by Morken and Chen. This review summarizes the latest and most significant developments in this field since 1993.
Collapse
Affiliation(s)
- Jia‐Hui Zhao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Ang Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Xi‐Zhang Zou
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Chong‐Lei Ji
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| | - Huang‐Di Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - De‐Wei Gao
- School of Physical Science and Technology ShanghaiTech University Shanghai 200120 China
| |
Collapse
|
8
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
9
|
Xu N, Holmgren JL, Morken JP. Site-Selective Activation and Stereospecific Functionalization of Bis(boronic Esters) Derived from 2-Alkenes: Construction of Propionates and Other 1,2-Difunctional Motifs. Angew Chem Int Ed Engl 2024; 63:e202408436. [PMID: 38924653 PMCID: PMC11881804 DOI: 10.1002/anie.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Non-directed regioselective activation of bis(boronic esters), followed by functionalization, is reported. A bulky activator is shown to selectively activate the less hindered boronic ester enabling it to undergo stereospecific cross-coupling to a variety of electrophiles. This steric-based regioselectivity provides a simple and efficient method to prepare highly functionalized, enantiomerically enriched products starting from simple alkenes.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - John L. Holmgren
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - James P. Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
10
|
Ozaki T, Bentley SK, Rybansky N, Li B, Liu SY. A BN-Benzvalene. J Am Chem Soc 2024; 146:24748-24753. [PMID: 39082667 DOI: 10.1021/jacs.4c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The synthesis and crystallographic characterization of BN-benzvalene, the first second-row heteroatom-containing benzvalene, is described. BN-benzvalenes are produced via photoexcitation of C5-aryl-substituted 1,2-azaborines under flow conditions. Mechanistic studies support a boron-specific, two-step photoisomerization pathway involving a BN-Dewar benzene intermediate, which is distinct from the photoisomerization pathway proposed in benzene and phospha- and silabenzenes for the formation of their respective benzvalene analogues.
Collapse
Affiliation(s)
- Tomoya Ozaki
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sierra K Bentley
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Nina Rybansky
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Shih-Yuan Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
11
|
Mahato S, Ghorai D, Das KK, Roy L, Panda S. Alkoxide-Assisted Stereoselective Functionalization of 1,2-Bis-boronic Esters Under Photoredox Catalysis. Org Lett 2024; 26:6760-6765. [PMID: 39052950 DOI: 10.1021/acs.orglett.4c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Site-specific functionalization of the secondary C-B bond of 1,2-bis-boronic esters has been proven to be an important method for the generation of 1,2-bis-functionalized compounds in a highly stereoselective manner. We have explored previously unknown secondary selective alkenylation, allylation, alkynylation and addition to aryl vinyl trifluoromethane, which proceeds via a novel reaction mechanism: alkoxide-mediated photoredox activation to generate secondary radicals over the primary one.
Collapse
Affiliation(s)
- Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Debraj Ghorai
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Mouza: Samantapuri, Bhubaneswar-751013, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| |
Collapse
|
12
|
Yue F, Li M, Yang K, Song H, Liu Y, Wang Q. Deboronative functionalization of alkylboron species via a radical-transfer strategy. Chem Sci 2024:d4sc02889a. [PMID: 39144459 PMCID: PMC11320062 DOI: 10.1039/d4sc02889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
With advances in organoboron chemistry, boron-centered functional groups have become increasingly attractive. In particular, alkylboron species are highly versatile reagents for organic synthesis, but the direct generation of alkyl radicals from commonly used, bench-stable boron species has not been thoroughly investigated. Herein, we describe a method for activating C-B bonds by nitrogen- or oxygen-radical transfer that is applicable to alkylboronic acids and esters and can be used for both Michael addition reactions and Minisci reactions to generate alkyl or arylated products.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Mingxing Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Kangkang Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
13
|
Tang DD, Wang YZ, Liu C, Xia Y, Li Y. Photoredox-Catalyzed Amino-Radical-Transfer-Mediated Three-Component Alkylarylation of Alkenes. Org Lett 2024; 26:6477-6481. [PMID: 39041703 DOI: 10.1021/acs.orglett.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We herein reported a novel photoredox-catalyzed three-component alkylarylation of vinyl arenes with alkylboronic pinacol esters (APEs) and cyanoarenes via radical addition/cross-coupling to construct 1,1-diarylalkanes. In this transformation, alkyl radicals were easily available by visible-light-induced oxidative N-H cleavage of morpholine, which used APEs as a radical precursor. Furthermore, this protocol exhibited a broad substrate scope, enabling various styrenes, APEs, and cyanoarenes, as well as bioactive molecule derivatives.
