1
|
Hu Y, Gu Y, Dong Y, Wang Y, Xu J, Han Y, Zhang C, Xie Y. Selective and Efficient Upcycling of Polyesters from Waste Plastic Blends Enabled by a Rationally Designed Manganese Pincer Catalyst. Angew Chem Int Ed Engl 2025; 64:e202502923. [PMID: 39953637 DOI: 10.1002/anie.202502923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Herein, we report a new class of earth-abundant pincer manganese catalysts that not only enable the efficient conversion of single-component post-consumer polyesters with a turnover number (TON) of up to 5300, but more importantly, allow the selective upcycling of polyesters from waste plastic blends (e.g., nylon, PA; polyethylene, PE; polyurethane, PU; polyvinyl chloride, PVC; cotton) or contaminants such as pigment, aluminum, or glass into highly valuable oxygenated products under mild conditions. Detailed mechanistic studies combined with DFT calculations revealed that the exceptional efficiency of this protocol is due to the use of rationally designed quinaldine-based PNNH-type Mn complexes with an extended π-system and an N-H moiety on the side arm to simultaneously enhance the stability and reactivity of the catalyst. In addition, the incorporation of dual metal-ligand cooperation (MLC) relay catalysis more effectively facilitates the key steps of this transformation, including H2 activation and hydrogen bond-assisted hydride transfer.
Collapse
Affiliation(s)
- Yue Hu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yanwei Gu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yongjing Dong
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yiqing Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Juanfang Xu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yingying Han
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chijian Zhang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou, 510623, P.R. China
| | - Yinjun Xie
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyers Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
2
|
Halder M, Castillo Cardenas D, Chartouni AM, Culver DB. Catalysis activity and chemoselectivity control with the trans ligand in Ru-H pincer complexes. Dalton Trans 2025; 54:2851-2859. [PMID: 39791226 DOI: 10.1039/d4dt03491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
(PhPNHP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand cis to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand trans to the hydride is often another hydride and studies that utilize other trans ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNHP)Ru(H)(CO)(L)][BPh4] complexes bearing isonitrile, PMe3, or a N-heterocyclic ligand trans to the Ru-H. We compared the new complexes abilities to catalyze the transfer hydrogenation of ketones. We found that all the trans ligands improved the chemoselectivity and stability of the catalysts; and strong π-accepting ligands resulted in poor catalytic activities whereas strong σ-donating ligands accelerated the catalysis.
Collapse
Affiliation(s)
- Mita Halder
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
| | - Diana Castillo Cardenas
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
| | - Angela M Chartouni
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
| | - Damien B Culver
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Cai S, Tang H, Li B, Shao Y, Zhang D, Zheng H, Qiao T, Chu X, He G, Xue XS, Chen G. Formaldehyde-Mediated Hydride Liberation of Alkylamines for Intermolecular Reactions in Hexafluoroisopropanol. J Am Chem Soc 2024; 146:5952-5963. [PMID: 38408428 DOI: 10.1021/jacs.3c12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The ability of alkylamines to spontaneously liberate hydride ions is typically restrained, except under specific intramolecular reaction settings. Herein, we demonstrate that this reactivity can be unlocked through simple treatment with formaldehyde in hexafluoroisopropanol (HFIP) solvent, thereby enabling various intermolecular hydride transfer reactions of alkylamines under mild conditions. Besides transformations of small molecules, these reactions enable unique late-stage modification of complex peptides. Mechanistic investigations uncover that the key to these intermolecular hydride transfer processes lies in the accommodating conformation of solvent-mediated macrocyclic transition states, where the aggregates of HFIP molecules act as dexterous proton shuttles. Importantly, negative hyperconjugation between the lone electron pair of nitrogen and the antibonding orbital of amine's α C-H bond plays a critical role in the C-H activation, promoting its hydride liberation.
