1
|
Zhu X, Jiang Y, Wang Z, Huang Y, Luo Z, Yan K, Wang S, Yu P. Collective Magnetism of Spin Coronoid via On-Surface Synthesis. J Am Chem Soc 2025; 147:10045-10051. [PMID: 40099343 DOI: 10.1021/jacs.4c13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyradicals obtained from open-shell coronoids hold promise for applications in spintronics and quantum technologies due to the strong interactions between spins in fully fused cyclic systems. Coronoid synthesis has long been considered difficult due to the cyclization of nanographene. It becomes an immense challenge to synthesize open-shell coronoids since radicals appear only when the macrocycle size exceeds a critical value. Here we present an open-shell coronoid with six radicals achieved through an on-surface synthesis. This spin coronoid displays a collective spin state arising from both the nearest-neighbor exchange interaction and the next-nearest-neighbor exchange interaction of six unpaired π electrons along the conjugation pathways. The characterization of the spin excitation from the ground state to the excited state was carried out by using inelastic electron tunneling spectroscopy. Additionally, we show that the spin coronoid can be utilized as a nanoscale platform to achieve short antiferromagnetic spin-1/2 Heisenberg chains through tip manipulation. Our findings present a design strategy for creating coronoids with polyradicals, which could provide inspiration for fabrication of open-shell coronoid or cyclic spintronic systems.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yicheng Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengqiang Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiyong Wang
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Huang LX, Pan HR, Xing JF, Zhao XJ, Li ZJ, Xie RJ, Geng YH, Deng QS, Tan YZ. Helical Quintulene: Synthesis, Chirality, and Supramolecular Assembly. Angew Chem Int Ed Engl 2025; 64:e202424991. [PMID: 39870589 DOI: 10.1002/anie.202424991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Quintulene is a quintuply symmetrical cycloarene with a positively curved molecular geometry. First described by Staab and Sauer in 1984, its successful synthesis was not achieved until 2020. Due to the challenges posed by its positive curvature, structural extensions of quintulene have been studied rarely. In this work, we report the synthesis of a chiral quintulene (1) featuring five [5]helicene units at its rim constructed through the introduction of steric hindrance. Single-crystal X-ray diffraction analysis confirmed the structure of 1 that showcases a unique chirality combining helicity and rotational symmetry. The enantiomers of 1 were separated and their chiroptical properties were examined, revealing the dissymmetric absorption and luminescence. Additionally, the bowl shape facilitates supramolecular assembly between 1 and fullerenes, with a binding constant to C60 10-fold higher than to C70. This work expands the structural diversity of quintulene and bridges the structures of cycloarenes and multi-helicenes, paving the way for the structural design of chiral cycloarenes.
Collapse
Affiliation(s)
- Ling-Xi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong-Rui Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiang-Feng Xing
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ze-Jia Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Jie Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Huan Geng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qing-Song Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Desale PP, Ko MS, Roh TH, Ham JI, Cho DG. Two Different Clar's Sextets: Clar's Rule Does Not Necessarily Contradict the Global Pathway of Conjugated Macrocycles. J Am Chem Soc 2025; 147:480-487. [PMID: 39601818 DOI: 10.1021/jacs.4c11437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two contradictory theories, Clar's sextet and resonance theory, explain the stability of conjugated macrocycles using localized and delocalized models, respectively. To reconcile these theories and gain better insights, PAH-containing porphyrinoids were chosen as a representative class of conjugated macrocycles. Two types of Clar's sextets were identified and proposed for the first time based on their interaction with global conjugated pathways: (i) shared sextets that integrate with and perturb the global resonance pathway, and (ii) independent sextets that are separate from the pathway and potentially stabilize or do not perturb it. To test our hypothesis, we synthesized precise regioisomers with and without an independent sextet to exclude variables such as steric hindrance, different PAH characteristics, and other elements. This task is challenging due to the extensive synthetic efforts needed for regioisomeric PAH-containing porphyrinoids. We focused on 2,3-vinylnaphthiporphyrin, which features shared sextets, because its o-regioisomers are readily accessible. Two distinct regioisomers (1,2-vinylnaphthiporphyrins) with an independent sextet were synthesized along with unexpected nonaromatic N-fused porphyrinoids. Our analysis shows that 1,2-vinylnaphthiporphyrins with an independent sextet are more aromatic than 2,3-vinylnaphthiporphyrin (nonaromatic). This sextet analysis was also applied to other reported and yet-to-be-synthesized PAH-containing porphyrinoids, and these results are consistent with our current study.
Collapse
Affiliation(s)
- Pradeep P Desale
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Min-Sung Ko
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Ho Roh
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Im Ham
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Gyu Cho
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Wang D, Haposan T, Fan J, Arramel, Wee ATS. Recent Progress of Imaging Chemical Bonds by Scanning Probe Microscopy: A Review. ACS NANO 2024; 18:30919-30942. [PMID: 39475528 DOI: 10.1021/acsnano.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
In the past decades, the invention of scanning probe microscopy (SPM) as the versatile surface-based characterization of organic molecules has triggered significant interest throughout multidisciplinary fields. In particular, the bond-resolved imaging acquired by SPM techniques has extended its fundamental function of not only unraveling the chemical structure but also allowing us to resolve the structure-property relationship. Here, we present a systematical review on the history of chemical bonds imaged by means of noncontact atomic force microscopy (nc-AFM) and bond-resolved scanning tunneling microscopy (BR-STM) techniques. We first summarize the advancement of real-space imaging of covalent bonds and the investigation of intermolecular noncovalent bonds. Beyond the bond imaging, we also highlight the applications of the bond-resolved SPM techniques such as on-surface synthesis, the determination of the reaction pathway, the identification of molecular configurations and unknown products, and the generation of artificial molecules created via tip manipulation. Lastly, we discuss the current status of SPM techniques and highlight several key technical challenges that must be solved in the coming years. In comparison to the existing reviews, this work invokes researchers from surface science, chemistry, condensed matter physics, and theoretical physics to uncover the bond-resolved SPM technique as an emerging tool in exploiting the molecule/surface system and their future applications.
