1
|
Peng B, Zhang K. Confined Structural Water Molecules as Alternative Potential Emitters for Bright Photoluminescence of Thiolate-Gold Complexes. Chemistry 2025; 31:e202500499. [PMID: 39995115 DOI: 10.1002/chem.202500499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The debate about water as an emitter has spanned nearly a century, but how it emits bright colors remains elusive. In this report, using the widely used Au(I)-alkanethiolate complex (Au(I)-SRs, R=-(CH2)12H) with AIE properties as a model system, by carefully manipulating the delicate surface-ligand interactions at the nanoscale interface, together with a careful spectral investigation and an isotopic diagnostic experiment of heavy water (D2O), we demonstrated that the structural water molecules (SWs) trapped in the nanoscale interface or space are the true emission centers of metal nanoclusters (NCs) and the aggregates of Au(I)-SRs complexes, instead of a well-organized metal core dominated by quantum confinement mechanics. Unlike conventional hydrogen-bonded water molecules, due to interfacial adsorption or spatial confinement, the p-orbitals of two O atoms in SWs can form strong electronic interactions through spatial overlap, thus constructing a set of interfacial states, one of which is characterized by π-bonding, thus providing alternative channels (or paths) for the relaxation decay of the excited electrons. Using the one-dimensional free-electron gas model, the energy levels calculated by the Schrödinger equation are in perfect agreement with the experimental observations, further validating the SWs model.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| |
Collapse
|
2
|
Lu J, Yao D, Tang S, Cai X, Ding W, Zhu Y. Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime over a Cu 12Ag 17(SR) 12(PPh 3) 4 cluster catalyst. Chem Commun (Camb) 2025; 61:4038-4041. [PMID: 39957540 DOI: 10.1039/d4cc06745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Atomically precise metal cluster catalysts with crystallographically solved structures have been documented to be promising alternatives to tackle the challenge of selective hydrogenation of organics into high value products. Here we report that a Cu12Ag17(SR)12(PPh3)4 (SR = 1,3-benzenedithiol) cluster as a heterogeneous catalyst can achieve a highly catalytic selectivity of cyclohexanone oxime in catalytic hydrogenation of nitrocyclohexane, due to the unique synergy in the bimetallic cluster.
Collapse
Affiliation(s)
- Jinzhi Lu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Danyun Yao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Shisi Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Weiping Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Sun T, Ge B, Huang S, Wang X, Tian Y, Cai X, Ding W, Zhu Y. Heterogeneous Catalysis of Molecular-Like Au 8M(PPh 3) 8 n+ Clusters Cultivated in Mesoporous SBA-15. Angew Chem Int Ed Engl 2025; 64:e202420274. [PMID: 39620864 DOI: 10.1002/anie.202420274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
It is a dream of researchers to be able to tailor the catalytic performances by adjusting heterogeneous catalysts at the atomic level. Atomically precise metal clusters provide us with the possibility to achieve this challenge. Here, we design a push-and-pull synthesis strategy coupled with TiOx coating to prepare the heterogeneous catalysts denoted as TiOx/Au8M@SBA via cultivating atomically precise Au8M(PPh3)8 n+ (M=Pd, Pt or Au; n=2 for Pd/Pt and 3 for Au) clusters in mesoporous molecular sieve. The catalysts are made up of the three functional units, which include Au8M(PPh3)8 n+ clusters that can act as the active sites, the pore environment of the SBA-15 that can announce a catalysis show for the clusters with precise number of atoms maintained during the chemical reactions, and the TiOx coating that can further inhibit the migration of the clusters under reaction conditions. The selective hydrogenation of acetylene performed in the fixed-bed reactor taken, for example, we learn how the atom-by-atom tailoring of a heterogeneous catalyst can switch on elusive heterogeneous mechanisms with cluster catalysis. This work sheds light on the fundamental insight into catalysis origin of heterogeneous catalysts and achieves a distinguished level of detail for cluster catalysis.
Collapse
Affiliation(s)
- Tianqi Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Bingqing Ge
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | - Xiuwen Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yiqi Tian
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Fan JQ, Li Y, Wu Xu W, Li MB. Loading Lewis Acid/Base Pair on Metal Nanocluster for Catalytic Ugi Reaction. Angew Chem Int Ed Engl 2025; 64:e202413861. [PMID: 39267548 DOI: 10.1002/anie.202413861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Constructing structurally robust and catalytically active metal nanoclusters for catalyzing multi-component reactions is an interesting while challenging task. Inspired by Lewis acid and Lewis base catalysis, we realized the combination of both Lewis acid and Lewis base sites on the surface of a stable gold nanocluster Au35Cd2. The catalytic potential of Au35Cd2 in four-component Ugi reaction was explored, demonstrating high activity and exceptional recyclability. In-depth mechanism studies indicate that the catalytic synergy of the Lewis acid/base pair is crucial for the high efficiency of Au35Cd2-catalyzed Ugi reaction. Bearing the stable structure, multiple activation sites and hierarchical chirality, Au35Cd2 is expected to display further interesting catalytic performance such as asymmetric catalysis.