Collapse
Affiliation(s)
- Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yingbo Shao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Danqi Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanliang Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Luk J, Oates CL, Fuentes Garcia JA, Clarke ML, Kumar A. Manganese-Catalyzed Hydrogenation of Amides and Polyurethanes: Is Catalyst Inhibition an Additional Barrier to the Efficient Hydrogenation of Amides and Their Derivatives? Organometallics 2024; 43:85-93. [PMID: 38274653 PMCID: PMC10806803 DOI: 10.1021/acs.organomet.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hydrogenation of amides and other less electrophilic carbonyl derivatives with an N-C=O functionality requires significant improvements in scope and catalytic activity to be a genuinely useful reaction in industry. Here, we report the results of a study that examined whether such reactions are further disadvantaged by nitrogen-containing compounds such as aliphatic amines acting as inhibitors on the catalysts. In this case, an enantiomerically pure manganese catalyst previously established to be efficient in the hydrogenation of ketones, N-aryl-imines, and esters was used as a prototype of a manganese catalyst. This was accomplished by doping a model ester hydrogenation with various nitrogen-containing compounds and monitoring progress. Following from this, a protocol for the catalytic hydrogenation of amides and polyurethanes is described, including the catalytic hydrogenation of an axially chiral amide that resulted in low levels of kinetic resolution. The hypothesis of nitrogen-containing compounds acting as an inhibitor in the catalytic hydrogenation process has also been rationalized by using spectroscopy (high-pressure infrared (IR), nuclear magnetic resonance (NMR)) and mass spectrometry studies.
Collapse
Affiliation(s)
- James Luk
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Conor L. Oates
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - José A. Fuentes Garcia
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Matthew L. Clarke
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| |
Collapse
|
5
|
Culver DB, Boncella JM. Double Intramolecular 1,2 C-H Addition of o-Methyl Groups To Form Ruthenium Pincer Double Tuck-In Complexes. Inorg Chem 2023; 62:19383-19388. [PMID: 37971401 DOI: 10.1021/acs.inorgchem.3c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Ruthenium pincer complexes have a rich history of coordination and reaction chemistries. In this work, we report our discoveries of previously unreported Ru pincer coordination geometries. We found that mono tuck-in κ4-ArPNHPRuLCl complexes react with NaN(SiMe3)2 producing double tuck-in mer-κ5-ArPNHPRuL complexes. Interestingly, when κ4-MesPNHPRuCl is dehydrohalogenated, the resulting double tuck-in complex binds N2, forming the nitrogen complex κ5-MesPNHPRuN2. The mer-κ5-ArPNHPRuL complexes thermally isomerize to the fac-κ5-ArPNHPRuL isomers, which is an uncommon reaction for pincer complexes. The mer-κ5-ArPNHPRuL complexes react with CO and CO2 to form amide κ4-ArPNHPRu(CO)L or carbamate κ5-ArPN(CO2)PRuL complexes, respectively, supporting the hypothesis that the κ4-ArPNPRuL amide intermediates are accessible and reactive.
Collapse
Affiliation(s)
- Damien B Culver
- Washington State University, Pullman, Washington 99164, United States
| | - James M Boncella
- Washington State University, Pullman, Washington 99164, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Hu Y, Zhang S, Xu J, Liu Y, Yu A, Qian J, Xie Y. Highly Efficient Depolymerization of Waste Polyesters Enabled by Transesterification/Hydrogenation Relay Under Mild Conditions. Angew Chem Int Ed Engl 2023; 62:e202312564. [PMID: 37735146 DOI: 10.1002/anie.202312564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The efficient depolymerization of polyesters under mild conditions remains a significant challenge. Herein, we demonstrate a highly efficient strategy for the degradation of a diverse array of waste polyesters as low to 80 °C, 1 bar H2 . The key to the success of this transformation relied on the initial transesterification of macromolecular polyester into more degradable oligomeric fragments in the presence of CH3 OH and the subsequent hydrogenation by the use of the rationally designed quinaldine-based Ru complex. Controlled experiments and preliminary mechanistic studies disclosed the quinaldine-based catalysts could be hydrogenated to the eventually active species, which has been confirmed by X-ray diffraction analysis and directly used as a catalyst in the hydrogenolysis of polyester. The strong viability and high activity of this new species in protic solvent were explained in detail. Besides, the crucial role of CH3 OH in promoting reaction efficiency during the whole process was also elucidated. The synthetic utility of this method was further illustrated by preparing 1,4-cyclohexanedimethanol (CHDM) from waste polyethylene terephthalate (PET).
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shiyun Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Juanfang Xu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Aiai Yu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jun Qian
- Yuyao DAFA Chemical FIBER Co., Ltd., Ningbo, 315211, P. R. China
| | - Yinjun Xie
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
7
|
Head M, Joseph BT, Keith JM, Chianese AR. The Mechanism of Markovnikov-Selective Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2023; 42:347-356. [PMID: 36937786 PMCID: PMC10015984 DOI: 10.1021/acs.organomet.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/02/2023]
Abstract
The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.