Collapse
Affiliation(s)
- Dingguan Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Tobias Haposan
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Jinwei Fan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
5
|
Tomut AC, Moraru IT, Nemes G. In-Depth Theoretical Investigations of Borazine's Aromaticity: Tailoring Electron Delocalization through Substituent Effects. Molecules 2024; 29:4902. [PMID: 39459269 PMCID: PMC11510063 DOI: 10.3390/molecules29204902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The current study investigates the influence of several R substituents (e.g., Me, SiH3, F, Cl, Br, OH, NH2, etc.) on the aromaticity of borazine, also known as the "inorganic benzene". By performing hybrid DFT methods, blended with several computational techniques, e.g., Natural Bond Orbital (NBO), Quantum Theory of Atoms in Molecules (QTAIM), Gauge-Including Magnetically Induced Current (GIMIC), Nucleus-Independent Chemical Shift (NICS), and following a simultaneous evaluation of four different aromaticity indices (para-delocalization index (PDI), multi-centre bond order (MCBO), ring current strength (RCS), and NICS parameters), it is emphasized that the aromatic character of B-substituted (B3R3N3H3) and N-substituted (B3H3N3R3) borazine derivatives can be tailored by modulating the electronic effects of R groups. It is also highlighted that the position of R substituents on the ring structure is crucial in tuning the aromaticity. Systematic comparisons of calculated aromaticity index values (i.e., via regression analyses and correlation matrices) ensure that the reported trends in aromaticity variation are accurately described, while the influence of different R groups on electron delocalization and related aromaticity phenomena is quantitatively assessed based on NBO analyses. The most relevant interactions impacting the aromatic character of investigated systems are (i) the electron conjugations occurring between the p lone pair electrons (LP) on the F, Cl, Br, O or N atoms, of R groups, and the π*(B=N) orbitals on the borazine ring (i.e., LP(R)→π*(B=N) donations), and (ii) the steric-exchange (Pauli) interactions between the same LP and the π(B=N) bonds (i.e., LP(R)↔π(B=N) repulsions), while inductive/field effects influence the aromaticity of the investigated trisubstituted borazine systems to a much lesser extent. This work highlights that although the aromatic character of borazine can be enhanced by grafting electron-donor substituents (F, OH, NH2, O-, NH-) on the N atoms, the stabilization due to aromaticity has only a moderate impact on these systems. By replacing the H substituents on the B atoms with similar R groups, the aromatic character of borazine is decreased due to strong exocyclic LP(R)→π*(B=N) donations affecting the delocalization of π-electrons on the borazine ring.
Collapse
Affiliation(s)
| | - Ionut-Tudor Moraru
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Gabriela Nemes
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Du K, Wang Y. Generalized kekulenes and clarenes as novel families of cycloarenes: structures, stability, and spectroscopic properties. Phys Chem Chem Phys 2024; 26:7877-7889. [PMID: 38376476 DOI: 10.1039/d3cp06306b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cycloarenes constitute a captivating class of polycyclic aromatic hydrocarbons with unique structures and properties, but their synthesis represents a challenging task in organic chemistry. Kekulenes and edge-extended kekulenes as classic types of cycloarenes play an important role in the comprehension of π electron distribution, but their sparse molecular diversity considerably limits their further development and application. In this work, we propose two novel classes of cycloarenes, the generalized kekulenes and the clarenes. Using density functional theory, we carry out a comprehensive study of all possible isomers of the generalized kekulenes and clarenes with different sizes. By applying a simple Hückel model, we show that π delocalization plays a crucial role in determining the relative stability of isomers. We also discover that π-π stacking is commonly present in certain larger clarenes and provides a considerable additional stabilization effect, making the corresponding isomers the lowest-energy ones. Among all considered typical looped polyarenes, generalized kekulenes and/or clarenes are revealed to be the energetically most stable forms, suggesting that these novel cycloarenes proposed here would be viable targets for future synthetic work. The simulated 1H NMR spectra and UV-vis absorption spectra provide valuable information about the electronic and optoelectronic properties for the most stable generalized kekulene and clarene species and may support their identification in future synthesis and experimental characterization.
Collapse
Affiliation(s)
- Ke Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
7
|
Wu YY, Wu YL, Lin CL, Chen HC, Chuang YY, Chen CH, Chou CM. Butterfly-Shaped Dibenz[ a, j]anthracenes: Synthesis and Photophysical Properties. Org Lett 2023; 25:7763-7768. [PMID: 37622587 PMCID: PMC10630963 DOI: 10.1021/acs.orglett.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.
Collapse
Affiliation(s)
- Yan-Ying Wu
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yi-Lin Wu
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Cheng-Lan Lin
- Department
of Chemical and Materials Engineering, Tamkang
University, New Taipei City 251301, Taiwan
| | - Hung-Cheng Chen
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yao-Yuan Chuang
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Chih-Ming Chou
- Department
of Applied Chemistry, National University
of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
8
|
Porto JAS, Beserra DJP, de Vasconcelos FM, Silva PV, Girão EC. Electronic properties and carrier mobilities of nanocarbons formed by non-benzoidal building blocks. Phys Chem Chem Phys 2023; 25:27053-27064. [PMID: 37791620 DOI: 10.1039/d3cp01436c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Exotic 1D and 2D carbon nanostructures have been grown in the laboratory in the last few years by means of surface-assisted chemical routes. In these processes, the strategical choice of a molecular precursor plays a dominant role in the determination of the synthesized nanocarbon. Further variations of these techniques are able to produce non-benzoidal carbon quantum-dots (QDs). Considering this experimental scenario as motivation, we propose a series of nanoribbon systems based on concatenating recently synthesized carbon QDs containing pentagonal, hexagonal, and heptagonal rings. We use density functional theory (DFT) simulations to reveal their properties can range from metallic to semiconducting depending on the concatenation hierarchy used to form the nanoribbons. This DFT implementation is based on a LCAO approach to describe valence wavefunctions and most of the simulations employ the PBE-GGA functional. Since this functional is known to underestimate band gaps, we also use the B3LYP functional in a plane-wave DFT approach for a selected case for comparison purposes. These systems show a different gap versus width relationship compared to conventional graphene nanoribbons setups and a particular set of carrier mobility values. We further discuss the interplay between the QD's frontier states and the electronic properties of the nanoribbons in light of their structural details.