Collapse
Affiliation(s)
- Ji-Qiang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
- School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Zhou S, Liu D, Fan K, Liu H, Zhang XD. Atomic-level design of biomimetic iron-sulfur clusters for biocatalysis. NANOSCALE 2024; 16:18644-18665. [PMID: 39257356 DOI: 10.1039/d4nr02883j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Designing biomimetic materials with high activity and customized biological functions by mimicking the central structure of biomolecules has become an important avenue for the development of medical materials. As an essential electron carrier, the iron-sulfur (Fe-S) clusters have the advantages of simple structure and high electron transport capacity. To rationally design and accurately construct functional materials, it is crucial to clarify the electronic structure and conformational relationships of Fe-S clusters. However, due to the complex catalytic mechanism and synthetic process in vitro, it is hard to reveal the structure-activity relationship of Fe-S clusters accurately. This review introduces the main structural types of Fe-S clusters and their catalytic mechanisms first. Then, several typical structural design strategies of biomimetic Fe-S clusters are systematically introduced. Furthermore, the development of Fe-S clusters in the biocatalytic field is enumerated, including tumor treatment, antibacterial, virus inhibition and plant photoprotection. Finally, the problems and development directions of Fe-S clusters are summarized. This review aims to guide people to accurately understand and regulate the electronic structure of Fe-S at the atomic level, which is of great significance for designing biomimetic materials with specific functions and expanding their applications in biocatalysis.
Collapse
Affiliation(s)
- Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Di Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education; Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
7
|
Wang FF, Zhang Y, Zhao T, Feng PF, Lu Z, Zang SQ, Mak TCW. Photoluminescence Anisotropy in Eutectic Crystals of Polynuclear Lanthanide Complexes and Silver Clusters. Angew Chem Int Ed Engl 2023; 62:e202305693. [PMID: 37392153 DOI: 10.1002/anie.202305693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Anisotropy is an intrinsic property of crystalline materials. However, the photoluminescence anisotropy in eutectic crystals of organometallic complexes has remained unexplored. Herein, the eutectic of polynuclear lanthanide complexes and Ag clusters was prepared, and the crystal shows significant photoluminescence anisotropy. The polarization anisotropy of emission δ and degree of excitation polarization P are 2.62 and 0.53, respectively. The rare excitation polarization properties have been proved to be related to the regular arrangement of electric transition dipole moments of luminescent molecules in the crystal. Our design provides a reference for developing new photoluminescence anisotropy materials and expanding their applications.
Collapse
Affiliation(s)
- Fei-Fan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials Institution, Nanjing University, Nanjing, 210023, P. R. China
| | - Teng Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng-Fei Feng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials Institution, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
8
|
Dai Z, Wang G, Xiao F, Lei D, Dou X. Amorphous Copper-Based Nanoparticles with Clusterization-Triggered Phosphorescence for Ultrasensing 2,4,6-Trinitrotoluene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300526. [PMID: 36929680 DOI: 10.1002/adma.202300526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Indexed: 06/16/2023]
Abstract
Amorphous metal-based nanostructures have attracted great attention recently due to their facilitative electron transfer and abundant reactive sites, whereas it remains enigmatic as to whether amorphous copper-based nanoparticles (CuNPs) can be achieved. Here, for synthesizing amorphous CuNPs, glutathione is adopted as a ligand to inhibit the nucleation and crystallization process via its electrostatic repulsion. By subtly tailoring the solvent polarity, not only can amorphous glutathione-functionalized CuNPs (GSH-CuNPs) with phosphorescent performance be achieved after transferring the non-conjugation of GSH ligand to through-space conjugation, namely clusterization-triggered emission, but also the phosphorescence-off of GSH-CuNPs toward 2,4,6-trinitrotoluene (TNT) can be realized by the photoinduced electron-transfer process through the hydrogen bond channel, which is established between carboxyl and amino groups of GSH-CuNPs with the nitryl group of TNT. Benefitting from the intrinsic superiorities of the amorphous CuNPs, desired phosphorescence and detection performances of GSH-CuNPs toward airborne TNT microparticulates are undoubtedly realized, including high quantum yield (13.22%), excellent specificity in 33 potential interferents, instantaneous response, and ultralow detection limit (1.56 pg). The present GSH-CuNPs are expected to stretch amorphous metal-based nanostructures and deepen the insights into amorphous materials for optical detection.
