1
|
Zhou ZR, Wu MS, Yang Z, Wu Y, Guo W, Li DW, Qian RC, Lu Y. Synthetic transmembrane DNA receptors enable engineered sensing and actuation. Nat Commun 2025; 16:1464. [PMID: 39920144 PMCID: PMC11806108 DOI: 10.1038/s41467-025-56758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
In living organisms, cells synergistically couple cascade reaction pathways to achieve inter- and intracellular signal transduction by transmembrane protein receptors. The construction and assembly of synthetic receptor analogs that can mimic such biological processes is a central goal of synthetic biochemistry and bionanotechnology to endow receptors with user-defined signal transduction effects. However, designing artificial transmembrane receptors with the desired input, output, and performance parameters are challenging. Here we show that the dimerization of synthetic transmembrane DNA receptors executes a systematically engineered sensing and actuation cascade in response to external molecular signals. The synthetic DNA receptors are composed of three parts, including an extracellular signal reception part, a lipophilic transmembrane anchoring part, and an intracellular signal output part. Upon the input of external signals, the DNA receptors can form dimers on the cell surface triggered by configuration changes, leading to a series of downstream cascade events including communication between donor and recipient cells, gene transcription regulation, protein level control, and cell apoptosis. We believe this work establishes a flexible cell surface engineering strategy that is broadly applicable to implement sophisticated biological functions.
Collapse
Affiliation(s)
- Ze-Rui Zhou
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Da-Wei Li
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Chen H, Zhou S, Ngocho K, Zheng J, He X, Huang J, Wang K, Shi H, Liu J. Oriented triplex DNA as a synthetic receptor for transmembrane signal transduction. Nat Commun 2024; 15:9789. [PMID: 39532841 PMCID: PMC11557920 DOI: 10.1038/s41467-024-53960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Signal transduction across biological membranes enables cells to detect and respond to diverse chemical or physical signals, and replicating these complex biological processes through synthetic methods is of significant interest in synthetic biology. Here we present an artificial signal transduction system using oriented cholesterol-tagged triplex DNA (TD) as synthetic receptors to transmit and amplify signals across lipid bilayer membranes through H+-mediated TD conformational transitions from duplex to triplex. An auxiliary sequence, complementary to the third strand of the TD, ensures a controlled and preferred outward orientation of cholesterol-tagged TD on membranes. Upon external H+ stimuli, the conformational change triggers the translocation of the third strand from the outer to the inner membrane leaflet, resulting in effective transmembrane signal transduction. This mechanism enables fluorescence resonance energy transfer (FRET), selective photocleavage, catalytic signal amplification, and logic gate modulation within vesicles. Our findings demonstrate that these TD-based receptors mimic the functional dynamics of natural G protein-coupled receptors (GPCRs), providing a foundation for advanced applications in biosensing, cell signaling modulation, and targeted drug delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Kleins Ngocho
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China.
| |
Collapse
|
3
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
4
|
Gartland SA, Johnson TG, Walkley E, Langton MJ. Inter-Vesicle Signal Transduction Using a Photo-Responsive Zinc Ionophore. Angew Chem Int Ed Engl 2023; 62:e202309080. [PMID: 37497854 DOI: 10.1002/anie.202309080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Transmission of chemical information between cells and across lipid bilayer membranes is of profound significance in many biological processes. The design of synthetic signalling systems is a critical step towards preparing artificial cells with collective behaviour. Here, we report the first example of a synthetic inter-vesicle signalling system, in which diffusible chemical signals trigger transmembrane ion transport in a manner reminiscent of signalling pathways in biology. The system is derived from novel ortho-nitrobenzyl and BODIPY photo-caged ZnII transporters, in which cation transport is triggered by photo-decaging with UV or red light, respectively. This decaging reaction can be used to trigger the release of the cationophores from a small population of sender vesicles. This in turn triggers the transport of ions across the membrane of a larger population of receiver vesicles, but not across the sender vesicle membrane, leading to overall inter-vesicle signal transduction and amplification.
