1
|
Saraya JS, O'Flaherty DK. A Facile and General Tandem Oligonucleotide Synthesis Methodology for DNA and RNA. Chembiochem 2024; 25:e202300870. [PMID: 38179859 DOI: 10.1002/cbic.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Tandem oligonucleotide synthesis (TOS) is an attractive strategy to increase automated oligonucleotide synthesis efficiency. TOS is accomplished via the introduction of an immolative linker within a single sequence composed of multiple oligonucleotide fragments. Here, we report the use of a commercially available building block, typically utilized for the chemical phosphorylation of DNA/RNA oligomers, to perform TOS. We show that the 2,2'-sulfonyldiethylene linker is efficiently self-immolated during the standard deprotection of DNA and RNA and presents itself as a generalizable methodology for nucleic acid TOS. Furthermore, we show the utility of this methodology by assembling a model siRNA construct, and showcase a template-directed ligation pathway to incorporate phosphoramidate or pyrophosphate linkages within DNA oligomers.
Collapse
Affiliation(s)
- Jagandeep S Saraya
- Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)
| | - Derek K O'Flaherty
- Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada)
| |
Collapse
|
2
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
3
|
Sydow C, Seiband C, Siegle AF, Trapp O. Phosphorylation in liquid sulfur dioxide under prebiotically plausible conditions. Commun Chem 2022; 5:143. [PMID: 36697619 PMCID: PMC9814524 DOI: 10.1038/s42004-022-00761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, organophosphates provide key functions such as information storage and transport, structural tasks, and energy transfer. Since condensations are unfavourable in water and nucleophilic attack at phosphate is kinetically inhibited, various abiogenesis hypotheses for the formation of organophosphate are discussed. Recently, the application of phosphites as phosphorylation agent showed promising results. However, elevated temperatures and additional reaction steps are required to obtain organophosphates. Here we show that in liquid sulfur dioxide, which acts as solvent and oxidant, efficient organophosphate formation is enabled. Phosphorous acid yields up to 32.6% 5' nucleoside monophosphate, 3.6% 5' nucleoside diphosphate, and the formation of nucleoside triphosphates and dinucleotides in a single reaction step at room temperature. In addition to the phosphorylation of organic compounds, we observed diserine formation. Thus, we suggest volcanic environments as reaction sites for biopolymer formation on Early Earth. Because of the simple recyclability of sulfur dioxide, the reaction is also interesting for synthesis chemistry.
Collapse
Affiliation(s)
- Constanze Sydow
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christiane Seiband
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Alexander F. Siegle
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Sun J, Vogel J, Chen L, Schleper AL, Bergner T, Kuehne AJC, von Delius M. Carbodiimide-Driven Dimerization and Self-Assembly of Artificial, Ribose-Based Amphiphiles. Chemistry 2022; 28:e202104116. [PMID: 35038189 PMCID: PMC9303926 DOI: 10.1002/chem.202104116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/20/2022]
Abstract
The aqueous self-assembly of amphiphiles into aggregates such as micelles and vesicles has been widely investigated over the past decades with applications ranging from materials science to drug delivery. The combination of characteristic properties of nucleic acids and amphiphiles is of substantial interest to mimic biological self-organization and compartmentalization. Herein, we present ribose- and ribonucleotide-based amphiphiles and investigate their self-assembly as well as their fundamental reactivity. We found that various types of aggregates are formed, ranging in size from nanometers to micrometers and all amphiphiles exhibit aggregation-induced emission (AIE) in solution as well as in the solid state. We also observed that the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) leads to rapid and selective dimerization of the amphiphiles into pyrophosphates, which decreases the critical aggregation concentration (CAC) by a factor of 25 when compared to the monomers. Since the propensity for amphiphile dimerization is correlated with their tendency to self-assemble, our results may be relevant for the formation of rudimentary compartments under prebiotic conditions.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lisa Chen
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - A. Lennart Schleper
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tim Bergner
- Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Alexander J. C. Kuehne
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- DWI – Leibniz-Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
5
|
Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:2116840119. [PMID: 35140183 PMCID: PMC8851484 DOI: 10.1073/pnas.2116840119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of a primordial ribosome from the RNA world would have required access to aminoacylated RNA substrates. The spontaneous generation of such substrates without enzymes is inefficient, and it remains unclear how they could be selected for in a prebiotic milieu. In our study, we identify a possible role for aminoacylated RNA in ribozyme assembly, a longstanding problem in the origin-of-life research. We show that aminoacylation of short RNAs greatly accelerates their assembly into functional ribozymes by forming amino acid bridges in the phosphodiester backbone. Our work therefore addresses two key challenges within the origin-of-life field: we demonstrate assembly of functional ribozymes, and we identify a potential evolutionary benefit for RNA aminoacylation that is independent of coded peptide translation. Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid–RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid–specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.