Collapse
Affiliation(s)
- Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
10
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
11
|
Peng B, Zhou JF, Ding M, Shan BQ, Chen T, Zhang K. Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2210723. [PMID: 37205011 PMCID: PMC10187113 DOI: 10.1080/14686996.2023.2210723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
12
|
Li G, Hou J, Lei X, Li D, Yu E, Hu W, Cai X, Liu X, Chen M, Zhu Y. Reactivity and Recyclability of Ligand-Protected Metal Cluster Catalysts for CO 2 Transformation. Angew Chem Int Ed Engl 2023; 62:e202216735. [PMID: 36550090 DOI: 10.1002/anie.202216735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
It remains a significant challenge to construct an integrated catalyst that combines advantages of homogeneous and heterogeneous catalysis with clarified mechanism and high performance. Here we show atomically precise CuAg cluster catalysts for CO2 capture and utilization, where two functional units are combined into the clusters: metal and ligand. Due to atomic resolution on total and local structures of such catalysts to be achieved, which disentangles heterogeneous imprecise systems and permits tracing the reaction processes via experiments coupled with theory, site-specific catalysis induced by metal-ligand synergy can be accurately elucidated. The CuAg cluster catalysts exhibit excellent reactivity and recyclability to forge the C-N bonding from CO2 formylation with secondary amines that can make the cluster catalysts more unique compared with typically homogeneous complexes.
Collapse
Affiliation(s)
- Guangjun Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jun Hou
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomei Lei
- Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Enqi Yu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weigang Hu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiao Cai
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
13
|
Yang G, Mu X, Pan X, Tang Y, Yao Q, Wang Y, Jiang F, Du F, Xie J, Zhou X, Yuan X. Ligand engineering of Au 44 nanoclusters for NIR-II luminescent and photoacoustic imaging-guided cancer photothermal therapy. Chem Sci 2023; 14:4308-4318. [PMID: 37123188 PMCID: PMC10132122 DOI: 10.1039/d2sc05729h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/14/2023] [Indexed: 04/05/2023] Open
Abstract
A theranostic probe was developed by conjugating NIR-II emitting Au44MBA26 nanoclusters with photothermal Cy7 molecules via click chemistry, achieving NIR-II luminescent and photoacoustic imaging-guided cancer photothermal therapy.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xinxin Pan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qiaofeng Yao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China
| | - Yaru Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, PR China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, PR China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| |
Collapse
|
14
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
15
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
16
|
Dong J, Robinson JR, Gao ZH, Wang LS. Selective Semihydrogenation of Polarized Alkynes by a Gold Hydride Nanocluster. J Am Chem Soc 2022; 144:12501-12509. [PMID: 35771170 DOI: 10.1021/jacs.2c05046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydridic hydrogen in nanogold catalysts has long been postulated as an important intermediate in hydrogenation reactions, but it has not been directly observed. Here, we report the synthesis of a new undecagold cluster with a bidentate phosphine ligand. The chelating effects of the bidentate ligand result in a more symmetric Au11 core with two labile Cl- ligands that can exchange with BH4-, leading to a novel undecagold hydride cluster. The new hydride cluster is discovered to readily undergo hydroauration reaction with alkynes containing electron-withdrawing groups, forming key gold-alkenyl semihydrogenation intermediates, which can be efficiently and selectively converted to Z-alkenes under acidic conditions. All key reaction intermediates are isolated and characterized, providing atomic-level insights into the active sites and mechanisms of semihydrogenation reactions catalyzed by gold-based nanomaterials. The hydridic hydrogen in the undecagold cluster is found to be the key to prevent over hydrogenation of alkenes to alkanes. The current study provides fundamental insights into hydrogenation chemistry enabled by gold-based nanomaterials and may lead to the development of efficient catalysts for selective semihydrogenation or functionalization of alkynes.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ze-Hua Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Liu N, Wang Y, Wang Z, He Q, Liu Y, Dou X, Yin Z, Li Y, Zhu H, Yuan X. Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity. NANOSCALE 2022; 14:8183-8191. [PMID: 35621160 DOI: 10.1039/d2nr01550a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal nanoclusters (NCs) have emerged as novel antibacterial agents featuring broad-spectrum antibacterial activity without drug resistance for bacteria, but suffer from fast antibacterial invalidation due to their consumption by bacteria. Herein we report the design of a visible-light-driven photodynamic antibacterial agent based on conjugating aggregation-induced emission (AIE)-featured AuAg NCs with highly luminescent carbon dots (CDs). The conjugation of CDs with AuAg NCs could not only enhance the visible-light harvest, but also promote charge carrier generation/separation via charge/energy transfer, leading to the production of abundant reactive oxygen species (ROS) for bacterial killing under visible-light irradiation. Consequently, the as-obtained CDs@AuAg NCs display excellent photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria with 4-5 orders of magnitude reduction in colony forming units, which is different from the conventional metal NC-based analogue relying on self-consumption for bacterial killing. In addition, the CDs@AuAg NCs are found to be free of cytotoxicity; the ROS capture experiments indicate that the photoproduced H2O2 by CDs@AuAg NCs is the main active species for bacterial killing, accounting for nearly 48% of the total antibacterial efficacy. This study provides a paradigm for the design of metal NC-based photodynamic antibacterial agents for diverse bactericidal applications.
