1
|
Naseem M, Tahir M, Dai J, Qu L, Nisa FU, Ahmad W, Shahbaz I, Ma Z, Khan AU, He L. Tuning the Catalytic Activity of MoS2-x-NbSx Heterostructure Nanosheets for Bifunctional Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501464. [PMID: 40166825 DOI: 10.1002/smll.202501464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Developing durable electrocatalysts with high activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic media is critically important for clean power production. In this study, MoS2-x-NbSx heterostructure nanosheets are synthesized from a solid-state reaction method followed by liquid phase exfoliation, and their catalytic performance is optimized. The MoS2-x-NbSx heterostructure nanosheets with optimal precursors ratio exhibit promising attributes for applications in the HER and OER compared to pristine MoS2 and Nb under the same conditions. The MoS2-x-NbSx heterostructure nanosheets catalyst on glassy carbon electrodes shows the minimum overpotential of 159 mV for HER and 295 mV for OER at a current density of 10 mA cm-2 in 0.5 m H2SO4. This research offers valuable insights into the fabrication of heterostructure nanosheets and evaluates their potential as effective electrocatalysts for water splitting compared with pristine 2D materials in an acid environment.
Collapse
Affiliation(s)
- Mizna Naseem
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Muhammad Tahir
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - Fazal Ul Nisa
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Waheed Ahmad
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Iqra Shahbaz
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| | - Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Arif Ullah Khan
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin, 644005, P. R. China
| |
Collapse
|
2
|
He J, Butson JD, Gu R, Loy ACM, Fan Q, Qu L, Li GK, Gu Q. MXene-Supported Single-Atom Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414674. [PMID: 40150844 PMCID: PMC12061334 DOI: 10.1002/advs.202414674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Indexed: 03/29/2025]
Abstract
MXenes, a novel member of the 2D material family, shows promising potential in stabilizing isolated atoms and maximizing the atom utilization efficiency for catalytic applications. This review focuses on the role of MXenes as support for single-atom catalysts (SACs) for various electrochemical reactions, namely the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). First, state-of-the-art characterization and synthesis methods of MXenes and MXene-supported SACs are discussed, highlighting how the unique structure and tunable functional groups enhance the catalytic performance of pristine MXenes and contribute to stabilizing SAs. Then, recent studies of MXene-supported SACs in different electrocatalytic areas are examined, including experimental and theoretical studies. Finally, this review discusses the challenges and outlook of the utilization of MXene-supported SACs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Jianan He
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Joshua D. Butson
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Ruijia Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Adrian Chun Minh Loy
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qining Fan
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Longbing Qu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Gang Kevin Li
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qinfen Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
- Australian SynchrotronANSTO800 Blackburn RdClaytonVIC3168Australia
| |
Collapse
|
3
|
Danylo I, Koláčný L, Kissíková K, Hartman T, Pitínová M, Šturala J, Sofer Z, Veselý M. Direct chemical lithography writing on 2D materials by electron beam induced chemical reactions. NANOSCALE ADVANCES 2025; 7:2021-2031. [PMID: 39974340 PMCID: PMC11833312 DOI: 10.1039/d5na00036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Due to their high surface-to-volume ratio and native band gaps, two-dimensional (2D) materials are widely used as supports for metal nanoparticle (NP) catalysts. Various synthesis methods exist to prepare such materials, but controlling the amount, size, and distribution of the deposited NPs remains a challenge. Here, we investigate the use of electron beam lithography (EBL) for this purpose. A dual-beam focused ion beam-scanning electron microscope (FIB-SEM) was used to direct the deposition of platinum NPs (Pt NPs) onto 2D graphene oxide, functionalized with epoxy and hydroxyl (HUGO) or carboxyl (TOGO) groups, and black phosphorus (BP) sheets. According to NP size, the deposition was conducted for various exposure times and several types of particle distribution. EDS confirmed the required chemical composition of all of the prepared materials. SEM showed the amount and distribution of the supported NPs, and TEM confirmed their size. Raman spectroscopy revealed a strong bonding between the NPs and the support sheets according to the type of 2D support. These results suggest that EBL is a promising method for the target-controlled deposition of metal NPs of targeted amount, size, and spatial distribution onto 2D materials, which enables evaluating the specific influence of the NP-support interaction on enhanced catalytic activity.
Collapse
Affiliation(s)
- Iryna Danylo
- Department of Organic Technology, University of Chemistry and Technology Prague Czech Republic
| | - Lukáš Koláčný
- Department of Organic Technology, University of Chemistry and Technology Prague Czech Republic
| | - Kristína Kissíková
- Department of Organic Technology, University of Chemistry and Technology Prague Czech Republic
| | - Tomáš Hartman
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Czech Republic
| | - Martina Pitínová
- Department of Organic Technology, University of Chemistry and Technology Prague Czech Republic
| | - Jiří Šturala
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Czech Republic
| | - Martin Veselý
- Department of Organic Technology, University of Chemistry and Technology Prague Czech Republic
| |
Collapse
|
4
|
Li J, Cao L, Lin J, Lin S. Single-Atom Metal Species as A Promoter to Enhance Heterogeneous Catalysis. Chemistry 2025; 31:e202404382. [PMID: 39888064 DOI: 10.1002/chem.202404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/01/2025]
Abstract
Single-atom catalysts (SACs) have emerged as a focal point of research in the field of heterogeneous catalysis. This paper reviews the progress in the studies of single atoms as promoters in various catalytic reactions, elucidating their distinctive role in comparison to the dominant active sites. We provide a discussion on the application of single-atom promoters (SAP) within host-guest systems in various catalysts, including metal oxide supported catalysts, molybdenum carbide-based catalysts, bimetallic catalysts, and others. The behavior of SAP is diverse. They often promote the formation of oxygen vacancies for oxide support, leading to local site reconstruction that creates specific reaction route. Moreover, they can also precisely modify the electronic structure of hetero-metal atomic or nanoparticle sites, then regulating the adsorption of reactants or intermediates and catalytic performance. Finally, the potential for the development of SAP is outlined, proposing novel approach for the design of SACs with enhanced activity and stability.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Liru Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China
| |
Collapse
|
5
|
Salah A, Ren HD, Al-Ansi N, Al-Salihy A, Mahyoub SA, Qaraah FA, Hezam A, Drmosh QA. RuCo@C Hollow Nanoprisms Derived from ZIF-67 for Enhanced Hydrogen and Oxygen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202401862. [PMID: 39429098 DOI: 10.1002/cssc.202401862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/22/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are commonly used to create complex hollow structures for energy applications. This study presents a simple method to produce a novel hollow nanoprism Co@C hierarchical composite from ZIF-67 through high-temperature treatment at 800 °C. This composite serves as a platform for Ru nanoparticle deposition, forming RuCo@C hollow nanoprism (RuCo@C HNP). As an electrocatalyst in 1 M KOH, RuCo@C HNP exhibits excellent hydrogen evolution reaction (HER) performance, with a low overpotential of 32 mV to reach 10 mA cm-2, a Tafel slope of 39.67 mV dec-1, a high turnover frequency (TOF) of 3.83 s-1 at η200, and stable performance over 50 h. It also achieves a low η10 of 266 mV for the oxygen evolution reaction (OER) with a Tafel slope of 45.22 mV dec-1. Density functional theory (DFT) calculations reveal that Ru doping in Ni/Co maintains a low water dissociation barrier, reduces the energy barrier for the OER rate-determining step, and creates active sites for H*, enhancing adsorption/desorption abilities. These results are attributed to the synergy between Co and Ru and the hollow prism structure's increased surface area. This method for synthesizing hollow structures using ZIF composites shows promise for applications in the energy sector.