Collapse
Affiliation(s)
- Di-Di Tang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yu-Zhao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yan Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
14
|
Huang H, Yu ZY, Han LY, Wu YQ, Jiang L, Li QZ, Huang W, Han B, Li JL. N-Heterocyclic carbene catalytic 1,2-boron migrative acylation accelerated by photocatalysis. SCIENCE ADVANCES 2024; 10:eadn8401. [PMID: 39047096 PMCID: PMC11268412 DOI: 10.1126/sciadv.adn8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Iwamoto T, Mitsubo T, Sakajiri K, Ishii Y. Vinylidene rearrangements of internal borylalkynes via 1,2-boryl migration. Dalton Trans 2024; 53:9715-9723. [PMID: 38804850 DOI: 10.1039/d4dt01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Vinylidene rearrangement of alkynes is a well-established and powerful method for alkyne transformations, while use of borylalkynes has remained largely unexplored. This paper describes vinylidene rearrangements of internal borylalkynes using a cationic ruthenium complex. This rearrangement is applicable to alkynes with both tri-(B(pin), B(dan)) and tetracoordinate (B(mida)) boryl groups, and the reaction rate is dramatically affected by the Lewis acidity of the boryl group. Mechanistic study revealed that the rearrangement proceeds via 1,2-boryl migration regardless of the coordination number of the boron center. The migration mode was elucidated by theoretical calculations to indicate that the migration of the tricoordinate boryl groups is an electrophilic process in contrast to the previous vinylidene rearrangements of internal alkynes with two carbon substituents.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Takuya Mitsubo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Kosuke Sakajiri
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
16
|
Liu LC, Lin S, Xu K, Qian J, Wu R, Li Q, Wang H. NHC-Au-Catalyzed Isomerization of Propargylic B(MIDA)s to Allenes and Double Isomerization of Alkynes to 1,3-Dienes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308710. [PMID: 38477453 DOI: 10.1002/advs.202308710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 03/14/2024]
Abstract
The synthesis of allenyl boronates is an important yet challenging topic in organic synthesis. Reported herein is an NHC-gold-catalyzed 1,3-H shift toward allenyl boronates synthesis from simple propargylic B(MIDA)s. Mechanistic studies suggest dual roles of the boryl moiety in the reaction: to activate the substrate for isomerization and at the same time, to prevent the allene product from further isomerization. These effects should be a result of α-anion stabilization and α-cation destabilization conferred by the B(MIDA) moiety, respectively. The NHC-Au catalyst, which is commercially available, is also found to be reactive in alkyne-to-1,3-diene isomerization reactions in an atom-economic and base-free manner.
Collapse
Affiliation(s)
- Li-Cai Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kangwei Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiasheng Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Xu MY, Jiang WT, Xia MZ, An ZL, Xie XY, Xiao B. Orthogonal sp 3-Ge/B Bimetallic Modules: Enantioselective Construction and Enantiospecific Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202317284. [PMID: 38342760 DOI: 10.1002/anie.202317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wei-Tao Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Long An
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiu-Ying Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Zou XZ, Ge JF, Yang YX, Huang YF, Gao DW. Regioselective Alkynylation and Alkenylation at the More Hindered C-B Bond of 1,2-Bis(Boronic) Esters. Org Lett 2024; 26:1595-1600. [PMID: 38373166 DOI: 10.1021/acs.orglett.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Selective transformations at the more sterically hindered sites of organic molecules represent a frontier in the ability to precisely modify molecules. The lack of effective synthetic methods stands in stark contrast to the large number of encumbered sites encountered in molecules of interest. Here, we demonstrate that 1,2-bis(boronates) undergo selective alkynylation and alkenylation at the more sterically hindered C-B bond. Our preliminary mechanistic studies disclosed that this reaction can proceed through two convergent pathways involving direct coupling of sterically encumbered site versus 1,2-boron migratory coupling. Notably, this method facilitated convenient access to alkenyl and alkynyl boron products, which can be diversified by an array of transformations.