Collapse
Affiliation(s)
- Naiwei Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Yichun Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Ziping Wang
- Weifang University of Science and Technology, Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang 262700, P. R. China
| | - Qiuxia He
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Yong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xinyue Dou
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Yang Li
- Jangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Haiguang Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| |
Collapse
|
18
|
Negishi Y, Horihata H, Ebina A, Miyajima S, Nakamoto M, Ikeda A, Kawawaki T, Hossain S. Selective formation of [Au 23(SPh t Bu) 17] 0, [Au 26Pd(SPh t Bu) 20] 0 and [Au 24Pt(SC 2H 4Ph) 7(SPh t Bu) 11] 0 by controlling ligand-exchange reaction. Chem Sci 2022; 13:5546-5556. [PMID: 35694356 PMCID: PMC9116332 DOI: 10.1039/d2sc00423b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
To use atomically precise metal nanoclusters (NCs) in various application fields, it is essential to establish size-selective synthesis methods for the metal NCs. Studies on thiolate (SR)-protected gold NCs (Au n (SR) m NCs) revealed that the atomically precise Au n (SR) m NC, which has a different chemical composition from the precursor, can be synthesized size-selectively by inducing transformation in the framework structure of the metal NCs by a ligand-exchange reaction. In this study, we selected the reaction of [Au25(SC2H4Ph)18]- (SC2H4Ph = 2-phenylethanethiolate) with 4-tert-butylbenzenethiol ( t BuPhSH) as a model ligand-exchange reaction and attempted to obtain new metal NCs by changing the amount of thiol, the central atom of the precursor NCs, or the reaction time from previous studies. The results demonstrated that [Au23(SPh t Bu)17]0, [Au26Pd(SPh t Bu)20]0 (Pd = palladium) and [Au24Pt(SC2H4Ph)7(SPh t Bu)11]0 (Pt = platinum) were successfully synthesized in a high proportion. To best of our knowledge, no report exists on the selective synthesis of these three metal NCs. The results of this study show that a larger variety of metal NCs could be synthesized size-selectively than at present if the ligand-exchange reaction is conducted while changing the reaction conditions and/or the central atoms of the precursor metal NCs from previous studies.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Hikaru Horihata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Mana Nakamoto
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
19
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
20
|
Shen H, Wu Q, Asre Hazer MS, Tang X, Han YZ, Qin R, Ma C, Malola S, Teo BK, Häkkinen H, Zheng N. Regioselective hydrogenation of alkenes over atomically dispersed Pd sites on NHC-stabilized bimetallic nanoclusters. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Gao ZH, Wei K, Wu T, Dong J, Jiang DE, Sun S, Wang LS. A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO 2 to CO. J Am Chem Soc 2022; 144:5258-5262. [PMID: 35290736 DOI: 10.1021/jacs.2c00725] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been a long-standing challenge to create and identify the active sites of heterogeneous catalysts, because it is difficult to precisely control the interfacial chemistry at the molecular level. Here we report the synthesis and catalysis of a heteroleptic gold trihydride nanocluster, [Au22H3(dppe)3(PPh3)8]3+ [dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 = triphenylphosphine]. The Au22H3 core consists of two Au11 units bonded via six uncoordinated Au sites. The three H atoms bridge the six uncoordinated Au atoms and are found to play a key role in catalyzing electrochemical reduction of CO2 to CO with a 92.7% Faradaic efficiency (FE) at -0.6 V (vs RHE) and high reaction activity (134 A/gAu mass activity). The CO current density and FECO remained nearly constant for the CO2 reduction reaction for more than 10 h, indicating remarkable stability of the Au22H3 catalyst. The Au22H3 catalytic performance is among the best Au-based catalysts reported thus far for electrochemical reduction of CO2. Density functional theory (DFT) calculations suggest that the hydride coordinated Au sites are the active centers, which facilitate the formation of the key *COOH intermediate.