Collapse
Affiliation(s)
- Abdulwahab Salah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Hong-Da Ren
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Nabilah Al-Ansi
- National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Adel Al-Salihy
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Samah A Mahyoub
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Fahim A Qaraah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Abdo Hezam
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Qasem A Drmosh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Lei Z, Ali S, Sathish CI, Ahmed M, Qu J, Zheng R, Xi S, Yu X, Breese MBH, Liu C, Zhang J, Qi S, Guan X, Perumalsamy V, Fawaz M, Yang JH, Bououdina M, Domen K, Vinu A, Qiao L, Yi J. Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range. NANO-MICRO LETTERS 2025; 17:123. [PMID: 39888566 PMCID: PMC11785901 DOI: 10.1007/s40820-025-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Transition metal carbides, known as MXenes, particularly Ti3C2Tx, have been extensively explored as promising materials for electrochemical reactions. However, transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported. In this work, transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts, ranging from single atoms to sub-nanometer dimensions, are explored for hydrogen evolution reaction (HER). The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes. The optimized sample shows low overpotentials of 28, 65, and 154 mV at a current densities of 10, 100, and 500 mA cm-2, a small Tafel slope of 29 mV dec-1, a high mass activity of 1203 mA mgPt-1 and an excellent turnover frequency of 6.1 s-1 in the acidic electrolyte. Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites, increased surface functional groups, faster charge transfer dynamics, and stronger electronic interaction between Pt and MXene, resulting in optimized hydrogen absorption/desorption toward better HER. This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
Collapse
Affiliation(s)
- Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sajjad Ali
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - MuhammadIbrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiangtao Qu
- School of Physics, University of Sydney, Sydney, NSW, 2000, Australia
| | - Rongkun Zheng
- School of Physics, University of Sydney, Sydney, NSW, 2000, Australia
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Singapore, 627833, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore
| | - M B H Breese
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, 117603, Singapore
| | - Chao Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jizhen Zhang
- Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, People's Republic of China
| | - Shuai Qi
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xinwei Guan
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Vibin Perumalsamy
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammed Fawaz
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jae-Hun Yang
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia
| | - Kazunari Domen
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano, 380-8533, Japan
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Jiabao Yi
- Department of Chemical Engineering and Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
| |
Collapse
|
7
|
Lou H, Ma C. Metallic PtC monolayer as a promising hydrogen evolution electrocatalyst. Phys Chem Chem Phys 2025; 27:2749-2757. [PMID: 39815816 DOI: 10.1039/d4cp04355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtCx monolayers. The novel PtC monolayer with a zigzag C chain not only possesses lower Pt loading but also shows inherent metallicity. Meanwhile, its H2O adsorption and dissociation abilities are efficient and facile. The HER activity of the PtC monolayer is comparable to that of commercial Pt, with desirable ΔGH* values and larger exchange current density, which are mainly attributed to lower charge donation of Pt, larger occupation of Pt PDOS at the Fermi level, and paired electrons of the zigzag C chain. Moreover, its excellent HER activity can be maintained even at high H coverage under strain and solvent effect. All these attractive properties render the PtC monolayer an appropriate HER catalyst.
Collapse
Affiliation(s)
- Huan Lou
- Department of Applied Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Chi Ma
- Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
8
|
Liu R, Wang P, Wang X, Chen F, Yu H. Facilitating Oriented Electron Transfer from Cu to Mo 2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408330. [PMID: 39604232 DOI: 10.1002/smll.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Mo2C MXene (Mo2CTx) is recognized as an excellent cocatalyst due to unique physicochemical properties and platinum-like d-band of Mo active sites. However, Mo sites of Mo2CTx with high-density empty d-orbitals exhibit strong Mo─Hads bonds during photocatalytic hydrogen evolution, leading to easy adsorption of hydrogen ions from solution and unfavorable desorption of H2 from Mo sites. To weaken the Mo─Hads bond, a strategy of oriented electron transfer from Cu to Mo2CTx to increase the antibonding orbital occupancy of Mo─Hads hybrid orbitals is implemented by introducing Cu into Mo2CTx interlayers to form Cu-Mo2CTx. The Cu-Mo2CTx is synthesized from Mo2Ga2C and CuCl2 via a one-step molten salt method and combined with TiO2 to form Cu-Mo2CTx/TiO2 photocatalyst through an ultrasound-assisted approach. Hydrogen production tests reveal that an exceptional performance of Cu-Mo2CTx/TiO2 (6446 µmol h-1 g-1, AQE = 18.3%) is 8.4 fold higher than that of Mo2CF2/TiO2 (Mo2CF2 by the conventional etchant NH4F+HCl). Density functional theory (DFT) calculations and characterization results corroborate that the oriented electron transfer from Cu to Mo2CTx increases the Mo─Hads antibonding occupancy in Cu-Mo2CTx, thereby weakening Mo─Hads bonds and accelerating the hydrogen evolution rate of TiO2. This research offers valuable insights into optimizing H-adsorption capabilities at active sites on MXene materials.
Collapse
Affiliation(s)
- Ruiyun Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ping Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuefei Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Feng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
9
|
Chen Z, Liao Y, Chong H, Guo H, Li Q, Cui W. The CoNi@C/Mo 1.33C i-MXene Derived from Novel (Mo 2/3R 1/3) 2GaC (R = Dy, Ho, Er, Tm, and Lu) Nanolaminations for Electrochemical Application in Electrocatalytic Hydrogen Evolution and Supercapacitance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407667. [PMID: 39692180 DOI: 10.1002/smll.202407667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
2D Mo1.33C i-MXene is highly promising for electrochemical applications. Here, a synthetic strategy is reported, enabling the uniform distribution of carbon-coated CoNi (CoNi@C) nanoparticles on the vacancy-ordered Mo1.33C i-MXene nanosheets, thereby fully exposing the active sites of CoNi@C. First, five novel Ga-containing (Mo2/3R1/3)2GaC (R = Dy, Ho, Er, Tm, and Lu) i-MAX phases are synthesized as the precursor and found to be crystallized into Cmcm structure, followed by hydrothermal etching and delamination. Subsequently, CoNi- MOF is in situ grown on derived Mo1.33C i-MXene nanosheets. By modifying the loading mass and annealing condition, CoNi-MOF is transformed into the CoNi@C and the CoNi@C/Mo1.33C displayed outstanding hydrogen evolution reaction activity with low overpotential (73 mV at 10 mA cm-2) and small Tafel slope (84 mV dec-1). Moreover, the gravimetric capacitance is also increased from 68 F g-1 in CoNi@C to 575.1 F g-1 in CoNi@C/Mo1.33C-50 at 0.5 A g-1. After ≈5000 cycles, activation is complete, and the specific capacitance reaches its maximum value. Additionally, the specific capacitance remains stable at 95% after additional 10 000 cycles. This work improves the catalytic and supercapacitor performance of composite nanomaterials by optimizing the distribution of active sites on Mo1.33C i-MXene, and also extends the application of Mo1.33C i-MXene.
Collapse
Affiliation(s)
- Zhaohui Chen
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Yunxiang Liao
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - He Chong
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Hongyun Guo
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Qiang Li
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Weibin Cui
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
- Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
10
|
Yang Y, Wang H, Wang C, Liu J, Wu H, Liu N, Wang Q, Shang Y, Zheng J. Novel 2D Material of MBenes: Structures, Synthesis, Properties, and Applications in Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405870. [PMID: 39396387 DOI: 10.1002/smll.202405870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Indexed: 10/15/2024]
Abstract
2D transition metal borides (MBenes) have garnered significant attention from researchers due to their exceptional electrical conductivity, strong mechanical rigidity, excellent dynamic and thermodynamic stability, which stimulates the enthusiasm of researchers for the study of MBenes. Over the past few years, extensive research efforts have been dedicated to the study of MBenes, resulting in a growing number of synthesis methods being developed. However, there remains a scarcity of comprehensive reviews on MBenes, particularly in relation to the synthesis techniques employed. To address this gap, this review aims to provide a comprehensive summary of the latest research findings on MBenes. An exhaustive exploration of the crystal structure types of MBenes is presented, highlighting the greater structural diversity compared to MXenes. Furthermore, a comprehensive review of the recent advancements in MBenes synthesis methodologies is provided. The review also delves into the physical and chemical properties of MBenes, while elucidating their applications in the realms of energy conversion and energy storage. Lastly, this review concludes by summarizing and offering insights on MBenes from three angles: synthesis, structure-property relationships, and application prospects.