Collapse
Affiliation(s)
- Marianna
C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
8
|
Velasquez Morales S, Allgeier AM. Kinetics and Pathway Analysis Reveals the Mechanism of a Homogeneous PNP-Iron-Catalyzed Nitrile Hydrogenation. Inorg Chem 2023; 62:114-122. [PMID: 36542607 DOI: 10.1021/acs.inorgchem.2c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nitrile hydrogenation via the in situ-generated PNP-FeII(H)2CO (1) catalyst leads to a previously inexplicable loss of mass balance. Reaction kinetics, reaction progress analysis, in situ pressure nuclear magnetic resonance, and X-ray diffraction analyses reveal a mechanism comprising reversible imine self-condensation and amine-imine condensation cascades that yield >95% primary amine. Imine self-condensation has never been reported in a nitrile hydrogenation mechanism. The reaction is first order in catalyst and hydrogen and zero order in benzonitrile when using 2-propanol as the solvent. Variable-temperature analysis revealed values for ΔG298 K⧧ (79.6 ± 26.8 kJ mol-1), ΔH⧧ (90.7 ± 9.7 kJ mol-1), and ΔS⧧ (37 ± 28 J mol-1 K-1), consistent with a solvent-mediated proton-shuttled dissociative transition state. This work provides a basis for future catalyst optimization and essential data for the design of continuous reactors with earth-abundant catalysts.
Collapse
Affiliation(s)
- Simon Velasquez Morales
- Department of Chemical & Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas66045, United States.,Center for Environmentally Beneficial Catalysis (CEBC), University of Kansas, 1501 Wakarusa Drive, LSRL Building A, Suite 110, Lawrence, Kansas66047, United States.,Institute for Sustainable Engineering (ISE), University of Kansas, 1536 West 15th Street, Lawrence, Kansas66045, United States
| | - Alan M Allgeier
- Department of Chemical & Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas66045, United States.,Center for Environmentally Beneficial Catalysis (CEBC), University of Kansas, 1501 Wakarusa Drive, LSRL Building A, Suite 110, Lawrence, Kansas66047, United States.,Institute for Sustainable Engineering (ISE), University of Kansas, 1536 West 15th Street, Lawrence, Kansas66045, United States
| |
Collapse
|
9
|
Kuß DA, Hölscher M, Leitner W. Combined Computational and Experimental Investigation on the Mechanism of CO 2 Hydrogenation to Methanol with Mn-PNP-Pincer Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- David A. Kuß
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
10
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
11
|
Zeitler HE, Phearman AS, Gau MR, Carroll PJ, Cundari TR, Goldberg KI. Metal-Ligand-Anion Cooperation in C-H Bond Formation at Platinum(II). J Am Chem Soc 2022; 144:14446-14451. [PMID: 35881991 DOI: 10.1021/jacs.2c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermolysis of [H(BPI)Pt(CH3)][OTf] (BPI = 1,3-bis(2-(4-tert-butyl)pyridylimino)isoindole) to release methane and form (BPI)Pt(OTf) is reported. Kinetic, mechanistic, and computational studies point to an unusual anion-assisted pathway that obviates the need for a higher oxidation state intermediate to couple the metal-bound methyl group with the ligand-bound hydrogen. Leveraging this insight, a triflimide derivative of the (BPI)Pt complex was shown to activate benzene, highlighting the role of the counteranion in controlling the activity of these complexes.
Collapse
Affiliation(s)
- Hannah E Zeitler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander S Phearman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas R Cundari
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas 76203, United States
| | - Karen I Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Dey S, Masero F, Brack E, Fontecave M, Mougel V. Electrocatalytic metal hydride generation using CPET mediators. Nature 2022; 607:499-506. [PMID: 35859199 DOI: 10.1038/s41586-022-04874-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Transition metal hydrides (M-H) are ubiquitous intermediates in a wide range of enzymatic processes and catalytic reactions, playing a central role in H+/H2 interconversion1, the reduction of CO2 to formic acid (HCOOH)2 and in hydrogenation reactions. The facile formation of M-H is a critical challenge to address to further improve the energy efficiency of these reactions. Specifically, the easy electrochemical generation of M-H using mild proton sources is key to enable high selectivity versus competitive CO and H2 formation in the CO2 electroreduction to HCOOH, the highest value-added CO2 reduction product3. Here we introduce a strategy for electrocatalytic M-H generation using concerted proton-electron transfer (CPET) mediators. As a proof of principle, the combination of a series of CPET mediators with the CO2 electroreduction catalyst [MnI(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) was investigated, probing the reversal of the product selectivity from CO to HCOOH to evaluate the efficiency of the manganese hydride (Mn-H) generation step. We demonstrate the formation of the Mn-H species by in situ spectroscopic techniques and determine the thermodynamic boundary conditions for this mechanism to occur. A synthetic iron-sulfur cluster is identified as the best CPET mediator for the system, enabling the preparation of a benchmark catalytic system for HCOOH generation.
