1
|
Charytanowicz T, Wang J, Tokoro H, Tran K, Renz F, Ohkoshi SI, Chorazy S, Sieklucka B. Thermal Bistability of Magnetic Susceptibility, Light Absorption, Second Harmonic Generation, and Dielectric Properties in a Polar Spin-Crossover Iron-Rhenium Chain Material. Angew Chem Int Ed Engl 2025; 64:e202419242. [PMID: 39588614 DOI: 10.1002/anie.202419242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The bistability of multiple physical properties driven by external stimuli in a solid is a desired prerequisite for its application in memory devices with convenient data readout. We present a pathway for thermal bistability detectable in four physical properties: magnetic, light absorption, second-harmonic generation (SHG), and dielectric. We report a novel heterometallic (TBA){[FeII(phIN)4][ReV(CN)8]} ⋅ (phIN) (1) (TBA=tetrabutylammonium cation, phIN=phenyl isonicotinate) cyanido-bridged chain material. Owing to an appropriate {N6} coordination sphere of Fe(II) centers, 1 reveals a thermal spin crossover (SCO) effect which is complete and cooperative providing a distinct thermal hysteresis loop in magnetic measurements. Moreover, it exhibits simultaneous thermal bistability in (a) visible-light absorption due to the presence of efficient d-d electronic transitions in the low-spin (LS) state, (b) SHG activity as it crystallizes in a polar Cc space group due to the bulky substituent on phIN ligands, and (c) dielectric parameters, including dielectric constant, which can be correlated with subtle changes in polarity between LS and HS (high spin) phases. Thus, we present a remarkable thermally controlled hysteretic behavior in four physical functionalities realized by properly functionalizing an SCO-active coordination compound.
Collapse
Affiliation(s)
- Tomasz Charytanowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167, Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Wang P, Zheng W, Qu Y, Duan N, Yang Y, Wang D, Wang H, Chen Q. Photo-Excited High-Spin State Ni (III) Species in Mo-Doped Ni 3S 2 for Efficient Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403107. [PMID: 39030942 DOI: 10.1002/smll.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Designing robust catalysts for increasing the sluggish kinetics of the urea oxidation reaction (UOR) is challenging. Herein, the regulation of spin states for metal active sites by photoexcitation to facilitate the adsorption of urea and intermediates is demonstrated. Mo-doped nickel sulfide nanoribbon arrays (Mo-Ni3S2@NMF) with excellent light-trapping capacity are successfully prepared. Under AM 1.5G illumination, the activity of the Mo-Ni3S2@NMF exhibits a 50% improvement in the UOR current. Compared with those under dark conditions, Mo-Ni3S2@NMF achieve 10 mA cm-2 at 1.315 VRHE for UOR and 1.32 Vcell for urea electrolysis, which are decreases of 15 and 80 mV, respectively. The electron spin resonance, in situ Fourier transform infrared spectroscopy analysis and density functional theory calculations reveal that illumination led to the formation of Ni3+ active sites in a high-spin state, which strengthens the d-p orbital hybridization of Ni-N, hence facilitating the adsorption of urea. C─N cleavage of the *CONN intermediate is further inhibited, which promotes the oxidation of urea molecules via the active N2 pathway, thereby accelerating the UOR rate.
Collapse
Affiliation(s)
- Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yafei Qu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Naiyuan Duan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Wang
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
3
|
Chen Z, Xie K, Cheng Y, Deng Y, Zhang Y. Hierarchically Assembled Gigantic Fe/Co Cyanometallate Clusters Exhibiting Electron Transfer Behavior Above Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402884. [PMID: 38874086 PMCID: PMC11321628 DOI: 10.1002/advs.202402884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
The construction of large and complex supramolecular architectures through self-assembly is at the forefront of contemporary coordination chemistry. Notwithstanding great success in various systems using anionic bridges (e.g., O2- or S2-) or organic ligands (e.g., pyridine or carboxylate ligands), the assembly of large cyanide-bridged clusters with increasing nuclearity remains a formidable synthetic challenge. In this study, it is achieved in preparing two heterometallic cyanometallate clusters with unprecedented complexity, [Fe20Co20] (1) and [Fe12Co15] (2), by creating the "flexibility" through a versatile ligand of bis((1H-imidazol-4-yl)methylene)hydrazine (H2L) and low-coordinate cobalt. Complex 1 features a super-square array of four cyanide-bridged [Fe4Co4] cube subunits as the corners that are interconnected by four additional [FeCo] units, resulting in a torus-shaped architecture. Complex 2 contains a lantern-like core-shell cluster with a triple-helix kernel of [Co3L3] enveloped by a [Fe12Co12] shell. The combined structure analysis and mass spectrometry study reveal a hierarchical assembly mechanism, which sheds new light on constructing cyanometallate nanoclusters with atomic precision. Moreover, complex 1 undergoes a thermally induced electron-transfer-coupled spin transition (ETCST) between the diamagnetic {FeII LS(µ-CN)CoIII LS} and paramagnetic {FeIII LS(µ-CN)CoII HS} configurations (LS = low spin, HS = high spin) above room temperature, representing the largest molecule displaying electron transfer and spin transition characteristic.