Collapse
Affiliation(s)
- João Alberto Santos Porto
- Programa de Pós-Graduacão em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil.
- Universidade Estadual do Maranhão - UEMA, Departamento de Matemática e Física - Campus Caxias, CEP 65604-380, Caxias, Maranhão, Brazil
| | - David Joseph Pereira Beserra
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão - Campus Buriticupu, CEP 65393-000, Buriticupu, Maranhão, Brazil
| | - Fabrício Morais de Vasconcelos
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí - Campus São João do PI, CEP 64760-000, São João do PI, Piauí, Brazil
| | - Paloma Vieira Silva
- Coordenação do Curso de Licenciatura em Educação do Campo/Ciências da Natureza, Universidade Federal do Piauí, CEP 64808-605, Floriano, Piauí, Brazil
| | - Eduardo Costa Girão
- Programa de Pós-Graduacão em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil.
- Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil
| |
Collapse
|
9
|
Prabhu S, Arulperumjothi M, Ghani MU, Imran M, Salu S, Jose BK. Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations. Molecules 2023; 28:6625. [PMID: 37764401 PMCID: PMC10538234 DOI: 10.3390/molecules28186625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Cycloarene molecules are benzene-ring-based polycyclic aromatic hydrocarbons that have been fused in a circular manner and are surrounded by carbon-hydrogen bonds that point inward. Due to their magnetic, geometric, and electronic characteristics and superaromaticity, these polycyclic aromatics have received attention in a number of studies. The kekulene molecule is a cyclically organized benzene ring in the shape of a doughnut and is the very first example of such a conjugated macrocyclic compound. Due to its structural characteristics and molecular characterizations, it serves as a great model for theoretical research involving the investigation of π electron conjugation circuits. Therefore, in order to unravel their novel electrical and molecular characteristics and foresee potential applications, the characterization of such components is crucial. In our current research, we describe two unique series of enormous polycyclic molecules made from the extensively studied base kekulene molecule, utilizing the essential graph-theoretical tools to identify their structural characterization via topological quantities. Rectangular kekulene Type-I and rectangular kekulene Type-II structures were obtained from base kekulene molecules arranged in a rectangular fashion. We also employ two subcases for each Type and, for all of these, we derived ten topological indices. We can investigate the physiochemical characteristics of rectangular kekulenes using these topological indices.
Collapse
Affiliation(s)
- S. Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai 602105, India
| | - M. Arulperumjothi
- Department of Mathematics, St. Joseph’s College of Engineering, Chennai 600119, India;
| | - Muhammad Usman Ghani
- Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan;
| | - Muhammad Imran
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - S. Salu
- PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Kerala 688003, India; (S.S.); (B.K.J.)
| | - Bibin K. Jose
- PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Kerala 688003, India; (S.S.); (B.K.J.)
| |
Collapse
|
10
|
Niu W, Fu Y, Serra G, Liu K, Droste J, Lee Y, Ling Z, Xu F, Cojal González JD, Lucotti A, Rabe JP, Ryan Hansen M, Pisula W, Blom PWM, Palma CA, Tommasini M, Mai Y, Ma J, Feng X. Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores. Angew Chem Int Ed Engl 2023; 62:e202305737. [PMID: 37335764 DOI: 10.1002/anie.202305737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Jörn Droste
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Yeonju Lee
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Zhitian Ling
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - José D Cojal González
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carlos-Andres Palma
- Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
11
|
Bachrach SM. The Topology of Molecules with Twelve Fused Phenyl Rings ([12]Circulenes): Rings, Infinitenes, and Möbius Infinitenes. J Org Chem 2023. [PMID: 37294667 DOI: 10.1021/acs.joc.2c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Following the recent preparation of infinitene (J. Am. Chem. Soc. 2022, 144, 862-871), a computational (ωB97XD/6-311G(d)) exploration of 42 isomeric compounds with 12 fused phenyl rings identified structures with linking number of zero (ring, saddle, and ribbon shapes), two (infinitene-like shape), and one (Möbius infinitene shape) is reported. An infinitene isomer composed of two [5]helicene fragments connected to two stacked phenyl rings and a Möbius infinitene isomer are identified that are more stable than the known infinitene. The energies of the structures are examined by assessing their macrocyclization (strain) energies, π-stacking, and possible aromaticity. Examples of fused phenyl molecules with linking numbers of 3, 4, 5, and 6 are shown, indicating the potential topological range that these molecules can possess.
Collapse
Affiliation(s)
- Steven M Bachrach
- Artis College of Science and Technology, Radford University, Radford, Virginia 24142 United States
| |
Collapse
|
12
|
Du K, Wang Y. Infinitenes as the Most Stable Form of Cycloarenes: The Interplay among π Delocalization, Strain, and π-π Stacking. J Am Chem Soc 2023; 145:10763-10778. [PMID: 37092900 DOI: 10.1021/jacs.3c01644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The recent successful preparation of infinitene has sparked widespread attention due to its aesthetic appeal and synthetic challenge. Spectroscopic measurements and follow-up computational investigations suggest that infinitene holds fundamental significance and potential applications in chiroptics, optoelectronics, asymmetric synthesis, and supramolecular chemistry. However, unlike other looped polyarenes enriched with sizes and shapes, the infinitene molecule seems, so far, the only known example of this fascinating new form of nanocarbons, whose further exploitation would be considerably limited because of the lack of molecular diversity. Here, we introduce a whole new family of generalized infinitenes with different sizes and topologies. Three types of infinitene structures are rationally designed by joining two units of coronene, kekulene, or their extended analogs. The constructed molecules of varying sizes, each with a large number of possible topoisomers, are systematically studied by DFT calculations. Comprehensive analysis using a simple energy decomposition model uncovers that the stability of infinitenes is governed by the interplay among π delocalization, steric strain, and π-π stacking. While the first two factors are crucial to the stability of smaller infinitenes, the latter is the primary stabilizing interaction for larger infinitenes. Most importantly, we show that larger-sized infinitenes are actually the energetically most favorable form among all known looped polyarenes; their substantial thermodynamic stability surpassing that of circulenes, various carbon nanobelts, and kekulene-like macrocycles renders them promising targets for synthesis. The simulated 1H NMR, UV-vis, and circular dichroism spectra along with optical rotations for the most stable infinitene species may help their identification in future synthetic efforts.