Collapse
Affiliation(s)
- Subal Dey
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris, France
| | - Fabio Masero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
| | - Enzo Brack
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris, France
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
13
|
Recyclable cooperative catalyst for accelerated hydroaminomethylation of hindered amines in a continuous segmented flow reactor. Nat Commun 2022; 13:2441. [PMID: 35508490 PMCID: PMC9068773 DOI: 10.1038/s41467-022-30175-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Synthesis of hindered amines using the atom-efficient hydroaminomethylation (HAM) route remains a challenge. Here, we report a general and accelerated HAM in segmented flow, achieved via a cooperative effect between rhodium (Rh)/N-Xantphos and a co-catalyst (2-Fluoro-4-methylbenzoic acid) to increase the reactivity by 70 fold when compared to Rh/Xantphos in batch reactors. The cooperation between Rh and the co-catalyst facilitates the cleavage of the H–H bond and drives the equilibrium-limited condensation step forward. Online reaction optimization expands the scope to include alkyl, aryl, and primary amines. In-flow solvent tuning enables selectivity switching from amine to enamine without the need for changing the ligand. Furthermore, leveraging the ionic nature of the catalyst, we present a robust Rh recovery strategy up to 4 recycles without loss of activity. Flow chemistry enables intensified production of hindered amines. Here the authors present a rapid and reusable catalyst to operate in a segmented flow reactor for olefin hydroaminomethylation to selectively produce hindered amines or enamines.
Collapse
|
14
|
Gordon BM, Lease N, Emge TJ, Hasanayn F, Goldman AS. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity. J Am Chem Soc 2022; 144:4133-4146. [DOI: 10.1021/jacs.1c13309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Benjamin M. Gordon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Nicholas Lease
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Jia Z, Li L, Zhang X, Yang K, Li H, Xie Y, Schaefer HF. Acceleration Effect of Bases on Mn Pincer Complex-Catalyzed CO 2 Hydroboration. Inorg Chem 2022; 61:3970-3980. [PMID: 35212516 DOI: 10.1021/acs.inorgchem.1c03614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a comprehensive study of CO2 hydroboration catalyzed by Mn pincer complexes. The traditional metal-ligand cooperation (MLC) mechanism based on the H-Mn-N-Bpin pincer complex is not viable due to the competing abstraction of the Bpin group from the H-Mn-N-Bpin complex by NaOtBu. Instead, we propose an ionic mechanism based on the H-Mn-N-Na species with a low energy span (22.5 kcal/mol) and unveil the acceleration effect of bases. The X groups in the H-Mn-N-X catalyst models are further modulated, and the steric hindrance and H→B donor-acceptor interactions of the X group increase the energy barrier of the hydride transfer. The hydrogen bond and electrostatic interactions of the X group can accelerate the hydride transfer to HCOOBpin and HCHO molecules except for the nonpolar CO2 molecule. Based on these discoveries, we designed a pyridine-based Mn pincer catalyst system, which could achieve CO2 hydroboration in low-temperature and base-free conditions through a metal-ligand cooperation mechanism.
Collapse
Affiliation(s)
- Zixing Jia
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xuewen Zhang
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Kan Yang
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Huidong Li
- Research Center for Advanced Computation, School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Yaoming Xie
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Farrar-Tobar RA, Weber S, Csendes Z, Ammaturo A, Fleissner S, Hoffmann H, Veiros LF, Kirchner K. E-Selective Manganese-Catalyzed Semihydrogenation of Alkynes with H 2 Directly Employed or In Situ-Generated. ACS Catal 2022; 12:2253-2260. [PMID: 35211351 PMCID: PMC8859827 DOI: 10.1021/acscatal.1c06022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as a precatalyst is described. The required hydrogen gas is either directly employed or in situ-generated upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl, and terminal alkynes was readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 60 °C for directly employed hydrogen or at 60-90 °C with in situ-generated hydrogen and catalyst loadings of 0.5-2 mol %. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups, including halides, phenols, nitriles, unprotected amines, and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations, including deuterium-labeling studies and density functional theory (DFT) calculations, were undertaken to provide a reasonable reaction mechanism, showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.