Collapse
Affiliation(s)
- Xi-Zhang Zou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Yun-Xiao Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| |
Collapse
|
19
|
Yang Y, Tsien J, Dykstra R, Chen SJ, Wang JB, Merchant RR, Hughes JME, Peters BK, Gutierrez O, Qin T. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat Chem 2024; 16:285-293. [PMID: 37884667 PMCID: PMC10922318 DOI: 10.1038/s41557-023-01342-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - James B Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Byron K Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Keerthika K, Muhammed S B, Geetharani K. A Metal-Free and Operationally Simple Radical Trifluoromethylative Borylation of Unactivated Alkenes. Chemistry 2024; 30:e202303468. [PMID: 37962392 DOI: 10.1002/chem.202303468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
We herein describe a protocol to synthesize trifluoromethylated alkyl boronates from alkenes by the mutual activation of the Togni II and the bis(catecholato)diboron reagents in the absence of any catalyst and additives. This reaction enables synthesizing a series of trifluoromethylated alkyl boronates using unactivated alkenes, including natural products and drug derivatives, in a regioselective manner. Moreover, the synthetic utility of the boronic ester present in the product allows access to a range of trifluoromethyl containing compounds. The radical trapping and gas detection experiments reveal that the more Lewis acidic diboron reagent determines the rapid formation of trifluoromethyl and boron centered radicals.
Collapse
Affiliation(s)
- K Keerthika
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru, 560012, India
| | - Bazil Muhammed S
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru, 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru, 560012, India
| |
Collapse
|
21
|
Chen A, Qiao Y, Gao DW. Controllable Regiodivergent Alkynylation of 1,3-Bis(Boronic) Esters Activated by Distinct Organometallic Reagents. Angew Chem Int Ed Engl 2023; 62:e202312605. [PMID: 37849448 DOI: 10.1002/anie.202312605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
1,3-Bis(boronic) esters can be readily synthesized from alkylBpin precursors. Selective transformations of these compounds hold the potential for late-stage functionalization of the remaining C-B bond, leading to a diverse array of molecules. Currently, there are no strategies available to address the reactivity and, more importantly, the controllable regiodivergent functionalization of 1,3-bis(boronic) esters. In this study, we have achieved controllable regiodivergent alkynylation of these molecules. The regioselectivity has been clarified based on the unique chelation patterns observed with different organometallic reagents. Remarkably, this methodology effectively addresses the low reactivity of 1,3-bis(boronic) esters and bridges the gap in radical chemistry, which typically yields only the classical products formed via stable radical intermediates. Furthermore, the compounds synthesized through this approach serve as potent building blocks for creating molecular diversity.
Collapse
Affiliation(s)
- Ang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yang Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
22
|
Paulus F, Stein C, Heusel C, Stoffels TJ, Daniliuc CG, Glorius F. Three-Component Photochemical 1,2,5-Trifunctionalizations of Alkenes toward Densely Functionalized Lynchpins. J Am Chem Soc 2023; 145:23814-23823. [PMID: 37852246 DOI: 10.1021/jacs.3c08898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.
Collapse
Affiliation(s)
- Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Corinna Heusel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias J Stoffels
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
23
|
Chun J, Li Y, Xie X, Guo K, Zhao D, Chen K, Zhu Y. Photoinduced Copper-Catalyzed Enantioconvergent Remote Alkynylation via 1,4-Heteroaryl Migration. Org Lett 2023; 25:7739-7744. [PMID: 37851948 DOI: 10.1021/acs.orglett.3c03158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A photoinduced copper-catalyzed enantioconvergent remote alkynylation of N-hydroxyphthalimide esters with terminal alkynes via 1,4-heteroaryl migration has been developed. A broad scope of heteroaryl-tethered chiral alkynes has been synthesized with good regio- and enantioselectivities. The chiral-ligand-coordinated copper species plays a dual role as both the photoredox and cross-coupling catalyst. This methodology provides a new platform for enantioconvergent remote alkynylations.