Collapse
Affiliation(s)
- Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Naiyan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qian Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Shang
- School of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| |
Collapse
|
11
|
Huang X, Hu X, Wang J, Xu H. Overlooked Role of Electrostatic Interactions in HER Kinetics on MXenes: Beyond the Conventional Descriptor Δ G ∼ 0 to Identify the Real Active Site. J Phys Chem Lett 2024; 15:11200-11208. [PMID: 39485142 DOI: 10.1021/acs.jpclett.4c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding the atomic-level mechanism of the hydrogen evolution reaction (HER) on MXene materials is crucial for developing affordable HER catalysts, while their complex surface terminations present a substantial challenge. Herein, employing constant-potential grand canonical density functional theory calculations, we elucidate the reaction kinetics of the HER on MXenes with various surface terminations by taking experimentally reported Mo2C as a prototype. We observe a contradictory scenario on Mo2C MXene when using conventional thermodynamic descriptor ΔGH* (hydrogen binding energy). Both competing surface phases that emerge close to the equilibrium potential meet the ΔGH* ∼ 0 criterion, while they exhibit distinctly different reaction kinetics. Contrary to previous studies that identified surface *O species as active sites, our research reveals that these *O sites are kinetically inert for producing H2 but are easily reduced to H2O. Consequently, the surface Mo atoms, exposed from the rapid reduction of the surface *O species, serve as the actual active sites catalyzing the HER via the Volmer-Heyrovsky mechanism, as confirmed by experimental studies. Our findings highlight the overlooked role of electrostatic repulsion in HER kinetics, a factor not captured by thermodynamic descriptor ΔGH*. This work provides new insights into the HER mechanism and emphasizes the importance of kinetic investigations for a comprehensive understanding of the HER.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Xiangting Hu
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, China
| | - Hu Xu
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| |
Collapse
|
12
|
Murtaza M, Farooq K, Shah WA, Ahmad I, Waseem A. Layered MOF supported on 2D delaminated MXene (Mo 2Ti 2C 3) nanosheets boosted water splitting. NANOSCALE ADVANCES 2024:d4na00630e. [PMID: 39444650 PMCID: PMC11494419 DOI: 10.1039/d4na00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Metal organic frameworks (MOFs) have a porous structure, high surface area, and high charge transfer, and they have been regarded as model electrocatalysts. Optimization of the electrocatalytic activity of MOFs is challenging, and an effective strategy for this optimization is the construction of a well-defined interfacial bond bridge. In this work, an in situ approach of composite synthesis is reported for MOF (CoNiNH2BDC) with MXenes (Mo2Ti2C3), as the electrocatalytic properties of MOF can be greatly enhanced with the incorporation of the conductive material MXene. The prepared composite material was characterized thoroughly using XRD, XPS, FESEM, EDX, TEM, and BET. The synergistic effect of both components of this composite material resulted in enhanced conductivity and the number of active sites, which led to enhanced electrocatalytic performance. The CoNiNH2BDC MOF with different ratios of Mo2Ti2C3 MXene were synthesized, and the resulting materials were evaluated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities. It was observed that the MOFMX3 attained a 10 mA cm-2 current density at 1.44 V for OER and -0.037 V for HER (vs. RHE), and lower values of Tafel slopes of 44.8 mV dec-1 for OER and 45 mV dec-1 for HER in 0.1 M KOH were achieved. The higher double layer capacitance (C dl) values lead to high electrochemical surface area (ECSA) values. Lower Tafel slope values for MOFMX3 show that the presence of MXene nanosheets in the hybrid provides support to the layered and porous configuration of MOF, and the chances of the interaction of electrolyte to the catalytically active sites are significantly enhanced. This work highlights the idea of growing bimetallic MOFs on Mo2Ti2C3 MXene using an interdiffusion reaction strategy and opens up an avenue for designing highly electrocatalytic systems.
Collapse
Affiliation(s)
- Maida Murtaza
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Komal Farooq
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Waqas Ali Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Iftikhar Ahmad
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| |
Collapse
|
13
|
Lu X, Yu X, Li B, Sun X, Cheng L, Kai Y, Zhou H, Tian Y, Li D. Harnessing Metal-Organic Frameworks for NIR-II Light-Driven Multiphoton Photocatalytic Water Splitting in Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405643. [PMID: 39119878 PMCID: PMC11481200 DOI: 10.1002/advs.202405643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The construction of near-infrared (NIR) light-activated hydrogen-producing materials that enable the controlled generation and high-concentration release of hydrogen molecules in deep tumor tissues and enhance the effects of hydrogen therapy holds significant scientific importance. To address the key technical challenge of low-efficiency oxidation-reduction reactions for narrow-bandgap photocatalytic materials, this work proposes an innovative approach for the controllable fabrication of multiphoton photocatalytic materials to overcome the limitations imposed by traditional near-infrared photocatalysts with "narrow-bandgap" constraints. Herein, an NIR-responsive multiphoton photocatalyst, ZrTc-Co, is developed by utilizing a post-synthetic coordination modification strategy to introduce hydrogenation active site CoII into a multiphoton responsive MOF (ZrTc). The results reveal that with the introduction of the CoII site, electron-hole recombination can be efficiently suppressed, thus promoting the efficiency of hydrogen evolution reaction. In addition, the integration of CoII can effectively enhance charge transfer and improve static hyperpolarizability, which endows ZrTc-Co with excellent multiphoton absorption. Moreover, hyaluronic acid modification endows ZrTc-Co with cancer cell-specific targeting characteristics, laying the foundation for tumor-specific elimination. Collectively, the proposed findings present a strategy for constructing NIR-II light-mediated hydrogen therapeutic agents for deep tumor elimination.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Bo Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - YuanZhong Kai
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| |
Collapse
|
14
|
Li H, Chen Y, Tang Q. Surface Termination (-O, -F or -OH) and Metal Doping on the HER Activity of Mo 2CT x MXene. Chemphyschem 2024; 25:e202400255. [PMID: 38839572 DOI: 10.1002/cphc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Two-dimensional MXenes have recently garnered significant attention as electrocatalytic materials for hydrogen evolution reaction (HER). However, previous theoretical studies mainly focused on the effect of pure functional groups while neglecting hybrid functional groups that are commonly observed in experiments. Herein, we investigated the hybrid functionalized Mo2CTx MXene (T=-O, -F or -OH) to probe the HER properties. In binary O/F co-functionalization, the presence of F groups would attenuate the H adsorption and lead to the enhanced HER activity than the fully O-terminated Mo2CO2. However, the surface HER activity of ternary O/F/OH functionalized Mo2CTx is not satisfactory owing to the relatively weak H adsorption capacity. To further enhance the catalytic activity, modification was performed by introducing another metal element into its lattice structure. The doped metal (Fe, Co, Ni, Cu) exhibits reduced charge transfer to O compared to Mo atoms, leading to enhanced H adsorption and improved overall activity. The synergistic effect of hybrid functionalization and TM modification provides useful guidance for achieving feasible Mo2CTx candidates with high HER performance, which can be applied to the electrocatalytic applications of other MXenes.
Collapse
Affiliation(s)
- Huidong Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
15
|
Protyai MIH, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 2024; 10:e37030. [PMID: 39319124 PMCID: PMC11419932 DOI: 10.1016/j.heliyon.2024.e37030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
MXenes are a group of 2D transition metal carbonitrides, nitrides and carbides that have become widely recognized as useful materials since they were first discovered in 2011. MXenes, with their exceptional layered structures and splendid external chemistries, have excellent electrical, optical, and thermal properties, making them suitable for catalysis, biomedical uses, environmental remediation, energy storage, and EMI shielding. Over forty MXene compounds with surface terminations like hydroxyl, oxygen, or fluorine are hydrophilic and easily integrated into various applications. Advanced synthesis methods, including selective etching and etchant modifications, have broadened MXene surface chemistries for customized mechanical, thermal, and electrical applications. Integrating MXenes into polymer composites has demonstrated notable promise, enhancing the host polymers' electrical conductivity, thermal stability and mechanical strength. The MXene-polymer composites demonstrate remarkable prospective on behalf of advanced purposes, including flexible electronics, high-performance EMI shielding materials, and lightweight structural components. MXenes have the desirable characteristic of being able to create flexible and translucent films, as well as improve the properties of polymer matrices. This makes them very suitable for use in advanced technological applications. This review summarizes MXene research, methods, and insights, highlighting key discoveries and future directions. This also highlights the importance of ongoing research to fill in the gaps in current knowledge and improve the practical uses of MXenes.
Collapse
Affiliation(s)
- Md Injamamul Haque Protyai
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
16
|
Qu MR, Cheng YR, Duan HL, Qin YY, Feng SH, Su XZ, Yuan YF, Yan WS, Cao L, Xu J, Wu R, Yu SH. Defective Tungsten Oxides with Stacking Faults for Proton Exchange Membrane Green-Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401159. [PMID: 38716681 DOI: 10.1002/smll.202401159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/31/2024] [Indexed: 10/04/2024]
Abstract
Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.