Collapse
Affiliation(s)
- Ronald A. Farrar-Tobar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Zita Csendes
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Antonio Ammaturo
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Sarah Fleissner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Helmuth Hoffmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| |
Collapse
|
17
|
Computational investigation on potential energy surface evolution: The tautomerization from enediyne to enyne-allene. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH 2CH 2P iPr 2) 2 Pincer Ligand in CO 2 Hydrogenation and Formic Acid Dehydrogenation. Inorg Chem 2021; 61:643-656. [PMID: 34955015 DOI: 10.1021/acs.inorgchem.1c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel pincer ligand, iPrPNPhP [PhN(CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kinetic advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.
Collapse
Affiliation(s)
- Julia B Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Clayton Hert
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Feichtner K, Scharf LT, Scherpf T, Mallick B, Boysen N, Gessner VH. Tuning Ruthenium Carbene Complexes for Selective P-H Activation through Metal-Ligand Cooperation. Chemistry 2021; 27:17351-17360. [PMID: 34705314 PMCID: PMC9299219 DOI: 10.1002/chem.202103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/14/2022]
Abstract
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P-H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2 Ph)(PPh2 NR)] (with R = SiMe3 or 4-C6 H4 -NO2 ) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P-H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P-H activation to form stable activation products.
Collapse
Affiliation(s)
- Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Lennart T. Scharf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Bert Mallick
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Nils Boysen
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
20
|
McOnie SL, Özpınar GA, Bourque JL, Müller T, Baines KM. NH bond activation of ammonia and amines by ditetrelenes: key insights into the stereochemistry of nucleophilic addition. Dalton Trans 2021; 50:17734-17750. [PMID: 34812813 DOI: 10.1039/d1dt03739k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The NH bond activation of ammonia, primary and secondary amines by tetramesityldisilene and -digermene was investigated. In each case, a disilyl- or digermylamine was formed as the only product of amine addition. The mechanism of the addition of ammonia to tetramesityldisilene was computed and revealed a three-step reaction pathway: formation of the anti-ammonia-disilene adduct, inversion at the β-silicon, and syn-transfer of the proton to give the syn-product, where each step follows a distinct stereochemical course. Examination of the reaction landscape also revealed several additional insights: (a) that, in the initial step, the formation of the anti-oriented zwitterionic intermediate is kinetically more preferable than formation of the syn-oriented zwitterionic intermediate, (b) that intermolecular transfer of a proton is not energetically feasible in non-polar solvents, and (c) that the bulk of the substituents can have a profound effect on the stereochemical course of the reaction. With this detailed understanding, nucleophilic additions to ditetrelenes can be exploited in the future.
Collapse
Affiliation(s)
- Sarah L McOnie
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Jeremy L Bourque
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Kim M Baines
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
21
|
Luo J, Kar S, Rauch M, Montag M, Ben-David Y, Milstein D. Efficient Base-Free Aqueous Reforming of Methanol Homogeneously Catalyzed by Ruthenium Exhibiting a Remarkable Acceleration by Added Catalytic Thiol. J Am Chem Soc 2021; 143:17284-17291. [PMID: 34617436 PMCID: PMC8532156 DOI: 10.1021/jacs.1c09007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Production of H2 by methanol reforming is of particular interest due the low cost, ready availability, and high hydrogen content of methanol. However, most current methods either require very high temperatures and pressures or strongly rely on the utilization of large amounts of base. Here we report an efficient, base-free aqueous-phase reforming of methanol homogeneously catalyzed by an acridine-based ruthenium pincer complex, the activity of which was unexpectedly improved by a catalytic amount of a thiol additive. The reactivity of this system is enhanced by nearly 2 orders of magnitude upon addition of the thiol, and it can maintain activity for over 3 weeks, achieving a total H2 turnover number of over 130 000. On the basis of both experimental and computational studies, a mechanism is proposed which involves outer-sphere dehydrogenations promoted by a unique ruthenium complex with thiolate as an assisting ligand. The current system overcomes the need for added base in homogeneous methanol reforming and also highlights the unprecedented acceleration of catalytic activity of metal complexes achieved by the addition of a catalytic amount of thiol.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Sayan Kar
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Michael Rauch
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Michael Montag
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Yehoshoa Ben-David
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| |
Collapse
|
22
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
23
|
Zimmermann BM, Ngoc TT, Tzaras DI, Kaicharla T, Teichert JF. A Bifunctional Copper Catalyst Enables Ester Reduction with H 2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides. J Am Chem Soc 2021; 143:16865-16873. [PMID: 34605649 DOI: 10.1021/jacs.1c09626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered "soft" copper(I) hydrides to previously unreactive "hard" ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.