Collapse
|
6
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eddy I. Jiménez
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Clémentine Gibard
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
7
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021; 60:10775-10783. [PMID: 33325148 DOI: 10.1002/anie.202015910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.
Collapse
Affiliation(s)
- Eddy I Jiménez
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Clémentine Gibard
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Kim SC, O'Flaherty DK, Giurgiu C, Zhou L, Szostak JW. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J Am Chem Soc 2021; 143:3267-3279. [PMID: 33636080 DOI: 10.1021/jacs.0c12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages. How then did relatively homogeneous RNA emerge from this primordial heterogeneity? Here we focus on nonenzymatic template-directed primer extension as a process that would have strongly enriched for homogeneous RNA over the course of multiple cycles of replication. We review the effects on copying the kinetics of nucleotides with altered nucleobase and sugar moieties, when they are present as activated monomers and when they are incorporated into primer and template oligonucleotides. We also discuss three variations in backbone connectivity, all of which are nonheritable and regenerate native RNA upon being copied. The kinetic superiority of RNA synthesis suggests that nonenzymatic copying served as a chemical selection mechanism that allowed relatively homogeneous RNA to emerge from a complex mixture of prebiotically synthesized nucleotides and oligonucleotides.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Radakovic A, Wright TH, Lelyveld VS, Szostak JW. A Potential Role for Aminoacylation in Primordial RNA Copying Chemistry. Biochemistry 2021; 60:477-488. [PMID: 33523633 PMCID: PMC9634692 DOI: 10.1021/acs.biochem.0c00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aminoacylated tRNAs
are the substrates for ribosomal protein synthesis
in all branches of life, implying an ancient origin for aminoacylation
chemistry. In the 1970s, Orgel and colleagues reported potentially
prebiotic routes to aminoacylated nucleotides and their RNA-templated
condensation to form amino acid-bridged dinucleotides. However, it
is unclear whether such reactions would have aided or impeded non-enzymatic
RNA replication. Determining whether aminoacylated RNAs could have
been advantageous in evolution prior to the emergence of protein synthesis
remains a key challenge. We therefore tested the ability of aminoacylated
RNA to participate in both templated primer extension and ligation
reactions. We find that at low magnesium concentrations that favor
fatty acid-based protocells, these reactions proceed orders of magnitude
more rapidly than when initiated from the cis-diol
of unmodified RNA. We further demonstrate that amino acid-bridged
RNAs can act as templates in a subsequent round of copying. Our results
suggest that aminoacylation facilitated non-enzymatic RNA replication,
thus outlining a potentially primordial functional link between aminoacylation
chemistry and RNA replication.