Collapse
Affiliation(s)
- Ming-Rong Qu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ran Cheng
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Heng-Li Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - You-Yi Qin
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Hua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Zhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, 201210, China
| | - Yi-Fei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wen-Sheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liang Cao
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jie Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Rui Wu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
18
|
Zhou Y, Liang L, Wang C, Sun F, Zheng L, Qi H, Wang B, Wang X, Au CT, Wang J, Jiang L, Hosono H. Precious-Metal-Free Mo-MXene Catalyst Enabling Facile Ammonia Synthesis Via Dual Sites Bridged by H-Spillover. J Am Chem Soc 2024; 146:23054-23066. [PMID: 39133788 PMCID: PMC11345764 DOI: 10.1021/jacs.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
To date, NH3 synthesis under mild conditions is largely confined to precious Ru catalysts, while nonprecious metal (NPM) catalysts are confronted with the challenge of low catalytic activity due to the inverse relationship between the N2 dissociation barrier and NHx (x = 1-3) desorption energy. Herein, we demonstrate NPM (Co, Ni, and Re)-mediated Mo2CTx MXene (where Tx denotes the OH group) to achieve efficient NH3 synthesis under mild conditions. In particular, the NH3 synthesis rate over Re/Mo2CTx and Ni/Mo2CTx can reach 22.4 and 21.5 mmol g-1 h-1 at 400 °C and 1 MPa, respectively, higher than that of NPM-based catalysts and Cs-Ru/MgO ever reported. Experimental and theoretical studies reveal that Mo4+ over Mo2CTx has a strong ability for N2 activation; thus, the rate-determining step is shifted from conventional N2 dissociation to NH2* formation. NPM is mainly responsible for H2 activation, and the high reactivity of spillover hydrogen and electron transfer from NPM to the N-rich Mo2CTx surface can efficiently facilitate nitrogen hydrogenation and the subsequent desorption of NH3. With the synergistic effect of the dual active sites bridged by H-spillover, the NPM-mediated Mo2CTx catalysts circumvent the major obstacle, making NH3 synthesis under mild conditions efficient.
Collapse
Affiliation(s)
- Yanliang Zhou
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Lili Liang
- State
Key Laboratory of Solidification Processing, School of Materials Science
and Engineering, Northwestern Polytechnical
University, Xi’an 710072, China
| | - Congying Wang
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Fuxiang Sun
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Lirong Zheng
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Qi
- Leibniz-Institut
für Katalyse e.V., Rostock 18059, Germany
| | - Bin Wang
- Sinopec
Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Xiuyun Wang
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Chak-tong Au
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Junjie Wang
- State
Key Laboratory of Solidification Processing, School of Materials Science
and Engineering, Northwestern Polytechnical
University, Xi’an 710072, China
| | - Lilong Jiang
- National
Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Hideo Hosono
- MDX Research
Center for Element Strategy, Tokyo Institute
of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
19
|
Wu J, Du X, Li M, Chen H, Hu B, Ding H, Wang N, Jin L, Liu W. Enhanced photoelectrochemical water splitting performance of α-Fe 2O 3 photoanodes through Co-modification with Co single atoms and g-C 3N 4. Chem Sci 2024; 15:12973-12982. [PMID: 39148777 PMCID: PMC11323335 DOI: 10.1039/d4sc03442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The practical application of α-Fe2O3 in water splitting is hindered by significant charge recombination and slow water oxidation. To address this issue, a CoSAs-g-C3N4/Fe2O3 (CoSAs: cobalt single atoms) photoanode was fabricated in this study through the co-modification of CoSAs and g-C3N4 to enhance photoelectrochemical (PEC) water splitting. The coupling between g-C3N4 and α-Fe2O3 resulted in the formation of a heterojunction, which provided a strong built-in electric field and an additional driving force to mitigate charge recombination. Moreover, g-C3N4 served as a suitable carrier for single atoms, which effectively anchored CoSAs through N/C coordination. The highly dispersed CoSAs provided abundant active sites, which further promoted surface holes extraction and oxidation kinetics, resulting in higher PEC performance and photostability. This study indicates the benefits of these collaborative strategies and provides more efficient designs for solar energy conversion in PEC systems.
Collapse
Affiliation(s)
- Juan Wu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Mingjie Li
- Library, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Hongwei Ding
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Nannan Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
20
|
Liang K, Wu T, Misra S, Dun C, Husmann S, Prenger K, Urban JJ, Presser V, Unocic RR, Jiang D, Naguib M. Nitrogen-Doped Graphene-Like Carbon Intercalated MXene Heterostructure Electrodes for Enhanced Sodium- and Lithium-Ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402708. [PMID: 38829277 PMCID: PMC11336969 DOI: 10.1002/advs.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Indexed: 06/05/2024]
Abstract
MXene is investigated as an electrode material for different energy storage systems due to layered structures and metal-like electrical conductivity. Experimental results show MXenes possess excellent cycling performance as anode materials, especially at large current densities. However, the reversible capacity is relatively low, which is a significant barrier to meeting the demands of industrial applications. This work synthesizes N-doped graphene-like carbon (NGC) intercalated Ti3C2Tx (NGC-Ti3C2Tx) van der Waals heterostructure by an in situ method. The as-prepared NGC-Ti3C2Tx van der Waals heterostructure is employed as sodium-ion and lithium-ion battery electrodes. For sodium-ion batteries, a reversible specific capacity of 305 mAh g-1 is achieved at a specific current of 20 mA g-1, 2.3 times higher than that of Ti3C2Tx. For lithium-ion batteries, a reversible capacity of 400 mAh g-1 at a specific current of 20 mA g-1 is 1.5 times higher than that of Ti3C2Tx. Both sodium-ion and lithium-ion batteries made from NGC-Ti3C2Tx shows high cycling stability. The theoretical calculations also verify the remarkable improvement in battery capacity within the NGC-Ti3C2O2 system, attributed to the additional adsorption of working ions at the edge states of NGC. This work offers an innovative way to synthesize a new van der Waals heterostructure and provides a new route to improve the electrochemical performance significantly.
Collapse
Affiliation(s)
- Kun Liang
- Department of Physics and Engineering PhysicsTulane UniversityNew OrleansLA70118USA
| | - Tao Wu
- Department of ChemistryUniversity of CaliforniaRiversideCA92521USA
- Present address:
The State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Sudhajit Misra
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Chaochao Dun
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Samantha Husmann
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Kaitlyn Prenger
- Department of Physics and Engineering PhysicsTulane UniversityNew OrleansLA70118USA
| | - Jeffrey J. Urban
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Volker Presser
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Department of Materials Science and EngineeringSaarland UniversityCampus D2 266123SaarbrückenGermany
- saarene – Saarland Center for Energy Materials and SustainabilityCampus C4 266123SaarbrückenGermany
| | - Raymond R. Unocic
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - De‐en Jiang
- Department of ChemistryUniversity of CaliforniaRiversideCA92521USA
- Present address:
Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Michael Naguib
- Department of Physics and Engineering PhysicsTulane UniversityNew OrleansLA70118USA
- Department of ChemistryTulane UniversityNew OrleansLA70118USA
| |
Collapse
|
21
|
Sun M, Chu S, Sun Z, Jiao X, Wang L, Li Z, Jiang L. A review of etching methods and applications of two-dimensional MXenes. NANOTECHNOLOGY 2024; 35:382003. [PMID: 38834036 DOI: 10.1088/1361-6528/ad53d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
MXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research. In summary, this paper reviews and summarizes the recent research progress of MXenes from the perspective of preparation processes (including hydrofluoric acid direct etching, fluoride/concentrated acid hybrid etching, fluoride melt etching, electrochemical etching, alkali-assisted etching and Lewis acid etching strategies), which can provide valuable guidance for the preparation and application of high-performance MXenes-based materials.
Collapse
Affiliation(s)
- Min Sun
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Siyu Chu
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Zhichao Sun
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Xinyu Jiao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | | | - Zijiong Li
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Liying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
22
|
Liao L, Zhou Q, Liu F, Ma Y, Cheng C, Huang H, Yu F, Long R, Zhou H. Deciphering the In Situ Reconstruction of Metal Phosphide/Nitride Dual Heterostructures for Robust Alkaline Hydrogen Evolution Above 3 A cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311289. [PMID: 38349036 DOI: 10.1002/smll.202311289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 07/19/2024]
Abstract
Hydrogen evolution reaction (HER) in neutral or alkaline electrolytes is appealing for sustainable hydrogen production driven by water splitting, but generally suffers from unsatisfied catalytic activities at high current densities owing to extra kinetic energy barriers required to generate protons through water dissociation. In response, here, a competitive Ni3N/Co3N/CoP electrocatalyst with multifunctional interfacial sites and multilevel interfaces, in which Ni3N/CoP performs as active sites to boost initial water dissociation and Co3N/CoP accelerates subsequent hydrogen adsorption process as confirmed by density functional theory calculations and in situ X-ray photoelectron spectroscopy analysis, is reported. This hybrid catalyst possesses extraordinary HER activity in base, featured by extremely low overpotentials of 115 and 142 mV to afford 500 and 1000 mA cm-2, respectively, outperforming most ever-reported metal phosphides-based catalysts. This catalyst presents an ultrahigh current density of 3545 mA cm-2 by a factor of 4.96 relative to noble Pt/C catalysts (715 mA cm-2) at 0.2 V. Assembled with Fe(PO3)2/Ni2P anode, industrial-level current densities of 500/1000 mA cm-2 at ultralow cell voltages of 1.62/1.66 V for overall water electrolysis with outstanding long-term stability are actualized. More interestingly, this hybrid catalyst also performs well in acidic, neutral freshwater, and seawater requiring relatively low overpotentials of 140, 290, and 331 mV to reach 500 mA cm-2. Particularly, this catalyst can withstand electrochemical corrosion without obvious activity decay at the industrial-level current densities for over 100 h in base. This work provides a cornerstone for the construction of advanced catalysts operated in different pH environments.