Collapse
Affiliation(s)
- Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Trung Tran Ngoc
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Dimitrios-Ioannis Tzaras
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Trinadh Kaicharla
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
24
|
Curley JB, Smith NE, Bernskoetter WH, Ertem MZ, Hazari N, Mercado BQ, Townsend TM, Wang X. Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
25
|
Mas‐Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Iridium‐Catalyzed Acid‐Assisted Hydrogenation of Oximes to Hydroxylamines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Christopher J. Cope
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Eric Tan
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Benjamin Pinson
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Alan Robinson
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Tomas Smejkal
- Process Chemistry Research Syngenta Crop Protection AG Schaffhauserstrasse 101 4332 Stein AG Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
26
|
Mas-Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Iridium-Catalyzed Acid-Assisted Hydrogenation of Oximes to Hydroxylamines. Angew Chem Int Ed Engl 2021; 60:15524-15532. [PMID: 33886142 DOI: 10.1002/anie.202103806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/11/2022]
Abstract
We found that cyclometalated cyclopentadienyl iridium(III) complexes are uniquely efficient catalysts in homogeneous hydrogenation of oximes to hydroxylamine products. A stable iridium C,N-chelation is crucial, with alkoxy-substituted aryl ketimine ligands providing the best catalytic performance. Several Ir-complexes were mapped by X-ray crystal analysis in order to collect steric parameters that might guide a rational design of even more active catalysts. A broad range of oximes and oxime ethers were activated with stoichiometric amounts of methanesulfonic acid and reduced at room temperature, remarkably without cleavage of the fragile N-O bond. The exquisite functional group compatibility of our hydrogenation system was further demonstrated by additive tests. Experimental mechanistic investigations support an ionic hydrogenation platform, and suggest a role for the Brønsted acid beyond a proton source. Our studies provide deep understanding of this novel acidic hydrogenation and may facilitate its improvement and application to other challenging substrates.
Collapse
Affiliation(s)
- Josep Mas-Roselló
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christopher J Cope
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Eric Tan
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Benjamin Pinson
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Alan Robinson
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, 4332, Stein, AG, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
27
|
Pham J, Jarczyk CE, Reynolds EF, Kelly SE, Kim T, He T, Keith JM, Chianese AR. The key role of the latent N-H group in Milstein's catalyst for ester hydrogenation. Chem Sci 2021; 12:8477-8492. [PMID: 35355805 PMCID: PMC8901127 DOI: 10.1039/d1sc00703c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that Milstein's seminal diethylamino-substituted PNN-pincer-ruthenium catalyst for ester hydrogenation is activated by dehydroalkylation of the pincer ligand, releasing ethane and eventually forming an NHEt-substituted derivative that we proposed is the active catalyst. In this paper, we present a computational and experimental mechanistic study supporting this hypothesis. Our DFT analysis shows that the minimum-energy pathways for hydrogen activation, ester hydrogenolysis, and aldehyde hydrogenation rely on the key involvement of the nascent N-H group. We have isolated and crystallographically characterized two catalytic intermediates, a ruthenium dihydride and a ruthenium hydridoalkoxide, the latter of which is the catalyst resting state. A detailed kinetic study shows that catalytic ester hydrogenation is first-order in ruthenium and hydrogen, shows saturation behavior in ester, and is inhibited by the product alcohol. A global fit of the kinetic data to a simplified model incorporating the hydridoalkoxide and dihydride intermediates and three kinetically relevant transition states showed excellent agreement with the results from DFT.