Collapse
Affiliation(s)
- Ze-Hua Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tao Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
22
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
24
|
Si WD, Li YZ, Zhang SS, Wang S, Feng L, Gao ZY, Tung CH, Sun D. Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS NANO 2021; 15:16019-16029. [PMID: 34592104 DOI: 10.1021/acsnano.1c04421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controllable syntheses of Au nanoclusters (NCs) with different nuclearities are of great significance due to the kernel-dependent physicochemical properties. Herein, two pairs of enantiomeric Au NCs [Au19(R/S-BINAP)4(PhC≡C)Cl4] (SD/Au19) and [Au11(R/S-BINAP)4(PhC≡C)2]·Cl (SD/Au11), both with atropos (rigid axial chirality) diphosphine BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) as the predominant organic ligands, were controllably synthesized through precursor engineering. The former was obtained by direct reduction of HAuCl4·4H2O, while the latter was obtained by reduction of [Au(SMe2)Cl] instead. Intriguingly, the kernel of SD/Au19 contains an Au7 pentagonal bipyramid capped by two boat-like Au6 rings, which represents another type of Au19 kernel, making SD/Au19 a good candidate for comparative study with other Au19 NCs to get more insight into the distinct structural evolution of phosphine-protected Au NCs. Despite the previous chiroptical studies on some other chiral undecagold NCs, the successful attainment of the X-ray crystal structures for SD/Au11 not only provides a step forward toward better correlating the chiroptical activities with their structural details but also reveals that even the auxiliary protecting ligands also play a nontrivial role in tuning the geometrical structures of the metal NCs. The chiroptical activities of both SD/Au19 and SD/Au11 were found to originate from the chiral ligands and core distortions; the extended π-electron systems in the BINAP ligands have proved to positively contribute to the electronic absorptions and thus disturb the corresponding circular dichroism (CD) responses.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan 250353, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
25
|
Peng B, Zheng LX, Wang PY, Zhou JF, Ding M, Sun HD, Shan BQ, Zhang K. Physical Origin of Dual-Emission of Au-Ag Bimetallic Nanoclusters. Front Chem 2021; 9:756993. [PMID: 34646815 PMCID: PMC8503609 DOI: 10.3389/fchem.2021.756993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
On the origin of photoluminescence of noble metal NCs, there are always hot debates: metal-centered quantum-size confinement effect VS ligand-centered surface state mechanism. Herein, we provided solid evidence that structural water molecules (SWs) confined in the nanocavity formed by surface-protective-ligand packing on the metal NCs are the real luminescent emitters of Au-Ag bimetal NCs. The Ag cation mediated Au-Ag bimetal NCs exhibit the unique pH-dependent dual-emission characteristic with larger Stokes shift up to 200 nm, which could be used as potential ratiometric nanosensors for pH detection. Our results provide a completely new insight on the understanding of the origin of photoluminescence of metal NCs, which elucidates the abnormal PL emission phenomena, including solvent effect, pH-dependent behavior, surface ligand effect, multiple emitter centers, and large-Stoke's shift.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liu-Xi Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Pan-Yue Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hao-Di Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
26
|
Cai X, Sun Y, Xu J, Zhu Y. Contributions of Internal Atoms of Atomically Precise Metal Nanoclusters to Catalytic Performances. Chemistry 2021; 27:11539-11547. [PMID: 34096132 DOI: 10.1002/chem.202101310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/28/2022]
Abstract
Every atom of a heterogeneous catalyst can play a direct or indirect role in its overall catalytic properties. However, it is extremely challenging to determine explicitly which atom(s) of a catalyst can contribute most to its catalytic performance because the observed performance usually reflects an average of all the atoms in the catalyst. The emergence of atomically precise metal nanoclusters brings unprecedented opportunities to address these central issues, as the crystal structures of such nanoclusters have been solved, and hence very fundamental understanding of nanocatalysis can be attained at an atomic level. This minireview focuses on recent efforts to reveal the contributions of the internal atoms or vacancies of nanocluster catalysts to the catalytic processes, including how the catalytic activity can be dramatically changed by the central doping of a foreign atom, how catalytic activation and inactivation can be reversibly switched by shuttling the central atom into and out of nanoclusters, and how evolution in catalytic activity can be driven by structural periodicity in the inner kernels of the nanoclusters. We anticipate that progress in this research area could represent a novel conceptual framework for understanding the crucial roles of internal atoms of the catalysts in tuning the catalytic properties.