Collapse
Affiliation(s)
- Liling Liao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Qian Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Feng Liu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Yuhua Ma
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Cheng Cheng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Haiman Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
23
|
Jiang Y, Lei S, Wang M. S-Scheme Boron Phosphide/MoS 2 Heterostructure with Excellent Light Conversion Ability for Solar Cells and Water Splitting Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30521-30533. [PMID: 38812243 DOI: 10.1021/acsami.4c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Monolayer molybdenum disulfide (MoS2) with a suitable direct band gap and strong optical absorption is very attractive for utilization in solar cells and photocatalytic water splitting. Nevertheless, the broader utilization of MoS2 is impeded by its low carrier mobility and limited responsiveness to infrared light. To overcome these challenges, we constructed a variety of stackings for the boron phosphide (BP)/MoS2 van der Waals heterostructure (vdWH), all of which display S-scheme band alignments except for the AC' stacking. The constituent BP monolayer has superior carrier mobility and strong infrared and visible light response, which makes up for the shortcomings of MoS2. The study revealed that the AB stacking exhibits a remarkable power conversion efficiency of 22.27%, indicating its significant application prospect in solar cells. Additionally, the AB stacking also exhibits a promising application prospect in photocatalytic water splitting due to its suitable band structure, S-scheme band alignment, strong optical adsorption characteristic, high solar-to-hydrogen efficiency, and robust built-in electric field. Meanwhile, applying uniaxial tensile strains along the x-axis direction is more beneficial for photocatalytic water splitting. Hence, the AB-stacked BP/MoS2 vdWH shows significant potential for use in both solar cells and photocatalytic water splitting. This work paves the way for exploring the application of S-scheme heterostructures in solar energy conversion systems.
Collapse
Affiliation(s)
- Yuncai Jiang
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| | - Shuangying Lei
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| | - Mingyuan Wang
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096 Nanjing, China
| |
Collapse
|
24
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
25
|
Hussain N, Chae A, Iqbal A, Doo S, Naqvi SM, Hassan T, Lee AS, Oh T, Koo CM. Oxidation of Molybdenum-Based Single-Metallic/bimetallic Carbide MXenes in Aqueous Suspensions: Mechanistic Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9170-9179. [PMID: 38644569 DOI: 10.1021/acs.langmuir.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Molybdenum carbide MXenes have garnered considerable attention in electronics, energy storage, and catalysis. However, they are prone to oxidative degradation, but the associated mechanisms have not been systematically explored. Therefore, the oxidation mechanisms of Mo-based single-metallic/bimetallic carbide MXenes including Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx in aqueous suspensions were investigated for the first time in this study. Similar to Ti3C2Tx MXene, Mo-based MXenes were found to undergo oxidative degradation in their aqueous dispersions, leading to the disruption of their crystal structure and subsequent loss of optical and electronic properties. Notably, the Mo2CTx MXene deviated from this typical oxidation behavior as it produced an amorphous product with Mo ions instead of highly crystalline Mo-oxides during oxidation. Similarly, the Mo2TiC2Tx and Mo2Ti2C3Tx MXenes did not yield crystalline Mo-oxides; instead, they produced highly crystalline anatase TiO2 and a Mo-ion-containing amorphous product simultaneously. Furthermore, high-temperature annealing of the oxidized Mo2CTx MXene powder at 800 °C transformed the amorphous Mo-containing product into highly crystalline MoO2 crystals. These findings highlight the unconventional oxidation behavior of Mo-based MXenes, which suggests that the formation of crystalline Mo-based oxides requires a higher activation energy during oxidation than that of TiO2. The unique oxidative pathway reported herein can help elucidate the oxidation mechanisms of Mo-based MXene dispersions and their products. The insights from this study can pave the way for fundamental studies in academia as well as broaden the applications of Mo-based MXenes in various industries.
Collapse
Affiliation(s)
- Noushad Hussain
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Ari Chae
- Materials Architecturing Research Centre, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sehyun Doo
- Materials Architecturing Research Centre, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Shabbir Madad Naqvi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Tufail Hassan
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Albert S Lee
- Solution to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Taegon Oh
- Solution to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro2066, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
26
|
Dai Y, Zhao X, Zheng D, Zhao Q, Feng J, Feng Y, Ge X, Chen X. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal. J Colloid Interface Sci 2024; 660:628-636. [PMID: 38266344 DOI: 10.1016/j.jcis.2024.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Exploring highly active electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has become a growing interest in recent years. Herein, an efficient pathway for designing MXene-based ORR/OER catalysts is proposed. It involves introducing non-noble metals into Vo (vacancy site), H1 and H2 (the hollow sites on top of C and the metal atom, respectively) sites on M2CO2 surfaces, named TM-VO/H1/H2-M2CO2 (TM = Fe, Co, Ni, M = V, Nb, Ta). Among these recombination catalysts, Co-H1-V2CO2 and Ni-H1-V2CO2 exhibit the most promising ORR catalytic activities, with low overpotential values of 0.35 and 0.37 V, respectively. Similarly, Fe-H1-V2CO2, Co-VO-Nb2CO2, and Ni-H2-Nb2CO2 possess low OER overpotential values of 0.29, 0.39, and 0.44 V, respectively, suggesting they have enormous potential as effective catalysts for OER. Notably, Co-H2-Ta2CO2 possesses the lowest potential gap value of 0.53 V, demonstrating it has an extraordinary bifunctional catalytic activity. The excellent catalytic performance of these recombination catalysts can be elucidated through an electronic structure analysis, which primarily relies on the electron-donating capacity and synergistic effects between transition metals and sub-metals. These results provide theoretical guidance for designing new ORR and OER catalysts using 2D MXene materials.
Collapse
Affiliation(s)
- Yu Dai
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Qingrui Zhao
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jing Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
27
|
Li Q, Wang J, Huang H, Zhao G, Wang LL, Zhu X. Strain-induced excellent photocatalytic performance in Z-scheme BlueP/γ-SnS heterostructures for water splitting. Phys Chem Chem Phys 2024; 26:10289-10300. [PMID: 38497927 DOI: 10.1039/d3cp06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.41 eV and strong visible-light absorption up to 105 cm-1. Interestingly, biaxial strains (ε) can effectively regulate its bandgap width (semiconductor-metal) and induce the band alignment transition (type-I-type-II). Compressive and tensile strains can significantly enhance the interfacial interaction and visible-light absorption, respectively. More intriguingly, compressive strains can not only modulate the heterojunction types but also make the band edges meet the requirements for overall water splitting. In particular, the Z-scheme (type-I) BlueP/γ-SnS bilayer at -8% (-2%) strain exhibits a relatively high STH efficiency of 18% (17%), and the strained Z-scheme system (-8% ≤ ε ≤ -6%) also exhibits high and anisotropic carrier mobilities (158-2327 cm2 V-1 s-1). These strain-induced outstanding properties make BlueP/γ-SnS heterostructures promising candidates for constructing economically feasible photocatalysts and flexible nanodevices.