Collapse
Affiliation(s)
- John Pham
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Cole E Jarczyk
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Eamon F Reynolds
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Sophie E Kelly
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Thao Kim
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Tianyi He
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Jason M Keith
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Anthony R Chianese
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| |
Collapse
|
28
|
Dai H, Li W, Krause JA, Guan H. Experimental Evidence of syn H–N–Fe–H Configurational Requirement for Iron-Based Bifunctional Hydrogenation Catalysts. Inorg Chem 2021; 60:6521-6535. [DOI: 10.1021/acs.inorgchem.1c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huiguang Dai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Weishi Li
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
29
|
Hu J, Bruch QJ, Miller AJM. Temperature and Solvent Effects on H 2 Splitting and Hydricity: Ramifications on CO 2 Hydrogenation by a Rhenium Pincer Catalyst. J Am Chem Soc 2021; 143:945-954. [PMID: 33383987 DOI: 10.1021/jacs.0c11110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic hydrogenation of carbon dioxide holds immense promise for applications in sustainable fuel synthesis and hydrogen storage. Mechanistic studies that connect thermodynamic parameters with the kinetics of catalysis can provide new understanding and guide predictive design of improved catalysts. Reported here are thermochemical and kinetic analyses of a new pincer-ligated rhenium complex (tBuPOCOP)Re(CO)2 (tBuPOCOP = 2,6-bis(di-tert-butylphosphinito)phenyl) that catalyzes CO2 hydrogenation to formate with faster rates at lower temperatures. Because the catalyst follows the prototypical "outer sphere" hydrogenation mechanism, comprehensive studies of temperature and solvent effects on the H2 splitting and hydride transfer steps are expected to be relevant to many other catalysts. Strikingly large entropy associated with cleavage of H2 results in a strong temperature dependence on the concentration of [(tBuPOCOP)Re(CO)2H]- present during catalysis, which is further impacted by changing the solvent from toluene to tetrahydrofuran to acetonitrile. New methods for determining the hydricity of metal hydrides and formate at temperatures other than 298 K are developed, providing insight into how temperature can influence the favorability of hydride transfer during catalysis. These thermochemical insights guided the selection of conditions for CO2 hydrogenation to formate with high activity (up to 364 h-1 at 1 atm or 3330 h-1 at 20 atm of 1:1 H2:CO2). In cases where hydride transfer is the highest individual kinetic barrier, entropic contributions to outer sphere H2 splitting lead to a unique temperature dependence: catalytic activity increases as temperature decreases in tetrahydrofuran (200-fold increase upon cooling from 50 to 0 °C) and toluene (4-fold increase upon cooling from 100 to 50 °C). Ramifications on catalyst structure-function relationships are discussed, including comparisons between "outer sphere" mechanisms and "metal-ligand cooperation" mechanisms.
Collapse
Affiliation(s)
- Jenny Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Quinton J Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
30
|
Cano I, Martínez-Prieto LM, van Leeuwen PWNM. Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02399j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supports, ligands and additives can promote heterolytic H2 splitting by a cooperative mechanism with metal nanoparticles.
Collapse
Affiliation(s)
- Israel Cano
- Applied Physics Department
- University of Cantabria
- 39005 Santander
- Spain
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| | | |
Collapse
|
31
|
Bains AK, Singh V, Adhikari D. Homogeneous Nickel-Catalyzed Sustainable Synthesis of Quinoline and Quinoxaline under Aerobic Conditions. J Org Chem 2020; 85:14971-14979. [PMID: 33174416 DOI: 10.1021/acs.joc.0c01819] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dehydrogenative coupling-based reactions have emerged as an efficient route toward the synthesis of a plethora of heterocyclic rings. Herein, we report an efficacious, nickel-catalyzed synthesis of two important heterocycles such as quinoline and quinoxaline. The catalyst is molecularly defined, is phosphine-free, and can operate at a mild reaction temperature of 80 °C. Both the heterocycles can be easily assembled via double dehydrogenative coupling, starting from 2-aminobenzyl alcohol/1-phenylethanol and diamine/diol, respectively, in a shorter span of reaction time. This environmentally benign synthetic protocol employing an inexpensive catalyst can rival many other transition-metal systems that have been developed for the fabrication of two putative heterocycles. Mechanistically, the dehydrogenation of secondary alcohol follows clean pseudo-first-order kinetics and exhibits a sizable kinetic isotope effect. Intriguingly, this catalyst provides an example of storing the trapped hydrogen in the ligand backbone, avoiding metal-hydride formation. Easy regeneration of the oxidized form of the catalyst under aerobic/O2 oxidation makes this protocol eco-friendly and easy to handle.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Vikramjeet Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| |