Collapse
Affiliation(s)
- Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tom H Wright
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Zhou L, Ding D, Szostak JW. The virtual circular genome model for primordial RNA replication. RNA (NEW YORK, N.Y.) 2021; 27:1-11. [PMID: 33028653 PMCID: PMC7749632 DOI: 10.1261/rna.077693.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Duzdevich D, Carr CE, Szostak JW. Deep sequencing of non-enzymatic RNA primer extension. Nucleic Acids Res 2020; 48:e70. [PMID: 32427335 PMCID: PMC7337528 DOI: 10.1093/nar/gkaa400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 12/02/2022] Open
Abstract
Life emerging in an RNA world is expected to propagate RNA as hereditary information, requiring some form of primitive replication without enzymes. Non-enzymatic template-directed RNA primer extension is a model of the copying step in this posited form of replication. The sequence space accessed by primer extension dictates potential pathways to self-replication and, eventually, ribozymes. Which sequences can be accessed? What is the fidelity of the reaction? Does the recently illuminated mechanism of primer extension affect the distribution of sequences that can be copied? How do sequence features respond to experimental conditions and prebiotically relevant contexts? To help answer these and related questions, we here introduce a deep-sequencing methodology for studying RNA primer extension. We have designed and vetted special RNA constructs for this purpose, honed a protocol for sample preparation and developed custom software that analyzes sequencing data. We apply this new methodology to proof-of-concept controls, and demonstrate that it works as expected and reports on key features of the sequences accessed by primer extension.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher E Carr
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack W Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Fialho DM, Roche TP, Hud NV. Prebiotic Syntheses of Noncanonical Nucleosides and Nucleotides. Chem Rev 2020; 120:4806-4830. [PMID: 32421316 DOI: 10.1021/acs.chemrev.0c00069] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The origin of nucleotides is a major question in origins-of-life research. Given the central importance of RNA in biology and the influential RNA World hypothesis, a great deal of this research has focused on finding possible prebiotic syntheses of the four canonical nucleotides of coding RNA. However, the use of nucleotides in other roles across the tree of life might be evidence that nucleotides have been used in noncoding roles for even longer than RNA has been used as a genetic polymer. Likewise, it is possible that early life utilized nucleotides other than the extant nucleotides as the monomers of informational polymers. Therefore, finding plausible prebiotic syntheses of potentially ancestral noncanonical nucleotides may be of great importance for understanding the origins and early evolution of life. Experimental investigations into abiotic noncanonical nucleotide synthesis reveal that many noncanonical nucleotides and related glycosides are formed much more easily than the canonical nucleotides. An analysis of the mechanisms by which nucleosides and nucleotides form in the solution phase or in drying-heating reactions from pre-existing sugars and heterocycles suggests that a wide variety of noncanonical nucleotides and related glycosides would have been present on the prebiotic Earth, if any such molecules were present.
Collapse
Affiliation(s)
- David M Fialho
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| |
Collapse
|
13
|
Kim SC, Zhou L, Zhang W, O'Flaherty DK, Rondo-Brovetto V, Szostak JW. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. J Am Chem Soc 2020; 142:2317-2326. [PMID: 31913615 PMCID: PMC7577264 DOI: 10.1021/jacs.9b11239] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The abiotic synthesis of ribonucleotides
is thought to have been
an essential step toward the emergence of the RNA world. However,
it is likely that the prebiotic synthesis of ribonucleotides was accompanied
by the simultaneous synthesis of arabinonucleotides, 2′-deoxyribonucleotides,
and other variations on the canonical nucleotides. In order to understand
how relatively homogeneous RNA could have emerged from such complex
mixtures, we have examined the properties of arabinonucleotides and
2′-deoxyribonucleotides in nonenzymatic template-directed primer
extension reactions. We show that nonenzymatic primer extension with
activated arabinonucleotides is much less efficient than with activated
ribonucleotides, and furthermore that once an arabinonucleotide is
incorporated, continued primer extension is strongly inhibited. As
previously shown, 2′-deoxyribonucleotides are also less efficiently
incorporated in primer extension reactions, but the difference is
more modest. Experiments with mixtures of nucleotides suggest that
the coexistence of ribo- and arabinonucleotides does not impede the
copying of RNA templates. Moreover, chimeric oligoribonucleotides
containing 2′-deoxy- or arabinonucleotides are effective templates
for RNA synthesis. We propose that the initial genetic polymers were
random sequence chimeric oligonucleotides formed by untemplated polymerization,
but that template copying chemistry favored RNA synthesis; multiple
rounds of replication may have led to pools of oligomers composed
mainly of RNA.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Wen Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Valeria Rondo-Brovetto
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| |
Collapse
|