Collapse
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
27
|
Du W, Deng S, Chen S, Jin S, Zhen Y, Pei Y, Zhu M. Anisotropic Evolution of Nanoclusters from Ag 40 to Ag 45: Halogen- and Defect-Induced Epitaxial Growth in Nanoclusters. J Phys Chem Lett 2021; 12:6654-6660. [PMID: 34255522 DOI: 10.1021/acs.jpclett.1c01713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halogens have widely served as handles for regulating the growth of nanoparticles and the control of their physicochemical properties. However, their regulatory mechanism is poorly understood. Nanoclusters are the early morphology of nanoparticles and play an important role in revealing the formation and growth of nanoparticles due to their precise structures. Here, we report that halogens induce the anisotropic growth of Ag40(C6H5COO)13(SR)19(CH3CN) (Ag40-II, where SR = 4-tert-butylbenzylmercaptan) into Ag45(C6H5COO)13(SR)22Cl2 (Ag45), where Ag40-II is converted from Ag40(CH3COO)10(SR)22 (Ag40-I). Experiments and theoretical simulations showed that halogen ions adsorb at both ends of the cluster, forming defect sites. The -SR-Ag- complexes fill the defects and complete the anisotropic transition from Ag40-II to Ag45. Circular dichroism spectra show that the chirality of Ag45 decreases 15-fold compared with that of Ag40-II. This work provides important insights into the effects of halogens on the growth mechanism and property regulation for nanomaterials at the atomic level and the benefits of further applications of halogen-induced nanomaterials.
Collapse
Affiliation(s)
- Wenjun Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shiyao Deng
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Shuang Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yaru Zhen
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
28
|
Hossain S, Miyajima S, Iwasa T, Kaneko R, Sekine T, Ikeda A, Kawawaki T, Taketsugu T, Negishi Y. [Ag 23Pd 2(PPh 3) 10Cl 7] 0: A new family of synthesizable bi-icosahedral superatomic molecules. J Chem Phys 2021; 155:024302. [PMID: 34266257 DOI: 10.1063/5.0057005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.
Collapse
Affiliation(s)
- Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryo Kaneko
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Tokuhisa Kawawaki
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
29
|
Cowan MJ, Nagarajan AV, Mpourmpakis G. Correlating structural rules with electronic properties of ligand-protected alloy nanoclusters. J Chem Phys 2021; 155:024303. [PMID: 34266280 DOI: 10.1063/5.0056690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thiolate protected gold nanoclusters (TPNCs) are a unique class of nanomaterials finding applications in various fields, such as biomedicine, optics, and catalysis. The atomic precision of their structure, characterized through single crystal x-ray diffraction, enables the accurate investigation of their physicochemical properties through electronic structure calculations. Recent experimental efforts have led to the successful heterometal doping of TPNCs, potentially unlocking a large domain of bimetallic TPNCs for targeted applications. However, how TPNC size, bimetallic composition, and location of dopants influence electronic structure is unknown. To this end, we introduce novel structure-property relationships (SPRs) that predict electronic properties such as ionization potential (IP) and electron affinity (EA) of AgAu TPNCs based on physically relevant descriptors. The models are constructed by first generating a hypothetical AgAu TPNC dataset of 368 structures with sizes varying from 36 to 279 metal atoms. Using our dataset calculated with density functional theory (DFT), we employed systematic analyses to unravel size, composition, and, importantly, core-shell effects on TPNC EA and IP behavior. We develop generalized SPRs that are able to predict electronic properties across the AgAu TPNC materials space. The models leverage the same three fundamental descriptors (i.e., size, composition, and core-shell makeup) that do not require DFT calculations and rely only on simple atom counting, opening avenues for high throughput bimetallic TPNC screening for targeted applications. This work is a first step toward finely controlling TPNC electronic properties through heterometal doping using high throughput computational means.