Collapse
Affiliation(s)
- Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yukun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Daoyuan Zhao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
24
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
25
|
Masuda Y, Ikeshita D, Higashida K, Yoshida M, Ishida N, Murakami M, Sawamura M. Photocatalytic 1,2-Phosphorus-Migrative [3 + 2] Cycloaddition of Tri( t-butyl)phosphine with Terminal Alkynes. J Am Chem Soc 2023; 145:19060-19066. [PMID: 37603330 DOI: 10.1021/jacs.3c06760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Tri(t-butyl)phosphine and terminal alkynes undergo 1,2-phosphorus-migrative [3 + 2] cycloaddition in the presence of a proton source under photocatalytic conditions. The reaction exhibits broad functional group tolerance and affords substituted cyclic phosphonium salts, which are amenable to further derivatization by Wittig olefination. Theoretical studies suggest that the phosphorus 1,2-migration of a β-phosphonioalkyl radical proceeds through a phosphine radical cation-alkene complex as a pseudointermediate, and the two fragments in the intermediate are bound to each other through multiple noncovalent interactions.
Collapse
Affiliation(s)
- Yusuke Masuda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Daichi Ikeshita
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Kosuke Higashida
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
26
|
Kong D, Zhang M, Zhang Y, Yu Z, Cao H, Wu J. Photocatalyzed regioselective hydrosilylation for the divergent synthesis of geminal and vicinal borosilanes. Nat Commun 2023; 14:2525. [PMID: 37130840 PMCID: PMC10154379 DOI: 10.1038/s41467-023-38224-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Geminal and vicinal borosilanes are useful building blocks in synthetic chemistry and material science. Hydrosilylation/hydroborylation of unsaturated systems offer expedient access to these motifs. In contrast to the well-established transition-metal-catalyzed methods, radical approaches are rarely explored. Herein we report the synthesis of geminal borosilanes from α-selective hydrosilylation of alkenyl boronates via photoinduced hydrogen atom transfer (HAT) catalysis. Mechanistic studies implicate that the α-selectivity originates from a kinetically favored radical addition and an energetically favored HAT process. We further demonstrate selective synthesis of vicinal borosilanes through hydrosilylation of allyl boronates via 1,2-boron radical migration. These strategies exhibit broad scopes across primary, secondary, and tertiary silanes and various boron compounds. The synthetic utility is evidenced by access to multi-borosilanes in a diverse fashion and scaling up by continuous-flow synthesis.
Collapse
Affiliation(s)
- Degong Kong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC), Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhenyang Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Hui Cao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
27
|
Wang Z, Wierich N, Zhang J, Daniliuc CG, Studer A. Alkyl Radical Generation from Alkylboronic Pinacol Esters through Substitution with Aminyl Radicals. J Am Chem Soc 2023; 145:8770-8775. [PMID: 37058606 DOI: 10.1021/jacs.3c01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Alkylboronic pinacol esters (APEs) are highly versatile reagents in organic synthesis. However, the direct generation of alkyl radicals from commonly used, bench-stable APEs has not been well explored. In this communication, alkyl radical generation from APEs through reaction with aminyl radicals is reported. The aminyl radicals are readily generated by visible-light-induced homolytic cleavage of the N-N bond in N-nitrosamines, and C radical generation occurs through nucleohomolytic substitution at boron. As an application, the highly efficient photochemical radical alkyloximation of alkenes with APEs and N-nitrosamines under mild conditions is presented. A wide range of primary, secondary, and tertiary APEs engage in this transformation that is easily scaled up.
Collapse
Affiliation(s)
- Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Nick Wierich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
28
|
Sakamoto R, Odagi M, Yamanaka M, Nagasawa K. A 1,3-boron shift reaction of homoallenylboronates to synthesise 2-boryl-1,3-dienes. Chem Commun (Camb) 2023; 59:4217-4220. [PMID: 36939650 DOI: 10.1039/d2cc06600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We describe a 1,3-boron shift-type reaction of homoallenylboronates at the center (sp) carbon in allenes to afford 2-boryl-1,3-dienes with a variety of substituents. Notably, this reaction occurs in situ with allenylboronates in the presence of carbamate and a small excess of sec-BuLi, and it is not necessary to isolate the unstable homoallenylboronates.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| |
Collapse
|
29
|
Bao Z, Huang M, Xu Y, Zhang X, Wu YD, Wang J. Selective Formal Carbene Insertion into Carbon-Boron Bonds of Diboronates by N-Trisylhydrazones. Angew Chem Int Ed Engl 2023; 62:e202216356. [PMID: 36576426 DOI: 10.1002/anie.202216356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Bisborylalkanes play important roles in organic synthesis as versatile bifunctional reagents. The two boron moieties in these compounds can be selectively converted into other functional groups through cross-coupling, oxidation or radical reactions. Thus, the development of efficient methods for synthesizing bisborylalkanes is highly demanded. Herein we report a new strategy to access bisborylalkanes through the reaction of N-trisylhydrazones with diboronate, in which the bis(boryl) methane is transformed into 1,2-bis(boronates) via formal carbene insertion. Since the N-trisylhydrazones can be readily derived from the corresponding aldehydes, this strategy represents a practical synthesis of 1,2-diboronates with broad substrate scope. Mechanistic studies reveal an unusual neighboring group effect of 1,1-bis(boronates), which accounts for the observed regioselectivity when unsymmetric 1,1-diboronates are applied.