Collapse
Affiliation(s)
- Zi‐Yi Chen
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Kai‐Ping Xie
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
- School of Chemistry and Materials EngineeringHuizhou UniversityHuizhou516007China
| | - Yue Cheng
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yi‐Fei Deng
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yuan‐Zhu Zhang
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| |
Collapse
|
4
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Kaushik K, Sarkar A, Kamilya S, Li Y, Dechambenoit P, Rouzières M, Mehta S, Mondal A. Light-Induced, Structural Matrix Guided Stepwise Spin-State Switching in 3d-5d Molecular Assembly. Inorg Chem 2024; 63:7604-7612. [PMID: 38556753 DOI: 10.1021/acs.inorgchem.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Archita Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris, cedex 5, France
| | - Pierre Dechambenoit
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| |
Collapse
|
6
|
Cheng Y, Chen ZY, Deng YF, Zhang YZ. 3 nm-wide Cyanometallate Fe-Co Tape Exhibiting Single-Chain Magnet Behavior. Inorg Chem 2024; 63:4063-4071. [PMID: 38364201 DOI: 10.1021/acs.inorgchem.3c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
7
|
Kostin GA, Kozlov R, Bogomyakov A, Tolstikov S, Sheven D, Korenev S. New Ruthenium Nitrosyl Complexes Combining Potentially Photoactive Nitrosyl Group with the Magnetic Nitroxide Radicals as Ligands. Int J Mol Sci 2023; 24:13371. [PMID: 37686176 PMCID: PMC10488014 DOI: 10.3390/ijms241713371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Two ruthenium nitrosyl complexes of Na[RuNOCl4L] with nitronyl nitroxide radicals coordinated to ruthenium with N-donor pyridine rings were prepared and described. The crystal structure of both complexes is 1D or 2D polymeric, due to the additional coordination of sodium cation by bridging the chloride ligands or oxygen atoms of nitroxides. Partially, the oligomeric forms remain in the solutions of the complexes in acetonitrile. The magnetic measurements in the solid state demonstrate the presence of antiferromagnetic interactions through the exchange channels, with the distance between paramagnetic centers equal to 3.1-3.9 Å. The electrochemical behavior of the prepared complexes was investigated in acetonitrile solutions.