Collapse
Affiliation(s)
- Michael J Cowan
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| | | | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| |
Collapse
|
30
|
Dong C, Huang RW, Chen C, Chen J, Nematulloev S, Guo X, Ghosh A, Alamer B, Hedhili MN, Isimjan TT, Han Y, Mohammed OF, Bakr OM. [Cu 36H 10(PET) 24(PPh 3) 6Cl 2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. J Am Chem Soc 2021; 143:11026-11035. [PMID: 34255513 DOI: 10.1021/jacs.1c03402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Precise identification and in-depth understanding of defects in nanomaterials can aid in rationally modulating defect-induced functionalities. However, few studies have explored vacancy defects in ligand-stabilized metal nanoclusters with well-defined structures, owing to the substantial challenge of synthesizing and isolating such defective metal nanoclusters. Herein, a novel defective copper hydride nanocluster, [Cu36H10(PET)24(PPh3)6Cl2] (Cu36; PET: phenylethanethiolate; PPh3: triphenylphosphine), is successfully synthesized at the gram scale via a simple one-pot reduction method. Structural analysis reveals that Cu36 is a distorted half cubic nanocluster, evolved from the perfect Nichol's half cube. The two surface copper vacancies in Cu36 are found to be the principal imperfections, which result in some structural adjustments, including copper atom reconstruction near the vacancies as well as ligand modifications (e.g., substitution, migration, and exfoliation). Density functional theory calculations imply that the above-mentioned defects have a considerable influence on the electronic structure and properties. The modeling suggests that the formation of defective Cu36 rather than the perfect half cube is driven by the enlargement of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the nanocluster. The structural evolution induced by the surface copper atom vacancies provides atomically precise insights into the defect-induced readjustment of the local structure and introduces new avenues for understanding the chemistry of defects in nanomaterials.
Collapse
Affiliation(s)
- Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jie Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xianrong Guo
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tayirjan T Isimjan
- Hydrogen Platform, Catalysis Department, SABIC-CRD at KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Ren X, Fu X, Lin X, Tang J, Wang H, Liu C, Huang J. Location of Cu Atom in Au‐Based Nanocluster and Its Optical Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiuqing Ren
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xuemei Fu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinzhang Lin
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He Wang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
32
|
|
33
|
McKay J, Cowan MJ, Morales-Rivera CA, Mpourmpakis G. Predicting ligand removal energetics in thiolate-protected nanoclusters from molecular complexes. NANOSCALE 2021; 13:2034-2043. [PMID: 33449990 DOI: 10.1039/d0nr07839e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal-sulfur and sulfur-ligand bond dissociation in metal-thiolate systems. We first probe 66 metal-thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal-sulfur and sulfur-ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M25(SR)18]- TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal-ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH3-based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S-R over the M-S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts.
Collapse
Affiliation(s)
- Julia McKay
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
34
|
Liu H, Li Y, Sun S, Xin Q, Liu S, Mu X, Yuan X, Chen K, Wang H, Varga K, Mi W, Yang J, Zhang XD. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun 2021; 12:114. [PMID: 33414464 PMCID: PMC7791071 DOI: 10.1038/s41467-020-20275-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Emerging artificial enzymes with reprogrammed and augmented catalytic activity and substrate selectivity have long been pursued with sustained efforts. The majority of current candidates have rather poor catalytic activity compared with natural molecules. To tackle this limitation, we design artificial enzymes based on a structurally well-defined Au25 cluster, namely clusterzymes, which are endowed with intrinsic high catalytic activity and selectivity driven by single-atom substitutions with modulated bond lengths. Au24Cu1 and Au24Cd1 clusterzymes exhibit 137 and 160 times higher antioxidant capacities than natural trolox, respectively. Meanwhile, the clusterzymes demonstrate preferential enzyme-mimicking catalytic activities, with Au25, Au24Cu1 and Au24Cd1 displaying compelling selectivity in glutathione peroxidase-like (GPx-like), catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities, respectively. Au24Cu1 decreases peroxide in injured brain via catalytic reactions, while Au24Cd1 preferentially uses superoxide and nitrogenous signal molecules as substrates, and significantly decreases inflammation factors, indicative of an important role in mitigating neuroinflammation.
Collapse
Affiliation(s)
- Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Qi Xin
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, China
| | - Ke Chen
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Hao Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Kalman Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Wenbo Mi
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, 510060, Guangzhou, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
35
|
Liu X, Yao G, Cheng X, Xu J, Cai X, Hu W, Xu WW, Zhang C, Zhu Y. Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chem Sci 2021; 12:3290-3294. [PMID: 34164098 PMCID: PMC8179392 DOI: 10.1039/d0sc05163b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
With atomically precise gold nanoclusters acting as a starting unit, substituting one or more gold atoms of the nanocluster with other metals has become an effective strategy to create metal synergy for improving catalytic performances and other properties. However, so far detailed insight into how to design the gold-based nanoclusters to optimize the synergy is still lacking, as atomic-level exchange between the surface-gold (or core-gold) and the incoming heteroatoms is quite challenging without changing other parts. Here we report a Cd-driven reconstruction of Au44(DMBT)28 (DMBT = 3,5-dimethylbenzenethiol), in which four Au2(DMBT)3 staples are precisely replaced by two Au5Cd2(DMBT)12 staples to form Au38Cd4(DMBT)30 with the face-centered cubic inner core retained. With the dual modifications of the surface and electronic structure, the Au38Cd4(DMBT)30 nanocluster exhibits distinct excitonic behaviors and superior photocatalytic performances compared to the parent Au44(DMBT)28 nanocluster.