Collapse
Affiliation(s)
- Ke Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
13
|
Houtsma RSK, Enache M, Havenith RWA, Stöhr M. Length-dependent symmetry in narrow chevron-like graphene nanoribbons. NANOSCALE ADVANCES 2022; 4:3531-3536. [PMID: 36134350 PMCID: PMC9400478 DOI: 10.1039/d2na00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
We report the structural and electronic properties of narrow chevron-like graphene nanoribbons (GNRs), which depending on their length are either mirror or inversion symmetric. Additionally, GNRs of different length can form molecular heterojunctions based on an unusual binding motif.
Collapse
Affiliation(s)
- R S Koen Houtsma
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Mihaela Enache
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen 9747AG Groningen The Netherlands
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University Krijgslaan 281 (S3) B-9000 Gent Belgium
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| |
Collapse
|
14
|
Zhu X, Liu Y, Pu W, Liu FZ, Xue Z, Sun Z, Yan K, Yu P. On-Surface Synthesis of C144 Hexagonal Coronoid with Zigzag Edges. ACS NANO 2022; 16:10600-10607. [PMID: 35730577 DOI: 10.1021/acsnano.2c02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coronoids as polycyclic aromatic macrocycles enclosing a cavity have attracted a lot of attention due to their distinctive molecular and electronic structures. They can be also regarded as nanoporous graphene molecules whose electronic properties are critically dependent on the size and topology of their outer and inner peripheries. However, because of their synthetic challenges, the extended hexagonal coronoids with zigzag outer edges have not been reported yet. Here, we report the on-surface synthesis of C144 hexagonal coronoid with outer zigzag edges on a designed precursor undergoing hierarchical Ullmann coupling and cyclodehydrogenation on the Au(111) surface. The molecular structure is unambiguously characterized by bond-resolved noncontact atomic force microscopy imaging. The electronic properties are further investigated by scanning tunneling spectroscopy measurements, in combination with the density functional theory calculations. Moreover, the values of the harmonic oscillator model of aromaticity are derived from calculations that suggest that the molecular structure is ideally represented by Clar's model. Our results provide approaches toward realizing a hexagonal coronoid with zigzag edges, potentially inspiring fabrication of hexagonal zigzag coronoids with multiple radical characters in the future.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yanan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Weiwen Pu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhijie Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoru Sun
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
15
|
Miyoshi H, Sugiura R, Kishi R, Spisak SN, Wei Z, Muranaka A, Uchiyama M, Kobayashi N, Chatterjee S, Ie Y, Hisaki I, Petrukhina MA, Nishinaga T, Nakano M, Tobe Y. Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene‐within‐an‐Annulene Models. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirokazu Miyoshi
- Division of Frontier Materials Science Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
| | - Ryosuke Sugiura
- Division of Chemical Engineering Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
| | - Ryohei Kishi
- Division of Chemical Engineering Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB) Osaka University Toyonaka, Osaka 560-8531 Japan
| | - Sarah N. Spisak
- Department of Chemistry University of Albany State University of New York Albany NY 12222 USA
| | - Zheng Wei
- Department of Chemistry University of Albany State University of New York Albany NY 12222 USA
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Graduate School of Pharmaceutical Sciences The Universiy of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology Shinshu University Ueda 386-8567 Japan
| | - Shreyam Chatterjee
- Nanoscience and Nanotechnology Center The Institute of Scientific and Industrial Research (SANKEN) Osaka University Ibaraki, Osaka 567-0047 Japan
| | - Yutaka Ie
- Nanoscience and Nanotechnology Center The Institute of Scientific and Industrial Research (SANKEN) Osaka University Ibaraki, Osaka 567-0047 Japan
| | - Ichiro Hisaki
- Division of Chemistry Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
- Research Institute for Electronic Science (RIES) Hokkaido University Sapporo, Hokkaido 001-0020 Japan
| | - Marina A. Petrukhina
- Department of Chemistry University of Albany State University of New York Albany NY 12222 USA
| | - Tohru Nishinaga
- Graduate School of Science Tokyo Metropolitan University Hachioji, Tokyo 192-0397 Japan
| | - Masayoshi Nakano
- Division of Chemical Engineering Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB) Osaka University Toyonaka, Osaka 560-8531 Japan
- Center for Spintronics Research Network (CSRN) Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita, Osaka 565-0871 Japan
- Research Center for Solar Energy Chemistry Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
| | - Yoshito Tobe
- Division of Frontier Materials Science Graduate School of Engineering Science Osaka University Toyonaka, Osaka 560-8531 Japan
- Nanoscience and Nanotechnology Center The Institute of Scientific and Industrial Research (SANKEN) Osaka University Ibaraki, Osaka 567-0047 Japan
- Department of Applied Chemistry National Yang Ming Chiao Tung University 1001 Ta Hsueh Road Hsinchu 30030 Taiwan
| |
Collapse
|
16
|
Abstract
Despite its great explanatory power in understanding the chemistry of polycyclic aromatic hydrocarbons (PAHs) and related systems, the Clar sextet rule still remains an intuitive and qualitative model with notable exceptions in some cases. Here we develop a quantitative theory of chemical resonance based on semilocalized Clar-type resonance structures (named the Clar resonators) consisting of variable numbers of Clar sextets and C═C bonds. The constructed wave functions of the Clar resonators are used to expand the actual wave function of the π-conjugated system obtained from a DFT or Hartree-Fock calculation. The resultant weights and one-electron energies of the Clar resonators can serve as a quantitative measure of the importance of these resonators. Implementing the theory in our open-source python code EzReson and applying it to over a thousand PAH molecules of different sizes and shapes, we show that the weight of the Clar resonators increases exponentially with increasing number of sextets and that their energy decreases linearly with the latter, thus confirming the general validity of the Clar rule. On the basis of such a large-scale resonance analysis, we propose three extended Clar rules, along with a unified quantitative model, that are able to evaluate the importance of all Clar resonators and the ring aromaticity for PAHs. Using the present theories, we uncover the essential role that the minor Clar resonators may play in correctly understanding the resonance stabilization and local aromaticity of rings, which was totally overlooked in the original Clar model.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
17
|
Zeng Z, Guo D, Wang T, Chen Q, Matěj A, Huang J, Han D, Xu Q, Zhao A, Jelínek P, de Oteyza DG, McEwen JS, Zhu J. Chemisorption-Induced Formation of Biphenylene Dimer on Ag(111). J Am Chem Soc 2021; 144:723-732. [PMID: 34964646 DOI: 10.1021/jacs.1c08284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular-adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e., 2,2'-dibromobiphenyl (DBBP) and 2,2',6,6'-tetrabromo-1,1'-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a biradical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine with atomic precision the bond-length alternation of the biphenylene dimer product, which contains 4-, 6-, and 8-membered rings. The 4-membered ring units turn out to be radialene structures.