Collapse
Affiliation(s)
- Shaun A Gartland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Euan Walkley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
5
|
Søgaard AB, Pedersen AB, Løvschall KB, Monge P, Jakobsen JH, Džabbarova L, Nielsen LF, Stevanovic S, Walther R, Zelikin AN. Transmembrane signaling by a synthetic receptor in artificial cells. Nat Commun 2023; 14:1646. [PMID: 36964156 PMCID: PMC10039019 DOI: 10.1038/s41467-023-37393-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Signal transduction across biological membranes is among the most important evolutionary achievements. Herein, for the design of artificial cells, we engineer fully synthetic receptors with the capacity of transmembrane signaling, using tools of chemistry. Our receptors exhibit similarity with their natural counterparts in having an exofacial ligand for signal capture, being membrane anchored, and featuring a releasable messenger molecule that performs enzyme activation as a downstream signaling event. The main difference from natural receptors is the mechanism of signal transduction, which is achieved using a self-immolative linker. The receptor scaffold is modular and can readily be re-designed to respond to diverse activation signals including biological or chemical stimuli. We demonstrate an artificial signaling cascade that achieves transmembrane enzyme activation, a hallmark of natural signaling receptors. Results of this work are relevant for engineering responsive artificial cells and interfacing them and/or biological counterparts in co-cultures.
Collapse
Affiliation(s)
- Ane Bretschneider Søgaard
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | | | | | - Pere Monge
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | - Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
6
|
Hou J, Jiang X, Yang F, Wang L, Yan T, Liu S, Xu J, Hou C, Luo Q, Liu J. Supramolecularly regulated artificial transmembrane signal transduction for 'ON/OFF'-switchable enzyme catalysis. Chem Commun (Camb) 2022; 58:5725-5728. [PMID: 35441622 DOI: 10.1039/d2cc01421a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An artificial signal transduction model with a supramolecular recognition headgroup, a membrane anchoring group, and a pro-enzyme catalysis endgroup was constructed. The transmembrane translocation of the transducer can be reversibly regulated by competitive host-guest complexations as an input signal to control an enzyme reaction inside the lipid vesicles.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shengda Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022; 61:e202117500. [PMID: 35090078 DOI: 10.1002/anie.202117500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/26/2023]
Abstract
Spatiotemporal organization of distinct biological processes in cytomimetic compartments is a crucial step towards engineering functional artificial cells. Mimicking controlled bi-directional molecular communication inside artificial cells remains a considerable challenge. Here we present photoswitchable molecular transport between programmable membraneless organelle-like DNA coacervates in a synthetic microcompartment. We use droplet microfluidics to fabricate membraneless non-fusing DNA coacervates by liquid-liquid phase separation in a water-in-oil droplet, and employ the interior DNA coacervates as artificial organelles to imitate intracellular communication via photo-regulated uni- and bi-directional transfer of biomolecules. Our results highlight a promising new route to assembly of multicompartment artificial cells with functional networks.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang-Hao Cao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
9
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Kim JW, Cho NJ, Jackman JA. Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. J Phys Chem Lett 2022; 13:1480-1488. [PMID: 35129365 DOI: 10.1021/acs.jpclett.2c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The size of membrane-enveloped virus particles, exosomes, and lipid vesicles strongly impacts functional properties in biological and applied contexts. Multivalent ligand-receptor interactions involving nanoparticle shape deformation are critical to such functions, yet the corresponding effect of nanoparticle size remains largely elusive. Herein, using an indirect nanoplasmonic sensing approach, we investigated how the nanoscale size properties of ligand-modified lipid vesicles affect real-time binding interactions, especially vesicle deformation processes, with a receptor-modified, cell membrane-mimicking platform. Together with theoretical analyses, our findings reveal a pronounced, size-dependent transition in the membrane bending properties of nanoscale lipid vesicles between 60 and 180 nm in diameter. For smaller vesicles, a large membrane bending energy enhanced vesicle stiffness while the osmotic pressure energy was the dominant modulating factor for larger, less stiff vesicles. These findings advance our fundamental understanding of how nanoparticle size affects multivalency-induced nanoparticle shape deformation and can provide guidance for the design of biomimetic nanoparticles with tailored nanomechanical properties.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | | | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553 Singapore
| | | |
Collapse
|
10
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA‐based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Fang-Hao Cao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wilhelm T. S. Huck
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Institue for Molecules and Materials NETHERLANDS
| | - Nan-Nan Deng
- Shanghai Jiao Tong University Chemistry and Chemical Engineering 800 Dongchuan RD. Minhang District 200240 Shanghai CHINA
| |
Collapse
|
11
|
Yang H, Du S, Ye Z, Wang X, Yan Z, Lian C, Bao C, Zhu L. A system for artificial light signal transduction via molecular translocation in a lipid membrane. Chem Sci 2022; 13:2487-2494. [PMID: 35310493 PMCID: PMC8864706 DOI: 10.1039/d1sc06671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Light signal transduction pathways are central components of the mechanisms that regulate plant development, in which photoreceptors receive light and participate in light signal transduction. Chemical systems can be designed...