Collapse
Affiliation(s)
- Quan Li
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Jiabao Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Hao Huang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Guangting Zhao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Ling-Ling Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaojun Zhu
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
28
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Liang W, Yan W, Wang X, Yan X, Hu Q, Zhang W, Meng H, Yin L, He Q, Ma C. A single atom cobalt anchored MXene bifunctional platform for rapid, label-free and high-throughput biomarker analysis and tissue imaging. Biosens Bioelectron 2024; 246:115903. [PMID: 38048718 DOI: 10.1016/j.bios.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Few of single-atom materials have been served as platform to analyze small molecules for surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, a novel single Co atom-anchored MXene (Co-N-Ti3C2) is prepared to achieve enhanced SALDI-MS and mass spectrometry imaging (MSI) performance for the first time. The Co-N-Ti3C2 films were prepared by a simple in situ self-assembly strategy to generate an efficient SALDI-MS platform. Compared to typical inorganic/organic matrices, Co-N-Ti3C2 films exhibit superior performance in small molecules detection with ultra-high sensitivity (LOD at amol level), excellent repeatability (CV <4%), clean background and wide analyte coverage, enabling accurate quantitative analysis of various low-concentration metabolites from 1 μL biofluid in seconds. Its usage efficiently enhanced SALDI-MS detection of various small-molecule biomarkers such as amino acids, succinic acid, itaconic acid, arachidonic acid, citrulline, prostaglandin E2, creatinine, uric acid, glutamine, D-mannose, cholesterol and inositol in positive ion mode. The blood glucose level in humans was successfully determined from a linearity concentration range (0.25-10 mM). Notably, the Co-N-Ti3C2 assisted SALDI-MSI enables study the spatial distribution of small molecules covering the range central to metabolomics at a high resolution on a tissue section. Furthermore, Co-N-Ti3C2 platform revealed a specific peak profile that distinguishes osteoarthritis (OA) from rheumatoid arthritis (RA) tissue. Density functional theory theoretical investigation revealed that single Co atoms anchored on Ti3C2 could highly enhanced the ionization ability of metabolites, resulting in high-sensitivity and heterogeneous metabolome coverage.
Collapse
Affiliation(s)
- Weiqiang Liang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China; Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Weining Yan
- Department of Orthopedics, Trauma, and Reconstructive Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Xinfeng Yan
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Wenqiang Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Hongzheng Meng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Luxu Yin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qing He
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China.
| |
Collapse
|
30
|
Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, Khan A, Shaheen I, Sajjad U, Mohana Rani G, Javed MS, Khan K, Hanif MB, Assiri MA, Sahoo S, Al Zoubi W, Mohapatra D, Zhang K. Mo-based MXenes: Synthesis, properties, and applications. Adv Colloid Interface Sci 2024; 324:103077. [PMID: 38219341 DOI: 10.1016/j.cis.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| | - Umay Amara
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Irfan Ali Soomro
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Amjad Khan
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, South Korea
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei 10607, Taiwan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong.
| |
Collapse
|
31
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
32
|
Zhang W, Lou H, Yang G. 2D Metal-Free BSi 5 with an Intrinsic Metallicity and Remarkable HER Activity. J Phys Chem Lett 2023:11036-11042. [PMID: 38047885 DOI: 10.1021/acs.jpclett.3c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
One of the most urgent and attractive topics in electrocatalytic water splitting is the exploration of high-performance and low-cost catalysts. Herein, we have proposed three fresh two-dimensional nanostructures (BSi5, BSi4, and BSi3) with inherent metallicity contributed by delocalized π electrons based on first-principles calculations. Their planar atoms arrangement, akin to graphene, is in favor of the availability of active atoms and H adsorption/deadsorption. Among them, the BSi5 monolayer shows the best HER activity, even superior to a commercial Pt catalyst. Moreover, its extraordinary HER activity can be maintained under high H coverage and large biaxial strain, mainly originating from the fact that B 2pz orbital electrons are responsible for the B-H interaction. Further analysis reveals that there appears to be a linear correlation between the magnitude of B 2pz DOS at the Fermi level and Gibbs free energy in both three proposed nanostructures and five hypothetical B-Si nanostructures. Our work represents a significant step forward toward the design of metal-free HER catalysts.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Huan Lou
- Department of Applied Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
33
|
Lan P, Miao N, Gan Y, Peng L, Han S, Zhou J, Sun Z. High-Throughput Computational Design of 2D Ternary Chalcogenides for Sustainable Energy. J Phys Chem Lett 2023; 14:10489-10498. [PMID: 37967465 DOI: 10.1021/acs.jpclett.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Two-dimensional materials are considered to be promising for next-generation electronic and energy devices. However, the limited availability of 2D materials hinders their applications. Herein, we employed high-throughput computation to discover new 2D materials by cleaving the bulk and to investigate their electronic, thermoelectric, and optoelectronic properties. Using our database containing 810 structures of chalcogenides ABX3 (A or B = Al, Ga, In, Si, Ge, Sn, P, As, Sb, and Bi; X = S, Se, and Te), we identified 204 new 2D compounds promising for experimental preparation according to the exfoliation energy. Notably, 96 of them are more easily exfoliated than graphene, 52 compounds show higher Seebeck coefficients than Bi2Te3 at 300 K, and 20 compounds have power factors beyond 2 × 10-3 Wm-1 K-2 at 900 K. Also, 6 new compounds exhibit high theoretical photovoltaic efficiency exceeding 30%. Our findings expand the 2D materials family and provide new 2D compounds for sustainable thermoelectric and optoelectronic energy applications.
Collapse
Affiliation(s)
- Penghua Lan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yu Gan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Liyu Peng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Siyu Han
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
34
|
Sun H, Li C, Yang L, Han Y, Yu X, Li CP, Zhang Z, Yan Z, Cheng F, Du M. Directional electronic tuning of Ni nanoparticles by interfacial oxygen bridging of support for catalyzing alkaline hydrogen oxidation. Proc Natl Acad Sci U S A 2023; 120:e2308035120. [PMID: 37883417 PMCID: PMC10636332 DOI: 10.1073/pnas.2308035120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.
Collapse
Affiliation(s)
- Hongming Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cha Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Le Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Yixuan Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Xueying Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| |
Collapse
|
35
|
Abbott DF, Xu YZ, Kuznetsov DA, Kumar P, Müller CR, Fedorov A, Mougel V. Understanding the Synergy between Fe and Mo Sites in the Nitrate Reduction Reaction on a Bio-Inspired Bimetallic MXene Electrocatalyst. Angew Chem Int Ed Engl 2023:e202313746. [PMID: 37907396 DOI: 10.1002/anie.202313746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Mo- and Fe-containing enzymes catalyze the reduction of nitrate and nitrite ions in nature. Inspired by this activity, we study here the nitrate reduction reaction (NO3 RR) catalyzed by an Fe-substituted two-dimensional molybdenum carbide of the MXene family, viz., Mo2 CTx : Fe (Tx are oxo, hydroxy and fluoro surface termination groups). Mo2 CTx : Fe contains isolated Fe sites in Mo positions of the host MXene (Mo2 CTx ) and features a Faradaic efficiency (FE) and an NH3 yield rate of 41 % and 3.2 μmol h-1 mg-1 , respectively, for the reduction of NO3 - to NH4 + in acidic media and 70 % and 12.9 μmol h-1 mg-1 in neutral media. Regardless of the media, Mo2 CTx : Fe outperforms monometallic Mo2 CTx owing to a more facile reductive defunctionalization of Tx groups, as evidenced by in situ X-ray absorption spectroscopy (Mo K-edge). After surface reduction, a Tx vacancy site binds a nitrate ion that subsequently fills the vacancy site with O* via oxygen transfer. Density function theory calculations provide further evidence that Fe sites promote the formation of surface O vacancies, which are identified as active sites and that function in NO3 RR in close analogy to the prevailing mechanism of the natural Mo-based nitrate reductase enzymes.
Collapse
Affiliation(s)
- Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Yuan-Zi Xu
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales Sydney, Sydney, Australia
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
36
|
Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6816. [PMID: 37895797 PMCID: PMC10608629 DOI: 10.3390/ma16206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
With their rich surface chemistry, high electrical conductivity, variable bandgap, and thermal stability, 2D materials have been developed for effective electrochemical energy conversion systems over the past decade. Due to the diversity brought about by the use of transition metals and C/N pairings, the 2D material MXene has found excellent applications in many fields. Among the various applications, many breakthroughs have been made in electrocatalytic applications. Nevertheless, related studies on topics such as the factors affecting the material properties and safer and greener preparation methods have not been reported in detail. Therefore, in this paper, we review the relevant preparation methods of MXene and the safer, more environmentally friendly preparation techniques in detail, and summarize the progress of research on MXene-based materials as highly efficient electrocatalysts in the electrocatalytic field of hydrogen precipitation reaction, nitrogen reduction reaction, oxygen precipitation reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. We also discuss the technology related to MXene materials for hydrogen storage. The main challenges and opportunities for MXene-based materials, which constitute a platform for next-generation electrocatalysis in basic research and practical applications, are highlighted. This paper aims to promote the further development of MXenes and related materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingquan Wang
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
37
|
Meng X, Wang L, Wang X, Zhen M, Hu Z, Guo SQ, Shen B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. CHEMOSPHERE 2023; 338:139550. [PMID: 37467848 DOI: 10.1016/j.chemosphere.2023.139550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Energy crises and environmental degradation are serious in recent years. Inexhaustible solar energy can be used for photocatalytic hydrogen production or CO2 reduction to reduce CO2 emissions. At present, the development of efficient photocatalysts is imminent. MXene as new two-dimensional (2D) layered material, has been used in various fields in recent years. Based on its high conductivity, adjustable band gap structure and sizable specific surface area, the MXene is beneficial to hasten the separation and reduce the combination of photoelectron-hole pairs in photocatalysis. Nevertheless, the re-stacking of layers because of the strong van der Waals force and hydrogen bonding interactions seriously hinder the development of MXene material as photocatalysts. By contrast, the MXene-based heterostructures composed of MXene nanosheets and other materials not only effectively suppress the re-stacking of layers, but also show the superior synergistic effects in photocatalysis. Herein, the recent progress of the MXene-based heterostructures as photocatalysts in energy and environment fields is summarized in this review. Particularly, new synthetic strategies, morphologies, structures, and mechanisms of MXene-based heterostructures are highlighted in hydrogen production, CO2 reduction, and pollutant degradation. In addition, the structure-activity relationship between the synthesis strategy, components, morphology and structure of MXene-based heterostructures, and their photocatalytic properties are elaborated in detail. Finally, a summary and the perspectives on improving the application study of the heterostructures in photocatalysis are presented.