Collapse
Affiliation(s)
- Zhiwen Zeng
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Dezhou Guo
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Wang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China.,Donostia International Physics Center, San Sebastián 20018, Spain.,Centro de Fisica de Materiales, CFM/MPC, CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6, Czechia
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6, Czechia
| | - Jianmin Huang
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Aidi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6, Czechia
| | - Dimas G de Oteyza
- Donostia International Physics Center, San Sebastián 20018, Spain.,Centro de Fisica de Materiales, CFM/MPC, CSIC-UPV/EHU, San Sebastián 20018, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jean-Sabin McEwen
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States.,Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
18
|
Symmetry and Combinatorial Concepts for Cyclopolyarenes, Nanotubes and 2D-Sheets: Enumerations, Isomers, Structures Spectra & Properties. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This review article highlights recent developments in symmetry, combinatorics, topology, entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, septulenes and octulenes. We establish that the generalization of Sheehan’s modification of Pólya’s theorem to all irreducible representations of point groups yields robust generating functions for the enumeration of chiral, achiral, position isomers, NMR, multiple quantum NMR and ESR hyperfine patterns. We also show distance, degree and graph entropy based topological measures combined with techniques for distance degree vector sequences, edge and vertex partitions of nanomaterials yield robust and powerful techniques for thermochemistry, bond energies and spectroscopic computations of these species. We have demonstrated the existence of isentropic tessellations of kekulenes which were further studied using combinatorial, topological and spectral techniques. The combinatorial generating functions obtained not only enumerate the chiral and achiral isomers but also aid in the machine construction of various spectroscopic and ESR hyperfine patterns of the nanomaterials that were considered in this review. Combinatorial and topological tools can become an integral part of robust machine learning techniques for rapid computation of the combinatorial library of isomers and their properties of nanomaterials. Future applications to metal organic frameworks and fullerene polymers are pointed out.
Collapse
|
19
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Miyoshi H, Sugiura R, Kishi R, Spisak SN, Wei Z, Muranaka A, Uchiyama M, Kobayashi N, Chatterjee S, Ie Y, Hisaki I, Petrukhina MA, Nishinaga T, Nakano M, Tobe Y. Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models. Angew Chem Int Ed Engl 2021; 61:e202115316. [PMID: 34873811 DOI: 10.1002/anie.202115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/12/2022]
Abstract
The dianion and dication of tetramesityl-substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five- and six-membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene-within-an-annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X-ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the 13 C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22-π and 18-π electron outer perimeters, respectively, and 8-π electron structure at the inner ring. Notably, the dianion has an open-shell character, whereas the dication has a closed-shell ground state.
Collapse
Affiliation(s)
- Hirokazu Miyoshi
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ryosuke Sugiura
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ryohei Kishi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Sarah N Spisak
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Zheng Wei
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The Universiy of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Shreyam Chatterjee
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Yutaka Ie
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Marina A Petrukhina
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Tohru Nishinaga
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Masayoshi Nakano
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.,Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
| |
Collapse
|
21
|
Fan W, Matsuno T, Han Y, Wang X, Zhou Q, Isobe H, Wu J. Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. J Am Chem Soc 2021; 143:15924-15929. [PMID: 34550688 DOI: 10.1021/jacs.1c08468] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Twisted carbon nanobelts could display persistent chirality, which is desirable for material applications, but their synthesis is very challenging. Herein, we report the successful synthesis and chiral resolution of such a kind of molecules (1-H and 1) with a figure-eight configuration. 1-H was synthesized first by macrocyclization through Suzuki coupling reaction followed by benzannulation via Bi(OTf)3-mediated cyclization reaction of vinyl ether. Oxidative dehydrogenation of 1-H gave the fully π-conjugated 1. Their twisted structures were confirmed by X-ray crystallographic analysis and calculations, and they can be resolved by chiral high-performance liquid chromatography. The isolated enantiomers showed persistent chiroptical properties according to the circular dichroism measurements, with moderate |gabs| values (0.0016 for 1-H and 0.005-0.007 for 1). Their photophysical properties were also briefly studied.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xuhui Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifeng Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
22
|
Mali G, Chauhan ANS, Chavan KA, Erande RD. Development and Applications of Double Diels‐Alder Reaction in Organic Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghanshyam Mali
- Department of Chemistry Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | | | - Kailas Arjun Chavan
- Department of Chemistry Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Rohan D. Erande
- Department of Chemistry Indian Institute of Technology Jodhpur Jodhpur 342037 India
| |
Collapse
|
23
|
Abstract