Collapse
Affiliation(s)
- Zhicheng Bao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
30
|
Teresa J, Velado M, Fernández de la Pradilla R, Viso A, Lozano B, Tortosa M. Enantioselective Suzuki cross-coupling of 1,2-diboryl cyclopropanes. Chem Sci 2023; 14:1575-1581. [PMID: 36794195 PMCID: PMC9906671 DOI: 10.1039/d2sc05789a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Herein, we describe the catalytic enantioselective cross-coupling of 1,2-bisboronic esters. Prior work on group specific cross coupling is limited to the use of geminal bis-boronates. This desymmetrization provides a novel approach to prepare enantioenriched cyclopropyl boronates with three contiguous stereocenters, that could be further derivatized through selective functionalization of the carbon-boron bond. Our results suggest that transmetallation, which is the enantiodetermining step, takes place with retention of stereochemistry at carbon.
Collapse
Affiliation(s)
- Javier Teresa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Marina Velado
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | | | - Alma Viso
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | - Blanca Lozano
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| |
Collapse
|
31
|
Yue F, Ma H, Song H, Liu Y, Dong J, Wang Q. Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K 3PO 4. Chem Sci 2022; 13:13466-13474. [PMID: 36507180 PMCID: PMC9683010 DOI: 10.1039/d2sc05521j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the ubiquity of alkylboronic acids in organic synthesis, their utility as alkyl radical precursors in visible-light-induced photocatalytic reactions is limited by their high oxidation potentials. In this study, we demonstrated that an inorganophosphorus compound can modulate the oxidation potentials of alkylboronic acids so that they can act as alkyl radical precursors. We propose a mechanism based on the results of fluorescence quenching experiments, electrochemical experiments, 11B and 31P NMR spectroscopy, and other techniques. In addition, we describe a simple and reliable alkylation method that has good functional group tolerance and can be used for direct C-B chlorination, cyanation, vinylation, alkynylation, and allylation, as well as late-stage functionalization of derivatized drug molecules. Notably, alkylboronic acids can be selectively activated in the presence of a boronic pinacol ester.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| |
Collapse
|
32
|
M T, Callum. Emerging radical rearrangement reactions: The 1,2-boron shift. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Marotta A, Adams CE, Molloy JJ. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022; 61:e202207067. [PMID: 35748797 PMCID: PMC9544826 DOI: 10.1002/anie.202207067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Recently the fruitful merger of organoboron chemistry and photocatalysis has come to the forefront of organic synthesis, resulting in the development of new technologies to access complex (non)borylated frameworks. Central to the success of this combination is control of boron hybridisation. Contingent on the photoactivation mode, boron as its neutral planar form or tetrahedral boronate can be used to regulate reactivity. This Minireview highlights the current state of the art in photocatalytic processes utilising organoboron compounds, paying particular attention to the role of boron hybridisation for the target transformation.