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Shengjie Du
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xuebin Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zexin Yan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology Shanghai 200237 China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Wang C, Yang J, Lu Y. Modularize and Unite: Toward Creating a Functional Artificial Cell. Front Mol Biosci 2021; 8:781986. [PMID: 34912849 PMCID: PMC8667554 DOI: 10.3389/fmolb.2021.781986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
An artificial cell is a simplified model of a living system, bringing breakthroughs into both basic life science and applied research. The bottom-up strategy instructs the construction of an artificial cell from nonliving materials, which could be complicated and interdisciplinary considering the inherent complexity of living cells. Although significant progress has been achieved in the past 2 decades, the area is still facing some problems, such as poor compatibility with complex bio-systems, instability, and low standardization of the construction method. In this review, we propose creating artificial cells through the integration of different functional modules. Furthermore, we divide the function requirements of an artificial cell into four essential parts (metabolism, energy supplement, proliferation, and communication) and discuss the present researches. Then we propose that the compartment and the reestablishment of the communication system would be essential for the reasonable integration of functional modules. Although enormous challenges remain, the modular construction would facilitate the simplification and standardization of an artificial cell toward a natural living system. This function-based strategy would also broaden the application of artificial cells and represent the steps of imitating and surpassing nature.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Bravin C, Duindam N, Hunter CA. Artificial transmembrane signal transduction mediated by dynamic covalent chemistry. Chem Sci 2021; 12:14059-14064. [PMID: 34760189 PMCID: PMC8565364 DOI: 10.1039/d1sc04741h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.
Collapse
Affiliation(s)
- Carlo Bravin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nol Duindam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
14
|
Liu G, Huang S, Liu X, Chen W, Ma X, Cao S, Wang L, Chen L, Yang H. DNA-Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal Transduction and Amplification. Anal Chem 2021; 93:13807-13814. [PMID: 34613712 DOI: 10.1021/acs.analchem.1c02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmembrane signal transduction is of profound significance in many biological processes. The dimerization of cell-surface receptors is one prominent mechanism by which signals are transmitted across the membrane and trigger intracellular cascade amplification reactions. Recreating such processes in artificial systems has potential applications in sensing, drug delivery, bioengineering, and providing a new route for a deep understanding of fundamental biological processes. However, it remains a challenge to design artificial signal transduction systems working by the receptor dimerization mechanism in a predictable and smart manner. Here, benefitting from DNA with features of programmability, controllability, and flexible design, we use DNA as a building material to construct an artificial system mimicking dimerization of receptors for signal transduction and cascade amplification. DNA-based membrane-spanning receptor analogues are designed to recognize external signals, which drives two receptors into close spatial proximity to activate DNAzymes inside the cell-mimicking system. The activation of the DNAzyme initiates the catalyzed cleavage of encapsulated substrates and leads to the release of fluorescent second messengers for signal amplification. Such an artificial signal transduction system extends the range of biomimetic DNA-based signaling systems, providing a new avenue to study natural cell signaling processes and artificially regulate biological processes.
Collapse
Affiliation(s)
- Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shan Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaochen Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuang Cao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
15
|
Kocsis I, Ding Y, Williams NH, Hunter CA. Transmembrane signal transduction by cofactor transport. Chem Sci 2021; 12:12377-12382. [PMID: 34603667 PMCID: PMC8480319 DOI: 10.1039/d1sc03910e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components. Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.![]()
Collapse
Affiliation(s)
- Istvan Kocsis
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yudi Ding
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
16
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
17
|
Trevisan L, Kocsis I, Hunter CA. Redox switching of an artificial transmembrane signal transduction system. Chem Commun (Camb) 2021; 57:2196-2198. [PMID: 33616133 DOI: 10.1039/d0cc08322d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transmission of chemical signals across lipid bilayer membranes can be achieved using membrane-anchored molecules, where molecular motion across the bilayer is controlled by switching the polarity of two different head groups. An external redox signal delivered by ascorbic acid was used to trigger membrane translocation in a synthetic transduction system.