Collapse
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Guo Yao
- School of Physics, Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Wen Wu Xu
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Chunfeng Zhang
- School of Physics, Nanjing University Nanjing 210093 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
36
|
Shen H, Xu Z, Hazer MSA, Wu Q, Peng J, Qin R, Malola S, Teo BK, Häkkinen H, Zheng N. Surface Coordination of Multiple Ligands Endows N‐Heterocyclic Carbene‐Stabilized Gold Nanoclusters with High Robustness and Surface Reactivity. Angew Chem Int Ed Engl 2020; 60:3752-3758. [DOI: 10.1002/anie.202013718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Maryam Sabooni Asre Hazer
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jian Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
37
|
Shen H, Xu Z, Hazer MSA, Wu Q, Peng J, Qin R, Malola S, Teo BK, Häkkinen H, Zheng N. Surface Coordination of Multiple Ligands Endows N‐Heterocyclic Carbene‐Stabilized Gold Nanoclusters with High Robustness and Surface Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Maryam Sabooni Asre Hazer
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jian Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
38
|
Sun Y, Yang D, Zhang Y, Hu W, Cheng X, Liu X, Chen M, Zhu Y. Ligand-protected Au 4Ru 2 and Au 5Ru 2 nanoclusters: distinct structures and implications for site-cooperation catalysis. Chem Commun (Camb) 2020; 56:12833-12836. [PMID: 32966390 DOI: 10.1039/d0cc04692b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two ligand-protected Au4Ru2 and Au5Ru2 nanoclusters with distinct atomic-packing modes and electronic structures, both of which act as ideal model catalysts for identifying the catalytically active sites of catalysts on the nanoclusters. Au5Ru2 exhibits superior catalytic performances to Au4Ru2 for N-methylation of N-methylaniline to N-methylformanili, which is likely due to the site-cooperation catalysis of Au5Ru2.
Collapse
Affiliation(s)
- Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Sun Y, Cheng X, Zhang Y, Tang A, Cai X, Liu X, Zhu Y. Precisely modulating the surface sites on atomically monodispersed gold-based nanoclusters for controlling their catalytic performances. NANOSCALE 2020; 12:18004-18012. [PMID: 32870213 DOI: 10.1039/d0nr04871b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomically precise gold nanoclusters protected by ligands are being intensely investigated in current catalysis science, due to the definitive correlation between the catalytic properties and structures at an atomic level. By solving the crystal structures of the nanoclusters, coupled with in situ and ex situ spectroscopy, a very fundamental understanding can be achieved to learn what controls the catalytic activation, active site structure, and catalytic mechanism. Herein, we mainly focus on the recent progress in catalysis controlled by precisely modulating the surface structures of the nanoclusters, including the alteration of the surface motifs, the doping of heterogeneous atoms in the surface of the nanoclusters, and the surface ligand engineering. The article is expected to help not only gain deep insight into the crucial roles of surface motifs of the nanoclusters in regulating the catalytic properties, but also explore the wide catalytic applications of atomically precise nanoclusters by elaborately tailoring the surface of the nanoclusters.
Collapse
Affiliation(s)
- Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Ancheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
Abstract
Ultrasmall metal nanoparticles (below 2.2 nm core diameter) start to show discrete electronic energy levels due to strong quantum confinement effects and thus behave much like molecules. The size and structure dependent quantization induces a plethora of new phenomena, including multi-band optical absorption, enhanced luminescence, single-electron magnetism, and catalytic reactivity. The exploration of such new properties is largely built on the success in unveiling the crystallographic structures of atomically precise nanoclusters (typically protected by ligands, formulated as MnLmq, where M = metal, L = Ligand, and q = charge). Correlation between the atomic structures of nanoclusters and their properties has further enabled atomic-precision engineering toward materials design. In this frontier article, we illustrate several aspects of the precise engineering of gold nanoclusters, such as the single-atom size augmenting, single-atom dislodging and doping, precise surface modification, and single-electron control for magnetism. Such precise engineering involves the nanocluster's geometric structure, surface chemistry, and electronic properties, and future endeavors will lead to new materials design rules for structure-function correlations and largely boost the applications of metal nanoclusters in optics, catalysis, magnetism, and other fields. Following the illustrations of atomic-precision engineering, we have also put forth some perspectives. We hope this frontier article will stimulate research interest in atomic-level engineering of nanoclusters.
Collapse
Affiliation(s)
- Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|