Collapse
Affiliation(s)
- Xinyan Meng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lufei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyu Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
38
|
Ram S, Choi GH, Lee AS, Lee SC, Bhattacharjee S. Combining First-Principles Modeling and Symbolic Regression for Designing Efficient Single-Atom Catalysts in the Oxygen Evolution Reaction on Mo 2CO 2 MXenes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43702-43711. [PMID: 37676924 DOI: 10.1021/acsami.3c08020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this study, we address the significant challenge of overcoming limitations in the catalytic efficiency for the oxygen evolution reaction (OER). The current linear scaling relationships hinder the optimization of the electrocatalytic performance. To tackle this issue, we investigate the potential of designing single-atom catalysts (SACs) on Mo2CO2 MXenes for electrochemical OER using first-principles modeling simulations. By employing the Electrochemical Step Symmetry Index (ESSI) method, we assess OER intermediates to fine-tune the activity and identify the optimal SAC for Mo2CO2 MXenes. Our findings reveal that both Ag and Cu exhibit effectiveness as single atoms for enhancing OER activity on Mo2CO2 MXenes. However, among the 21 chosen transition metals (TMs) in this study, Cu stands out as the best catalyst for tweaking the overpotential (ηOER). This is due to Cu's lowest overpotential compared to other TMs, which makes it more favorable for the OER performance. On the other hand, Ag is closely aligned with ESSI = ηOER, making the tuning of its overpotential more challenging. Furthermore, we employ symbolic regression analysis to identify the significant factors that exhibit a correlation with the OER overpotential. By utilizing this approach, we derive mathematical formulas for the overpotential and identify key descriptors that affect the catalytic efficiency in the electrochemical OER on Mo2CO2 MXenes. This comprehensive investigation not only sheds light on the potential of MXenes in advanced electrocatalytic processes but also highlights the prospect of improved activity and selectivity in OER applications.
Collapse
Affiliation(s)
- Swetarekha Ram
- Indo-Korea Science and Technology Center (IKST), Bangalore 560064, India
| | - Gwan Hyun Choi
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Albert S Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, Hwarang-ro 14-gil5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Bangalore 560064, India
| | | |
Collapse
|
39
|
Das P, Dong Y, Wu X, Zhu Y, Wu ZS. Perspective on high entropy MXenes for energy storage and catalysis. Sci Bull (Beijing) 2023; 68:1735-1739. [PMID: 37482447 DOI: 10.1016/j.scib.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Affiliation(s)
- Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfeng Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
40
|
Fernández-Climent R, Redondo J, García-Tecedor M, Spadaro MC, Li J, Chartrand D, Schiller F, Pazos J, Hurtado MF, de la Peña O’Shea V, Kornienko N, Arbiol J, Barja S, Mesa CA, Giménez S. Highly Durable Nanoporous Cu 2-xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions. ACS Catal 2023; 13:10457-10467. [PMID: 37564127 PMCID: PMC10411506 DOI: 10.1021/acscatal.3c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Copper-based hydrogen evolution electrocatalysts are promising materials to scale-up hydrogen production due to their reported high current densities; however, electrode durability remains a challenge. Here, we report a facile, cost-effective, and scalable synthetic route to produce Cu2-xS electrocatalysts, exhibiting hydrogen evolution rates that increase for ∼1 month of operation. Our Cu2-xS electrodes reach a state-of-the-art performance of ∼400 mA cm-2 at -1 V vs RHE under mild conditions (pH 8.6), with almost 100% Faradaic efficiency for hydrogen evolution. The rise in current density was found to scale with the electrode electrochemically active surface area. The increased performance of our Cu2-xS electrodes correlates with a decrease in the Tafel slope, while analyses by X-ray photoemission spectroscopy, operando X-ray diffraction, and in situ spectroelectrochemistry cooperatively revealed the Cu-centered nature of the catalytically active species. These results allowed us to increase fundamental understanding of heterogeneous electrocatalyst transformation and consequent structure-activity relationship. This facile synthesis of highly durable and efficient Cu2-xS electrocatalysts enables the development of competitive electrodes for hydrogen evolution under mild pH conditions.
Collapse
Affiliation(s)
- Roser Fernández-Climent
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
| | - Jesús Redondo
- Department
of Polymers and Advanced Materials, Centro de Física de Materiales, University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| | - Miguel García-Tecedor
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
- Photoactivated
Processes Unit, IMDEA Energy Institute,
Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Maria Chiara Spadaro
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2) and BIST Campus
UAB, Bellaterra 08193, Barcelona, Catalonia, Spain
| | - Junnan Li
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Daniel Chartrand
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Frederik Schiller
- Centro
de Física de Materiales and Material Physics Center CSIC/UPV-EHU, Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Jhon Pazos
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
| | - Mikel F. Hurtado
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
- Materials
Chemistry Area, Civil Engineering Department, Corporación Universitaria
Minuto de Dios, Calle 80, Main Sede Bogotá, Colombia. −
Nanotechnology Applications Area, Environmental Engineering Department, Universidad Militar Nueva Granada, Km 2 via Cajicá, Zipaquirá 110311, Colombia
| | - Victor de la Peña O’Shea
- Photoactivated
Processes Unit, IMDEA Energy Institute,
Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Nikolay Kornienko
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2) and BIST Campus
UAB, Bellaterra 08193, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Sara Barja
- Department
of Polymers and Advanced Materials, Centro de Física de Materiales, University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Camilo A. Mesa
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
| | - Sixto Giménez
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
| |
Collapse
|
41
|
Guo Y, Du Z, Cao Z, Li B, Yang S. MXene Derivatives for Energy Storage and Conversions. SMALL METHODS 2023; 7:e2201559. [PMID: 36811328 DOI: 10.1002/smtd.202201559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Associated with the rapid development of 2D transition metal carbides, nitrides, and carbonitrides (MXenes), MXene derivatives have been recently exploited and exhibited unique physical/chemical properties, holding promising applications in the areas of energy storage and conversions. This review provides a comprehensive summarization of the latest research and progress on MXene derivatives, including termination-tailored MXenes, single-atom implanted MXenes, intercalated MXenes, van der Waals atomic layers, and non-van der Waals heterostructures. The intrinsic relationship between structure, properties, and corresponding applications for MXene derivatives are then emphasized. Finally, the essential challenges are addressed and perspectives for the MXene derivatives are also discussed.
Collapse
Affiliation(s)
- Yu Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiguo Du
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhenjiang Cao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bin Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
42
|
Akir S, Azadmanjiri J, Antonatos N, Děkanovský L, Roy PK, Mazánek V, Lontio Fomekong R, Regner J, Sofer Z. Atomic-layered V 2C MXene containing bismuth elements: 2D/0D and 2D/2D nanoarchitectonics for hydrogen evolution and nitrogen reduction reaction. NANOSCALE 2023. [PMID: 37464871 DOI: 10.1039/d3nr01144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 μg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.