Collapse
Affiliation(s)
- Alessandro Marotta
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Callum E. Adams
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - John J. Molloy
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
34
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts. Angew Chem Int Ed Engl 2022; 61:e202207988. [PMID: 35779000 PMCID: PMC9543306 DOI: 10.1002/anie.202207988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary β-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Key Laboratory of Molecular Based MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002China
| | - Wangyujing Han
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
35
|
Viso A, Fernández de la Pradilla R, Tortosa M. Site-Selective Functionalization of C(sp 3) Vicinal Boronic Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Mariola Tortosa
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
36
|
Matsuo B, Granados A, Majhi J, Sharique M, Levitre G, Molander GA. 1,2-Radical Shifts in Photoinduced Synthetic Organic Transformations: A Guide to the Reactivity of Useful Radical Synthons. ACS ORGANIC & INORGANIC AU 2022; 2:435-454. [PMID: 36510615 PMCID: PMC9732885 DOI: 10.1021/acsorginorgau.2c00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
The exploration of 1,2-radical shift (RS) mechanisms in photoinduced organic reactions has provided efficient routes for the generation of important radical synthons in many chemical transformations. In this Review, the basic concepts involved in the traditional 1,2-spin-center shift (SCS) mechanisms in recently reported studies are discussed. In addition, other useful 1,2-RSs are addressed, such as those proceeding through 1,2-group migrations in carbohydrate chemistry, via 1,2-boron shifts, and by the generation of α-amino radicals. The discussion begins with a general overview of the basic aspects of 1,2-RS mechanisms, followed by a demonstration of their applicability in photoinduced transformations. The sections that follow are organized according to the mechanisms operating in combination with the 1,2-radical migration event. This contribution is not a comprehensive review but rather aims to provide an understanding of the topic, focused on the more recent advances in the field, and establishes a definition for the nomenclature that has been used to describe such mechanisms.
Collapse
|
37
|
Lewis base promoted photoredox catalyzed addition of allylic radicals to Michael acceptors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox‐Catalyzed Site‐Selective Cross‐Coupling of 1,2‐Bis‐Boronic Esters Enabled by 1,2‐Boron Shifts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Wang
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Wangyujing Han
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Adam Noble
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | | |
Collapse
|
39
|
Marotta A, Adams CE, Molloy J. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Marotta
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems GERMANY
| | - Callum E. Adams
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems department GERMANY
| | - John Molloy
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Sytems Am Mühlenberg 1 14476 Potsdam GERMANY
| |
Collapse
|
40
|
Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
41
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2-Bis-Boronic Esters at the more Substituted Site through Visible-Light Activation of Electron Donor-Acceptor Complexes. Angew Chem Int Ed Engl 2022; 61:e202202061. [PMID: 35213775 PMCID: PMC9314813 DOI: 10.1002/anie.202202061] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/15/2022]
Abstract
1,2-Bis-boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron-rich aryllithium which, in the presence of an electron-deficient aryl nitrile, leads to the formation of an electron donor-acceptor complex. Following visible-light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical-radical coupling with the arene radical-anion, giving β-aryl primary boronic ester products. The reactions proceed under catalyst-free conditions. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to provide trans-substituted products, complementing the selectivity observed in the Suzuki-Miyaura reaction.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Jingjing Wu
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
- Current address: Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical EngineeringShanghai Jiaotong UniversityNo. 800, Dongchuan RoadShanghai200240China
| | - Adam Noble
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
42
|
Selmani A, Schoetz MD, Queen AE, Schoenebeck F. Modularity in the C sp3 Space─Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Markus D. Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Adele E. Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
43
|
Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat Commun 2022; 13:1784. [PMID: 35379818 PMCID: PMC8980057 DOI: 10.1038/s41467-022-29466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tetracoordinate boron species have emerged as radical precursors via deboronation by photo-induced single electron transfer (SET) pathway. These reactions usually produce an alkyl radical and boron-bound species, and the valuable boron species are always discarded as a by-product. Given the importance of boron species, it will be very attractive if the two parts could be incorporated into the eventual products. Herein we report a photo-catalyzed strategy in which in situ generated tetracoordinated boron species decomposed into both alkyl radicals and boron species under visible light irradiation, due to the pre-installation of a vinyl group on the aromatic ring, the newly generated alkyl radical attacks the vinyl group while leaving the boron species on ipso-position, then both radical part and boron moiety are safely incorporated into the final product. Tertiary borons, secondary borons, gem-diborons as well as 1,2-diborons, and versatile electrophiles are all well tolerated under this transformation, of note, ortho-, meta- and para-bromostyrenes all demonstrated good capabilities. The reaction portraits high atom economy, broad substrate scope, and diversified valuable products with tertiary or quaternary carbon center generated, with diborons as substrates, Csp2-B and Csp3-B are established simultaneously, which are precious synthetic building blocks in chemical synthesis. Tetracoordinate boron species are common radical precursors in organic synthesis, but the boron species are discarded as by-products. Herein the authors report a strategy to incorporate both the alkyl moiety and boron species into the eventual products, yielding organoboron compounds.