Collapse
|
32
|
Clerc A, Marelli E, Adet N, Monot J, Martín-Vaca B, Bourissou D. Metal-ligand-Lewis acid multi-cooperative catalysis: a step forward in the Conia-ene reaction. Chem Sci 2020; 12:435-441. [PMID: 34163606 PMCID: PMC8178805 DOI: 10.1039/d0sc05036a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation. The [(SCS)Pd]2 complex featuring a non-innocent indenediide-based ligand was found to be a very efficient and versatile catalyst for the Conia-ene reaction, when associated with Mg(OTf)2. The reaction operates at low catalytic loadings under mild conditions with HFIP as a co-solvent. It works with a variety of substrates, including those bearing internal alkynes. It displays complete 5-exo vs. 6-endo regio-selectivity. In addition, except for the highly congested tBu-substituent, the reaction occurs with high Z vs. E stereo-selectivity, making it synthetically useful and complementary to known catalysts. An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation.![]()
Collapse
Affiliation(s)
- Arnaud Clerc
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Enrico Marelli
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nicolas Adet
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
33
|
Fanara PM, MacMillan SN, Lacy DC. Planar-Locked Ru-PNN Catalysts in 1-Phenylethanol Dehydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul M. Fanara
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
34
|
Kumar A, von Wolff N, Rauch M, Zou YQ, Shmul G, Ben-David Y, Leitus G, Avram L, Milstein D. Hydrogenative Depolymerization of Nylons. J Am Chem Soc 2020; 142:14267-14275. [PMID: 32706584 PMCID: PMC7441490 DOI: 10.1021/jacs.0c05675] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
widespread crisis of plastic pollution demands discovery of new and
sustainable approaches to degrade robust plastics such as nylons.
Using a green and sustainable approach based on hydrogenation, in
the presence of a ruthenium pincer catalyst at 150 °C and 70
bar H2, we report here the first example of hydrogenative
depolymerization of conventional, widely used nylons and polyamides,
in general. Under the same catalytic conditions, we also demonstrate
the hydrogenation of a polyurethane to produce diol, diamine, and
methanol. Additionally, we demonstrate an example where monomers (and
oligomers) obtained from the hydrogenation process can be dehydrogenated
back to a poly(oligo)amide of approximately similar molecular weight,
thus completing a closed loop cycle for recycling of polyamides. Based
on the experimental and density functional theory studies, we propose
a catalytic cycle for the process that is facilitated by metal–ligand
cooperativity. Overall, this unprecedented transformation, albeit
at the proof of concept level, offers a new approach toward a cleaner
route to recycling nylons.
Collapse
Affiliation(s)
| | - Niklas von Wolff
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS/University of Paris, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Anke F, Boye S, Spannenberg A, Lederer A, Heller D, Beweries T. Dehydropolymerisation of Methylamine Borane and an N-Substituted Primary Amine Borane Using a PNP Fe Catalyst. Chemistry 2020; 26:7889-7899. [PMID: 32118328 PMCID: PMC7383739 DOI: 10.1002/chem.202000809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 01/30/2023]
Abstract
Dehydropolymerisation of methylamine borane (H3 B⋅NMeH2 ) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2 CH2 PiPr2 )2 ) (1) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3 B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis-Menten kinetics is observed, forming aminoborane H2 B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2 BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3 B⋅NMe2 H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3 B⋅N(CH2 SiMe3 )H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s.
Collapse
Affiliation(s)
- Felix Anke
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung DresdenHohe Str. 601069DresdenGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung DresdenHohe Str. 601069DresdenGermany
- Technische Universität Dresden01062DresdenGermany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
36
|
Leeuwen PWNM, Cano I, Freixa Z. Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000493] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Piet W. N. M. Leeuwen
- Laboratoire de Physique et Chimie des Nano-Objects, INSA-Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Israel Cano
- Departamento de Física Aplicada Facultad de Ciencias Universidad de Cantabria 39005 Santander Spain
| | - Zoraida Freixa
- Department of Applied Chemistry Faculty of Chemistry University of the Basque Country (UPV-EHU) 20080 San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
37
|
Bootsma J, Guo B, de Vries JG, Otten E. Ruthenium Complexes with PNN Pincer Ligands Based on (Chiral) Pyrrolidines: Synthesis, Structure, and Dynamic Stereochemistry. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan Bootsma
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Beibei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz Institute für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
38
|
Hydrogenation Reactions Catalyzed by PNP-Type Complexes Featuring a HN(CH2CH2PR2)2 Ligand. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|