Collapse
Affiliation(s)
- Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roussin Lontio Fomekong
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
43
|
Li P, Wang Y, Du X, Zhang X. Controlled synthesis of ACo 2O 4 (A = Fe, Cu, Zn, Ni) as an environmentally friendly electrocatalyst for urea electrolysis. Dalton Trans 2023. [PMID: 37448260 DOI: 10.1039/d3dt01845h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Water electrolysis is relatively an environmentally friendly hydrogen production technology, but due to the slow transfer of four electrons in the anodic oxidation reaction, it needs a theoretical voltage of up to 1.23 V. Therefore, in this experiment, a series of transition metal oxides, ACo2O4 (A = Fe, Cu, Zn, Ni), was synthesized on Ni foam current collectors by a hydrothermal and calcination method, and the material was applied in urea electrolysis to produce hydrogen. What is noteworthy is that the CuCo2O4 electrode has a unique flower-like nanoneedle structure, and has a larger electrochemical active area, more reactive active sites, and a faster charge transfer rate. In 1.0 M KOH and 0.5 M urea solution, CuCo2O4 provides a potential of only 1.268 V at a current density of 10 mA cm-2 during the urea oxidation reaction (UOR), while in 1.0 M KOH solution, with the same current density, the oxygen evolution reaction (OER) is required to provide a potential of 1.53 V, indicating that the UOR can effectively replace the OER. Density functional theory calculations show that the CuCo2O4 material exhibits Gibbs free energy of the hydrogen closest to zero, thus promoting the electrochemistry performance of the electrode. In a cell composed of CuCo2O4//CuCo2O4, the current density of 10 mA cm-2 can be achieved by providing a potential of only 1.509 V. This work offers a novel scheme for reducing energy consumption of the OER and improving catalytic performance of the UOR.
Collapse
Affiliation(s)
- Ping Li
- School of Chemistry and Chemical Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Yanhong Wang
- School of Chemistry and Chemical Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemistry and Chemical Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China
| |
Collapse
|
44
|
Wang M, Mao J, Pang Y, Zhang X, Wang H, Yang Z, Lu Z, Yang S. Theoretical identification of the superior anchoring effect and electrochemical performance of Ti 2CS 2 by single atom Zn doping for lithium-sulfur batteries. Phys Chem Chem Phys 2023. [PMID: 37449881 DOI: 10.1039/d3cp01161e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As one of the promising next-generation energy storage systems, lithium-sulfur (Li-S) batteries have been the subject of much recent attention. However, the polysulfide shuttle effect remains problematic owing to the dissolution of intermediate polysulfide species in the electrolyte and the sluggish reaction dynamics in Li-S batteries. To overcome these issues, this work reports an effective strategy for enhancing the electrochemical performance of Li-S batteries using single atom Zn doping on the S-terminated Ti2C MXenes (Ti2-xZnxCS2). Spin-polarized density functional theory (DFT) calculations were performed to elucidate the interactions of lithium polysulfides (LiPSs) and the Ti2-xZnxCS2 surface in terms of geometric and electronic properties, as well as the delithiation process of Li2S on the Ti2-xZnxCS2 surface. It is found that doping single atom Zn could induce a new Lewis acid-based sites, which could provide proper affinity toward LiPSs. Combined with the metallic character, a low Li diffusion barrier and high catalytic activity for the delithiation process of Li2S, makes Ti2-xZnxCS2 a promising cathode material for Li-S batteries. The results demonstrate the importance of surface chemistry and the electronic structure of MXenes in LiPSs' adsorption and catalysis capability. We believe that our findings provide insights into the recent experimental results and guidance for the preparation and practical application of MXenes in Li-S batteries.
Collapse
Affiliation(s)
- Mingyang Wang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
- Henan Battery Research Institute, Xinxiang, Henan, 453007, People's Republic of China.
| | - Jianjun Mao
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, People's Republic of China
| | - Yudong Pang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Xilin Zhang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Haiyan Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry and Chemistry Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zongxian Yang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Zhansheng Lu
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Shuting Yang
- Henan Battery Research Institute, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
45
|
Zhang Y, Yan J, Huang W. Using free-energy weakening strategy to control the d-band center over the Cu and Co based electrocatalyst for boosting hydrogen production. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
46
|
Wu R, Xu J, Zhao CL, Su XZ, Zhang XL, Zheng YR, Yang FY, Zheng XS, Zhu JF, Luo J, Li WX, Gao MR, Yu SH. Dopant triggered atomic configuration activates water splitting to hydrogen. Nat Commun 2023; 14:2306. [PMID: 37085504 PMCID: PMC10121564 DOI: 10.1038/s41467-023-37641-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe2-DETA (DETA = diethylenetriamine) nanobelts. By systematically analyzing these products, we demonstrate a volcano-shape correlation between HER activity and Co atomic configuration (ratio of Co-N bonds to Co-Se bonds). Specifically, Pb-CoSe2-DETA catalyst reaches current density of 10 mA cm-2 at 74 mV in acidic electrolyte (0.5 M H2SO4, pH ~0.35). This striking catalytic performance can be attributed to its optimized Co atomic configuration induced by single-atom doping.
Collapse
Affiliation(s)
- Rui Wu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Jie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, P. R. China
| | - Chuan-Lin Zhao
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xiao-Zhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, P. R. China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Ya-Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Feng-Yi Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, P. R. China
| | - Jun-Fa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, P. R. China
| | - Jun Luo
- School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China.
| |
Collapse
|
47
|
Song X, Zhang Q, Xu H, Yu C, Qiu J. Modulating the electronic structure of MoS3 catalyst via heteroatom doping for Electrocatalytic nitrogen reduction reaction: A theoretical study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
48
|
Wan XQ, Yang CL, Wang MS, Ma XG. Efficient photocatalytic hydrogen evolution and CO 2 reduction by HfSe 2/GaAs 3 and ZrSe 2/GaAs 3 heterostructures with direct Z-schemes. Phys Chem Chem Phys 2023; 25:8861-8870. [PMID: 36916407 DOI: 10.1039/d2cp05902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The elaborate configuration of the heterostructure is crucial and challenging to achieve high solar-to-hydrogen efficiency or CO2 reduction efficiency . Here, we predict two heterostructures composed of HfSe2, ZrSe2, and GaAs3 monolayers. The maximum of 42.71%/35.12% with the heterostructures can be reached with the perfect match between the bandgap and band edges. The configurations of the heterostructures are discovered from 12 possible stacking types of the three monolayers. The formation energy, potentials of band edges, carrier mobilities, and optical absorption were used to identify the feasibility of the CO2 reduction reaction (CO2RR), the hydrogen evolution reaction (HER), and the oxygen evolution reaction (OER). The and based on overpotentials and bandgaps and the Gibbs free energies (ΔGs) are evaluated to quantificationally access the photocatalytic performance of the constructed heterostructures. The results demonstrate that high can be obtained for the solar photocatalytic Z-schemes with the HfSe2/GaAs3 and ZrSe2/GaAs3 heterostructures, and these values can be further enhanced through strain engineering. Moreover, small changes in ΔGs were observed for HER, OER, and CO2RR. Therefore, the two heterostructures have excellent performance in photocatalytic hydrogen evolution and CO2 reduction. The results of the electronic properties revealed that the delicate matching of the projected band edges of the monolayers in the heterostructures is responsible for the high photocatalytic performance.
Collapse
Affiliation(s)
- Xue-Qing Wan
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Chuan-Lu Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Mei-Shan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Xiao-Guang Ma
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| |
Collapse
|
49
|
Liu Q, Cheng H, Wang X, Qian P. Exploring efficient hydrogen evolution electrocatalysts of nonmetal atom doped Mo 2CO 2 MXenes by first-principles screening. Phys Chem Chem Phys 2023; 25:5056-5065. [PMID: 36723035 DOI: 10.1039/d2cp05239c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-metal doping engineering has shown great potential for designing high-performance MXene-based catalysts for electrocatalytic hydrogen evolution. We rationally design 14 kinds of nonmetal atom-doped Mo2CO2 catalysts and investigate the effects of nonmetal doping on the thermal stability and hydrogen evolution reaction (HER) catalytic activity of these structures through first-principles calculations. The results show that the addition of nonmetal dopants, such as Si, Cl, Br and I, on the Mo2CO2 surface can effectively improve the HER activity, making them promising candidates for effective HER catalysts. Besides, we studied the thermal stability of nonmetal doped Mo2CO2 by calculating the binding energy and explored the reason behind the variation in the binding energy. Furthermore, the origin of the HER activity difference regulated by various nonmetal dopants is explained based on the analysis of their electronic properties. We found that the number of valence electrons and Bader charge coupling of doped nonmetal atoms are effective electronic descriptors of the hydrogen adsorption strength and HER activity, which provide a clue for future prediction of highly efficient MXene-based HER catalysts.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Haixia Cheng
- Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing 100081, China.
| | - Xiaoxu Wang
- DP Technology, Beijing 100080, China. .,AI for Science Institute, Beijing 100080, China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
50
|
Yang H, Cheng W, Lu X, Chen Z, Liu C, Tian L, Li Z. Coupling Transition Metal Compound with Single-Atom Site for Water Splitting Electrocatalysis. CHEM REC 2023; 23:e202200237. [PMID: 36538728 DOI: 10.1002/tcr.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Chao Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|