Collapse
|
44
|
Li WD, Wu Y, Li SJ, Jiang YQ, Li YL, Lan Y, Xia JB. Boryl Radical Activation of Benzylic C-OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO 2 via Photoredox Catalysis. J Am Chem Soc 2022; 144:8551-8559. [PMID: 35378034 DOI: 10.1021/jacs.1c12463] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new strategy for the direct cleavage of the C(sp3)-OH bond has been developed via activation of free alcohols with neutral diphenyl boryl radical generated from sodium tetraphenylborate under mild visible light photoredox conditions. This strategy has been verified by cross-electrophile coupling of free alcohols and carbon dioxide for the synthesis of carboxylic acids. Direct transformation of a range of primary, secondary, and tertiary benzyl alcohols to acids has been achieved. Control experiments and computational studies indicate that activation of alcohols with neutral boryl radical undergoes homolysis of the C(sp3)-OH bond, generating alkyl radicals. After reducing the alkyl radical into carbon anion under photoredox conditions, the following carboxylation with CO2 affords the coupling product.
Collapse
Affiliation(s)
- Wen-Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Qian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
45
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
46
|
Wang H, Wu J, Noble A, Aggarwal VK. Selective Coupling of 1,2‐Bis‐Boronic Esters at the more. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Wang
- Bristol University school of chemistry UNITED KINGDOM
| | - Jingjing Wu
- Bristol University school of chemistry UNITED KINGDOM
| | - Adam Noble
- Bristol University school of chemistry UNITED KINGDOM
| | | |
Collapse
|
47
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
48
|
Jana K, Studer A. Allylboronic Esters as Acceptors in Radical Addition, Boron 1,2-Migration, and Trapping Cascades. Org Lett 2022; 24:1100-1104. [PMID: 35080407 PMCID: PMC8822490 DOI: 10.1021/acs.orglett.2c00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Radical 1,3-carboheteroarylation
and 1,3-hydroalkylation of allylboronic
esters comprising a 1,2-boron shift is reported. Allylboronic esters
are generally used in synthesis as allylation reagents, where the
boronic ester moiety gets lost. In the introduced cascades, alkylboronic
esters are obtained with the boron entity remaining in the product.
The carboheteroarylation of the allylboronic esters are conducted
without a metal catalyst, and the 1,3-hydroalkylation is achieved
using iron catalysis. Both reactions work efficiently under mild conditions.
Collapse
Affiliation(s)
- Kalipada Jana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
49
|
Han WJ, Zhang JW, Yan CX, Wang JW, Zhou PP, Han B. Sequential Catalytic Annulations: Divergent Synthesis of Heterocycles through a Radical [1,4]-Oxygen Shift. Org Lett 2022; 24:542-547. [PMID: 34989585 DOI: 10.1021/acs.orglett.1c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A radical [1,4]-oxygen-atom transfer has been realized by the reaction of linear alkyne-tethered ketoximes and ethynylbenziodoxolones (EBX) under sequential catalytic conditions. Mechanism studies indicate that the O atom transfer experiences a cascade O atom radical cyclization/alkynylation/N-O bond photocleavage and subsequent N,O-diradical rearrangement. By the diversification of catalytic sequences, a series of structurally important 3H-pyrrol-3-ones and chlorinated furo[3,2-b]pyrroles are divergently synthesized along with an O atom shift under the catalysis of Cu/Ir photosensitization and Cu/Ir photosensitization/AlCl3, respectively.
Collapse
Affiliation(s)
- Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Wu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chao-Xian Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia-Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
50
|
Jiang X, Liu X, Chen A, Zou X, Ge J, Gao D. 1,2‐Boryl Migration Enables Efficient Access to Versatile Functionalized Boronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiamin Jiang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Xinru Liu
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Ang Chen
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Xizhang Zou
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Jianfei Ge
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Dewei Gao
- ShanghaiTech University Chemistry 上海市浦东新区华夏中路393号上海科技大学物质学院3号楼505-2 201210 Shanghai CHINA
| |
Collapse
|