The synthesis of kekulene and its higher homologues is a challenging task in organic chemistry. The first successful synthesis and characterization of the parent kekulene were reported by Diederich and Staab in 1978. Herein, we report the facile preparation of a series of edge-extended kekulenes by bismuth(III) triflate-catalyzed cyclization of vinyl ethers from the properly designed macrocyclic precursors. Their molecular structures were confirmed by X-ray crystallographic analysis and NMR spectroscopy. Their size- and symmetry-dependent electronic structures (frontier molecular orbitals, aromaticity) and physical properties (optical and electrochemical) were investigated by various spectroscopic measurements, assisted by theoretical calculations. Particularly, the acene-like units along each zigzag edge demonstrate a dominant local aromatic character. Our studies provide an easy synthetic strategy toward various fully fused carbon nanostructures and give some insights into the electronic properties of cycloarenes.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xuhui Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
24
|
Abraham V, Mayhall NJ. Cluster many-body expansion: A many-body expansion of the electron correlation energy about a cluster mean field reference. J Chem Phys 2021; 155:054101. [PMID: 34364343 DOI: 10.1063/5.0057752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice energies, and so on. In the past, applications of MBE to correlation energy have been unfeasible for large systems, but recent improvements to computing resources have sparked renewed interest in capturing the correlation energy using the generalized nth order Bethe-Goldstone equation. In this work, we extend this approach, originally proposed for a Slater determinant, to a tensor product state (TPS) based wavefunction. By partitioning the active space into smaller orbital clusters, our approach starts from a cluster mean field reference TPS configuration and includes the correlation contribution of the excited TPSs using the MBE. This method, named cluster MBE (cMBE), improves the convergence of MBE at lower orders compared to directly doing a block-based MBE from a RHF reference. We present numerical results for strongly correlated systems, such as the one- and two-dimensional Hubbard models and the chromium dimer. The performance of the cMBE method is also tested by partitioning the extended π space of several large π-conjugated systems, including a graphene nano-sheet with a very large active space of 114 electrons in 114 orbitals, which would require 1066 determinants for the exact FCI solution.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, USA
| | | |
Collapse
|
25
|
Miyoshi H, Hisaki I, Tobe Y. Crystal Structures of Tetramesityl‐Substituted Tetracyclopenta[
def,jkl,pqr,vwx
]tetraphenylene. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirokazu Miyoshi
- Division of Frontier Materials Science Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Ichiro Hisaki
- Research Institute for Electronic Science (RIES) Hokkaido University 001-0020 Sapporo Hokkaido Japan
- Division of Chemistry Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
| | - Yoshito Tobe
- Division of Frontier Materials Science Graduate School of Engineering Science Osaka University 560-8531 Toyonaka Osaka Japan
- Nanoscience and Nanotechnology Center The Institute of Scientific and Industrial Research Osaka University 567-0047 Ibaraki Osaka Japan
- Department of Applied Chemistry National Yang Ming Chiao Tung University 1001 Ta Hsueh Road 30010 Hsinchu Taiwan
| |
Collapse
|
26
|
Topological characterization of hexagonal and rectangular tessellations of kekulenes as traps for toxic heavy metal ions. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02733-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Li L, Mahapatra S, Liu D, Lu Z, Jiang N. On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS NANO 2021; 15:3578-3585. [PMID: 33606498 DOI: 10.1021/acsnano.0c08148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
On-surface synthesis via covalent coupling of adsorbed precursor molecules on metal surfaces has emerged as a promising strategy for the design and fabrication of novel organic nanoarchitectures with unique properties and potential applications in nanoelectronics, optoelectronics, spintronics, catalysis, etc. Surface-chemistry-driven molecular engineering (i.e., bond cleavage, linkage, and rearrangement) by means of thermal activation, light irradiation, and tip manipulation plays critical roles in various on-surface synthetic processes, as exemplified by the work from the Ernst group in a prior issue of ACS Nano. In this Perspective, we highlight recent advances in and discuss the outlook for on-surface syntheses and molecular engineering of carbon-based nanoarchitectures.
Collapse
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dairong Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zhongyi Lu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
28
|
Ramos-Berdullas N, Gil-Guerrero S, Peña-Gallego Á, Mandado M. The effect of spin polarization on the electron transport of molecular wires with diradical character. Phys Chem Chem Phys 2021; 23:4777-4783. [PMID: 33599227 DOI: 10.1039/d0cp06321e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Some of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation. Broken Symmetry Unrestricted Kohn-Sham Density Functional Theory (BS-UKS-DFT) in combination with electron transport analysis based on electron deformation orbitals (EDOs) reflects an exponential decay of the electrical conductance with length. Also, other important effects such as quantum interference are correctly accounted for, leading to a decrease of the conductance as the diradical character increases. As a proof-of-concept, the electrical conductance obtained from BS-UKS-DFT and CASSCF(2,2) wavefunctions were compared in diradical graphene strips in the frame of the pseudo-π approach, obtaining very similar results.
Collapse
Affiliation(s)
- Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
30
|
Neal EA, Werling AYR, Jones CR. A simple Hückel model-driven strategy to overcome electronic barriers to retro-Brook silylation relevant to aryne and bisaryne precursor synthesis. Chem Commun (Camb) 2021; 57:1663-1666. [PMID: 33463642 DOI: 10.1039/d0cc08283j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ortho-Silylaryl triflate precursors (oSATs) have been responsible for many recent advances in aryne chemistry and are most commonly accessed from the corresponding 2-bromophenol. A retro-Brook O- to C-silyl transfer is a key step in this synthesis but not all aromatic species are amenable to the transformation, with no functionalized bisbenzyne oSATs reported. Simple Hückel models are presented which show that the calculated aromaticity at the brominated position is an accurate predictor of successful retro-Brook reaction, validated synthetically by a new success and a predicted failure. From this, the synthesis of a novel difunctionalized bisaryne precursor has been tested, requiring different approaches to install the two C-silyl groups. The first successful use of a disubstituted o-silylaryl sulfonate bisbenzyne precursor in Diels-Alder reactions is then shown.