Collapse
Affiliation(s)
- Lucia Trevisan
- Department of Chemistry, University of Cambridge, , Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Istvan Kocsis
- Department of Chemistry, University of Cambridge, , Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, , Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
18
|
Chen H, Zhou L, Li C, He X, Huang J, Yang X, Shi H, Wang K, Liu J. Controlled dimerization of artificial membrane receptors for transmembrane signal transduction. Chem Sci 2021; 12:8224-8230. [PMID: 34194713 PMCID: PMC8208304 DOI: 10.1039/d1sc00718a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, including the signal recognition-mediated conformational change of transmembrane receptors at the cell surface, and a trigger of an intracellular phosphorylation cascade. The ability to reproduce such biological processes in artificial systems has potential applications in smart sensing, drug delivery, and synthetic biology. Here, an artificial transmembrane receptors signaling system was designed and constructed based on modular DNA scaffolds. The artificial transmembrane receptors in this system are composed of three functional modules: signal recognition, lipophilic transmembrane linker, and signal output modules. Adenosine triphosphate (ATP) served as an external signal input to trigger the dimerization of two artificial receptors on membranes through a proximity effect. This effect induced the formation of a G-quadruplex, which served as a peroxidase-like enzyme to facilitate a signal output measured by either fluorescence or absorbance in the lipid bilayer vesicles. The broader utility of this modular method was further demonstrated using a lysozyme-binding aptamer instead of an ATP-binding aptamer. Therefore, this work provides a modular and generalizable method for the design of artificial transmembrane receptors. The flexibility of this synthetic methodology will allow researchers to incorporate different functional modules while retaining the same molecular framework for signal transduction. An artificial transmbrane signal transducer was developed through the chemical input-mediated dimerization of artificial DNA transmembrane receptors and the subsequent activation of a cascade of events inside the vesicles.![]()
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Li Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Chunying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
19
|
Cheng HF, Paul MK, d'Aquino AI, Stern CL, Mirkin CA. Multi-State Dynamic Coordination Complexes Interconverted through Counterion-Controlled Phase Transfer. Inorg Chem 2021; 60:4755-4763. [PMID: 33719417 DOI: 10.1021/acs.inorgchem.0c03708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied a series of dynamic weak-link approach (WLA) complexes that can be shuttled between two immiscible solvents and switched between two structural states via ion exchange. Here, we established that hydrophobic anions transfer cationic, amphiphilic complexes from the aqueous phase to the organic phase, while a chloride source reverses the process. As a result of the dynamic metal coordination properties of WLA complexes, the denticity of these complexes (mono- to bi-) can be modulated as they partition into different phases. In addition, we discovered that heteroligated complexes bearing ligands of different donor strengths preferentially rearrange into two homoligated complexes that are phase-partitioned to maximize the number of stronger coordination bonds. This behavior is not observed in systems with one solvent, highlighting the dynamic and stimuli-responsive nature of hemilabile ligands in a multiphasic solvent environment. Taken together, this work shows that the highly reconfigurable WLA modality can enable the design of biphasic reaction networks or chemical separations driven by straightforward salt metathesis reactions.
Collapse
Affiliation(s)
- Ho Fung Cheng
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - McKinley K Paul
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Andrea I d'Aquino
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Charlotte L Stern
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
20
|
López-Andarias J, Straková K, Martinent R, Jiménez-Rojo N, Riezman H, Sakai N, Matile S. Genetically Encoded Supramolecular Targeting of Fluorescent Membrane Tension Probes within Live Cells: Precisely Localized Controlled Release by External Chemical Stimulation. JACS AU 2021; 1:221-232. [PMID: 34467286 PMCID: PMC8395630 DOI: 10.1021/jacsau.0c00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 05/12/2023]
Abstract
To image membrane tension in selected membranes of interest (MOI) inside living systems, the field of mechanobiology requires increasingly elaborated small-molecule chemical tools. We have recently introduced HaloFlipper, i.e., a mechanosensitive flipper probe that can localize in the MOI using HaloTag technology to report local membrane tension changes using fluorescence lifetime imaging microscopy. However, the linker tethering the probe to HaloTag hampers the lateral diffusion of the probe in all the lipid domains of the MOI. For a more global membrane tension measurement in any MOI, we present here a supramolecular chemistry strategy for selective localization and controlled release of flipper into the MOI, using a genetically encoded supramolecular tag. SupraFlippers, functionalized with a desthiobiotin ligand, can selectively accumulate in the organelle having expressed streptavidin. The addition of biotin as a biocompatible external stimulus with a higher affinity for Sav triggers the release of the probe, which spontaneously partitions into the MOI. Freed in the lumen of endoplasmic reticulum (ER), SupraFlippers report the membrane orders along the secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Kinetics of the process are governed by both the probe release and the transport through lipid domains. The concentration of biotin can control the former, while the expression level of a transmembrane protein (Sec12) involved in the stimulation of the vesicular transport from ER to Golgi influences the latter. Finally, the generation of a cell-penetrating and fully functional Sav-flipper complex using cyclic oligochalcogenide (COC) transporters allows us to combine the SupraFlipper strategy and HaloTag technology.