Collapse
Affiliation(s)
- Edward A Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | | | | |
Collapse
|
31
|
Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J. On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. NANO LETTERS 2021; 21:861-867. [PMID: 33305570 DOI: 10.1021/acs.nanolett.0c04627] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum rings (TQRs) with tunable high-spin ground state, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the center. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground state (S = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings for future quantum devices.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Martin Ondráček
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Pavlo Golub
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc 78371, Czech Republic
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
32
|
Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh MJ, Edmonds M, Jelínek P, Wu J, Lu J. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. SCIENCE ADVANCES 2021; 7:7/3/eabf0269. [PMID: 33523911 PMCID: PMC7810380 DOI: 10.1126/sciadv.abf0269] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/20/2020] [Indexed: 05/16/2023]
Abstract
On-surface synthesis has revealed remarkable potential in the fabrication of atomically precise nanographenes. However, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to a limited yield of target nanographene products. Here, we devise a strategy for the ultrahigh-yield synthesis of circumcoronene molecules on Cu(111) via surface-assisted intramolecular dehydrogenation of the rationally designed precursor, followed by methyl radical-radical coupling and aromatization. An elegant electrostatic interaction between circumcoronenes and metallic surface drives their self-organization into an extended superlattice, as revealed by bond-resolved scanning probe microscopy measurements. Density functional theory and tight-binding calculations reveal that unique hexagonal zigzag topology of circumcoronenes, along with their periodic electrostatic landscape, confines two-dimensional electron gas in Cu(111) into a chiral electronic Kagome-honeycomb lattice with two emergent electronic flat bands. Our findings open up a new route for the high-yield fabrication of elusive nanographenes with zigzag topologies and their superlattices with possible nontrivial electronic properties.
Collapse
Affiliation(s)
- Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
- Department of Petrochemistry and Refining, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Diego Soler-Polo
- Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Spain
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mark Edmonds
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
33
|
Yao L, Fang B, Hu Q, Lei Y, Bao L, Hu Y. Phenanthrenes/dihydrophenanthrenes: the selectivity controlled by different benzynes and allenes. Chem Commun (Camb) 2020; 56:15185-15188. [PMID: 33216071 DOI: 10.1039/d0cc06300b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the intermolecular annulation of benzynes with allenes is disclosed. This protocol utilized allenes as an unconventional diene component for the selective synthesis of phenanthrenes and dihydrophenanthrenes under the control of different benzyne precursors, featuring high atom-economy and good functional group compatibility. Density functional theory (DFT) calculations reveal that different migratory routes of the aromatic C-H bond are crucial for the observed selectivity.
Collapse
Affiliation(s)
- Liangliang Yao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | | | | | | | | | | |
Collapse
|
34
|
Gil-Guerrero S, Melle-Franco M, Peña-Gallego Á, Mandado M. Clar Goblet and Aromaticity Driven Multiradical Nanographenes. Chemistry 2020; 26:16138-16143. [PMID: 32893901 DOI: 10.1002/chem.202003713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Indexed: 11/10/2022]
Abstract
The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.
Collapse
Affiliation(s)
- Sara Gil-Guerrero
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310, Vigo, Spain.,CICECO, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Manuel Melle-Franco
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Ángeles Peña-Gallego
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Marcos Mandado
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310, Vigo, Spain
| |
Collapse
|
35
|
Haags A, Reichmann A, Fan Q, Egger L, Kirschner H, Naumann T, Werner S, Vollgraff T, Sundermeyer J, Eschmann L, Yang X, Brandstetter D, Bocquet FC, Koller G, Gottwald A, Richter M, Ramsey MG, Rohlfing M, Puschnig P, Gottfried JM, Soubatch S, Tautz FS. Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization. ACS NANO 2020; 14:15766-15775. [PMID: 33186031 PMCID: PMC7690051 DOI: 10.1021/acsnano.0c06798] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
We revisit the question of kekulene's aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene's highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C-C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.
Collapse
Affiliation(s)
- Anja Haags
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals of Future Information
Technology, 52425 Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Reichmann
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Qitang Fan
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Larissa Egger
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Hans Kirschner
- Physikalisch-Technische
Bundesanstalt (PTB), 10587 Berlin, Germany
| | - Tim Naumann
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Simon Werner
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Tobias Vollgraff
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lukas Eschmann
- Institut
für Festkörpertheorie, Westfälische
Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Xiaosheng Yang
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals of Future Information
Technology, 52425 Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074 Aachen, Germany
| | - Dominik Brandstetter
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - François C. Bocquet
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals of Future Information
Technology, 52425 Jülich, Germany
| | - Georg Koller
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | | | - Mathias Richter
- Physikalisch-Technische
Bundesanstalt (PTB), 10587 Berlin, Germany
| | - Michael G. Ramsey
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Michael Rohlfing
- Institut
für Festkörpertheorie, Westfälische
Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Peter Puschnig
- Institut
für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - J. Michael Gottfried
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Serguei Soubatch
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals of Future Information
Technology, 52425 Jülich, Germany
| | - F. Stefan Tautz
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals of Future Information
Technology, 52425 Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
36
|
Haags A, Reichmann A, Fan Q, Egger L, Kirschner H, Naumann T, Werner S, Vollgraff T, Sundermeyer J, Eschmann L, Yang X, Brandstetter D, Bocquet FC, Koller G, Gottwald A, Richter M, Ramsey MG, Rohlfing M, Puschnig P, Gottfried JM, Soubatch S, Tautz FS. Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization. ACS NANO 2020; 14:15766-15775. [PMID: 33186031 DOI: 10.26434/chemrxiv.12771254.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We revisit the question of kekulene's aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene's highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C-C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.
Collapse
Affiliation(s)
- Anja Haags
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Reichmann
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Qitang Fan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Larissa Egger
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Hans Kirschner
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany
| | - Tim Naumann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Simon Werner
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Tobias Vollgraff
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Lukas Eschmann
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Xiaosheng Yang
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, 52074 Aachen, Germany
| | - Dominik Brandstetter
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - François C Bocquet
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Georg Koller
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | | | - Mathias Richter
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany
| | - Michael G Ramsey
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - Michael Rohlfing
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Peter Puschnig
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, 8010 Graz, Austria
| | - J Michael Gottfried
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
37
|
Hou H, Zhao XJ, Tang C, Ju YY, Deng ZY, Wang XR, Feng LB, Lin DH, Hou X, Narita A, Müllen K, Tan YZ. Synthesis and assembly of extended quintulene. Nat Commun 2020; 11:3976. [PMID: 32769970 PMCID: PMC7414228 DOI: 10.1038/s41467-020-17691-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Quintulene, a non-graphitic cycloarene with fivefold symmetry, has remained synthetically elusive due to its high molecular strain originating from its curved structure. Here we report the construction of extended quintulene, which was unambiguously characterized by mass and NMR spectroscopy. The extended quintulene represents a naturally curved nanocarbon based on its conical molecular geometry. It undergoes dimerization in solution via π-π stacking to form a metastable, but isolable bilayer complex. Thermodynamic and kinetic characterization reveals the dimerization process as entropy-driven and following second-order kinetics with a high activation energy. These findings provide a deeper understanding of the assembly of conical nanocarbons. Comparison of optical properties of monomer and dimer points toward a H-type interlayer coupling in the dimer.
Collapse
Affiliation(s)
- Hao Hou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chun Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang-Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Ying Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Rong Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liu-Bin Feng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dong-Hai Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-Universitat Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
38
|
Di Giovannantonio M, Yao X, Eimre K, Urgel JI, Ruffieux P, Pignedoli CA, Müllen K, Fasel R, Narita A. Large-Cavity Coronoids with Different Inner and Outer Edge Structures. J Am Chem Soc 2020; 142:12046-12050. [PMID: 32589416 PMCID: PMC7467669 DOI: 10.1021/jacs.0c05268] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Coronoids,
polycyclic aromatic hydrocarbons with geometrically
defined cavities, are promising model structures of porous graphene.
Here, we report the on-surface synthesis of C168 and C140 coronoids,
referred to as [6]- and [5]coronoid, respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large
cavities (>1 nm) with inner zigzag edges, distinct from their outer
armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature
scanning tunneling microscopy/spectroscopy and noncontact atomic force
microscopy unveil structural and electronic properties in accordance
with those obtained from density functional theory calculations. Detailed
analysis of ring current effects identifies the rings with the highest
aromaticity of these coronoids, whose pattern matches their Clar structure.
The pores of the obtained coronoids offer intriguing possibilities
of further functionalization toward advanced host–guest applications.
Collapse
Affiliation(s)
- Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Xuelin Yao
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - José I Urgel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Carlo A Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
39
|
|
40
|
Yuan B, Li C, Zhao Y, Gröning O, Zhou X, Zhang P, Guan D, Li Y, Zheng H, Liu C, Mai Y, Liu P, Ji W, Jia J, Wang S. Resolving Quinoid Structure in Poly(para-phenylene) Chains. J Am Chem Soc 2020; 142:10034-10041. [DOI: 10.1021/jacs.0c01930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bingkai Yuan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Oliver Gröning
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xieyu Zhou
- Department of Physics, Renmin University, Beijing 100872, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - DanDan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peinian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Ji
- Department of Physics, Renmin University, Beijing 100872, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Salvitti G, Negri F, Pérez-Jiménez ÁJ, San-Fabián E, Casanova D, Sancho-García JC. Investigating the (Poly)Radicaloid Nature of Real-World Organic Compounds with DFT-Based Methods. J Phys Chem A 2020; 124:3590-3600. [DOI: 10.1021/acs.jpca.0c01239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanna Salvitti
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, IT-40126 Bologna, Italy
- INSTM UdR Bologna, 40136 Bologna, Italy
| | | | - Emilio San-Fabián
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), E-20018 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | | |
Collapse
|
42
|
Kubo T, Fujita T, Ichikawa J. Nickel-catalyzed [4 + 2] Cycloaddition of Styrenes with Arynes via 1:1 Cross-coupling: Synthesis of 9,10-Dihydrophenanthrenes. CHEM LETT 2020. [DOI: 10.1246/cl.190906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Teruhiko Kubo
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
43
|
Strutyński K, Mateo‐Alonso A, Melle‐Franco M. Clar Rules the Electronic Properties of 2D π‐Conjugated Frameworks: Mind the Gap. Chemistry 2020; 26:6569-6575. [DOI: 10.1002/chem.201905087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Karol Strutyński
- CICECO–Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| | - Manuel Melle‐Franco
- CICECO–Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
44
|
Piskun I, Blackwell R, Jornet-Somoza J, Zhao F, Rubio A, Louie SG, Fischer FR. Covalent C–N Bond Formation through a Surface Catalyzed Thermal Cyclodehydrogenation. J Am Chem Soc 2020; 142:3696-3700. [DOI: 10.1021/jacs.9b13507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ilya Piskun
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Raymond Blackwell
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joaquim Jornet-Somoza
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia, Spain
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Fangzhou Zhao
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Angel Rubio
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia, Spain
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| | - Steven G. Louie
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Fan Q, Martin-Jimenez D, Werner S, Ebeling D, Koehler T, Vollgraff T, Sundermeyer J, Hieringer W, Schirmeisen A, Gottfried JM. On-Surface Synthesis and Characterization of a Cycloarene: C108 Graphene Ring. J Am Chem Soc 2019; 142:894-899. [DOI: 10.1021/jacs.9b10151] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qitang Fan
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Daniel Martin-Jimenez
- Institute of Applied Physics (IAP) and Center for Materials Research (LaMa), Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Simon Werner
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Daniel Ebeling
- Institute of Applied Physics (IAP) and Center for Materials Research (LaMa), Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Tabea Koehler
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Tobias Vollgraff
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Wolfgang Hieringer
- Theoretical Chemistry and Computer-Chemistry-Center for Molecular Materials (ICMM), Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - André Schirmeisen
- Institute of Applied Physics (IAP) and Center for Materials Research (LaMa), Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - J. Michael Gottfried
- Department of Chemistry and Material Sciences Center (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| |
Collapse
|