Collapse
|
21
|
Abstract
Thioflavin-T is used to image amyloid aggregates because of the excellent turn-on fluorescence properties, but binding affinities are low. By mounting multiple dye units on the surface of a vesicle, the binding affinity for α-synuclein fibrils is increased by three orders of magnitude, and the optical response is increased. Cooperative interactions of the dye headgroup and lipid with the protein provide a general strategy for the construction of multivalent amyloid probes based on vesicles.
Collapse
Affiliation(s)
- Istvan Kocsis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Elena Sanna
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
22
|
Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nat Rev Chem 2020; 5:46-61. [PMID: 37118103 DOI: 10.1038/s41570-020-00233-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The membrane proteins found in nature control many important cellular functions, including signal transduction and transmembrane ion transport, and these, in turn, are regulated by external stimuli, such as small molecules, membrane potential and light. Membrane proteins also find technological applications in fields ranging from optogenetics to synthetic biology. Synthetic supramolecular analogues have emerged as a complementary method to engineer functional membranes. This Review describes stimuli-responsive supramolecular systems developed for the control of ion transport, signal transduction and catalysis in lipid-bilayer-membrane systems. Recent advances towards achieving spatio-temporal control over activity in artificial and living cells are highlighted. Current challenges, the scope, limitations and future potential to exploit supramolecular systems for engineering stimuli-responsive lipid-bilayer membranes are discussed.
Collapse
|
23
|
Luan J, Wang D, Wilson DA. Leveraging synthetic particles for communication: from passive to active systems. NANOSCALE 2020; 12:21015-21033. [PMID: 33073819 DOI: 10.1039/d0nr05675h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Communication is one of the most remarkable behaviors in the living world. It is an important prerequisite for building an artificial cell which can be considered as alive. Achieving complex communicative behaviors leveraging synthetic particles will likely fill the gap between artificial vesicles and natural counterpart of cells and allow for the discovery of new therapies in medicine. In this review, we highlight recent endeavors for constructing communication with synthetic particles by revealing the principles underlying the communicative behaviors. Emergent progress using active particles to achieve communication is also discussed, which resembles the dynamic and out-of-equilibrium properties of communication in nature.
Collapse
Affiliation(s)
- Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Danni Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Bravin C, Hunter CA. Template effects of vesicles in dynamic covalent chemistry. Chem Sci 2020; 11:9122-9125. [PMID: 34123161 PMCID: PMC8163447 DOI: 10.1039/d0sc03185b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
25
|
|
26
|
Affiliation(s)
- Luca Gabrielli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Federico Rastrelli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
27
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
28
|
Sasaki R, Sato K, Kinbara K. Aromatic Fluorination of Multiblock Amphiphile Enhances Its Incorporation into Lipid Bilayer Membranes. ChemistryOpen 2020; 9:301-303. [PMID: 32154050 PMCID: PMC7050654 DOI: 10.1002/open.201900374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
We designed multiblock amphiphiles AmF and AmH, which consist of perfluorinated and non-fluorinated hydrophobic units, respectively. Absorption spectroscopy revealed that both amphiphiles are molecularly dispersed in organic solvent, while they form aggregates under aqueous conditions. Furthermore, we investigated whether AmF and AmH can be incorporated into DOPC lipid bilayer membranes, and found that the maximum concentration of AmF that can be incorporated into DOPC lipid bilayer membranes is 43 times higher than that of AmH.
Collapse
Affiliation(s)
- Ryo Sasaki
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| | - Kohei Sato
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| | - Kazushi Kinbara
- School of Life Science and TechnologyTokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, YokohamaKanagawa226-8501Japan
| |
Collapse
|