Collapse
Affiliation(s)
- Gennadiy A. Kostin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva, 3, 630090 Novosibirsk, Russia
| | - Ruslan Kozlov
- Department of Natural Sciences, Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk, Russia
| | - Artem Bogomyakov
- International Tomography Center Siberian Branch of Russian Academy of Science, Institutskaya, 3a, 630090 Novosibirsk, Russia
| | - Svyatoslav Tolstikov
- International Tomography Center Siberian Branch of Russian Academy of Science, Institutskaya, 3a, 630090 Novosibirsk, Russia
| | - Dmitriy Sheven
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva, 3, 630090 Novosibirsk, Russia
| | - Sergey Korenev
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of Russian Academy of Science, Lavrentieva, 3, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Shi L, Kobylarczyk J, Dziedzic-Kocurek K, Stanek JJ, Sieklucka B, Podgajny R. Site Selectivity for the Spin States and Spin Crossover in Undecanuclear Heterometallic Cyanido-Bridged Clusters. Inorg Chem 2023; 62:7032-7044. [PMID: 37120844 PMCID: PMC10170501 DOI: 10.1021/acs.inorgchem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polynuclear molecular clusters offer an opportunity to design new hierarchical switchable materials with collective properties, based on variation of the chemical composition, size, shapes, and overall building blocks organization. In this study, we rationally designed and constructed an unprecedented series of cyanido-bridged nanoclusters realizing new undecanuclear topology: FeII[FeII(bzbpen)]6[WV(CN)8]2[WIV(CN)8]2·18MeOH (1), NaI[CoII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·28MeOH (2), NaI[NiII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·27MeOH (3), and CoII[CoII(R/S-pabh)2]6[WV(CN)8]2[WIV(CN)8]2·26MeOH [4R and 4S; bzbpen = N1,N2-dibenzyl-N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine; R/S-pabh = (R/S)-N-(1-naphthyl)-1-(pyridin-2-yl)methanimine], of size up to 11 nm3, ca. 2.0 × 2.2 × 2.5 nm (1-3) and ca. 1.4 × 2.5 × 2.5 nm (4). 1, 2, and 4 exhibit site selectivity for the spin states and spin transition related to the structural speciation based on subtle exogenous and endogenous effects imposed on similar but distinguishable 3d metal-ion-coordination moieties. 1 exhibits a mid-temperature-range spin-crossover (SCO) behavior that is more advanced than the previously reported SCO clusters based on octacyanidometallates and an onset of SCO behavior close to room temperature. The latter feature is also present in 2 and 4, which suggests the emergence of CoII-centered SCO not observed in previous bimetallic cyanido-bridged CoII-WV/IV systems. In addition, reversible switching of the SCO behavior in 1 via a single-crystal-to-single-crystal transformation during desolvation was also documented.
Collapse
Affiliation(s)
- Le Shi
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jedrzej Kobylarczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Jan J Stanek
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Zhu HL, Lei YR, Meng YS, Liu T, Oshio H. A Cyanide-bridged FeII–MoV-based Coordination Polymer Showing Spin Crossover. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Rogacz K, Brzozowska M, Baś S, Kurpiewska K, Pinkowicz D. Low-Coordinate Erbium(III) Single-Molecule Magnets with Photochromic Behavior. Inorg Chem 2022; 61:16295-16306. [PMID: 36197744 PMCID: PMC9580000 DOI: 10.1021/acs.inorgchem.2c01999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The structures and magnetic properties of photoresponsive
magnets
can be controlled or fine-tuned by visible light irradiation, which
makes them appealing as candidates for ternary memory devices: photochromic
and photomagnetic at the same time. One of the strategies for photoresponsive
magnetic systems is the use of photochromic/photoswitchable molecules
coordinated to paramagnetic metal centers to indirectly influence
their magnetic properties. Herein, we present two erbium(III)-based
coordination systems: a trinuclear molecule {[ErIII(BHT)3]3(dtepy)2}.4C5H12 (1) and a 1D coordination chain {[ErIII(BHT)3(azopy)}n·2C5H12 (2), where the bridging photochromic
ligands belong to the class of diarylethenes: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclopentene
(dtepy) and 4,4′-azopyridine (azopy), respectively (BHT = 2,6-di-tert-butyl-4-methylphenolate). Both compounds show slow
dynamics of magnetization, typical for single-molecule magnets (SMMs)
as revealed by alternating current (AC) magnetic susceptibility measurements.
The trinuclear compound 1 also shows an immediate color
change from yellow to dark blue in response to near-UV irradiation.
Such behavior is typical for the photoisomerization of the open form
of the ligand into its closed form. The color change can be reversed
by exposing the closed form to visible light. The chain-like compound 2, on the other hand, does not show significant signs of the
expected trans–cis photoisomerization
of the azopyridine in response to UV irradiation and does not appear
to show photoswitching behavior. Three-coordinate
[ErIII(BHT)3] single
ion magnets undergo ligand addition reaction in pentane to form linear
trinuclear photochromic nanomagnets where both functionalities persist.
Collapse
Affiliation(s)
- Katarzyna Rogacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Maria Brzozowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| |
Collapse
|
11
|
Kobylarczyk J, Pakulski P, Potępa I, Podgajny R. Manipulation of the cyanido-bridged Fe2W2 rhombus in the crystalline state: Co-crystallization, desolvation and thermal treatment. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Heczko M, Sumińska E, Pinkowicz D, Nowicka B. Crystal Engineering and Photomagnetic Studies of CN-Bridged Coordination Polymers Based on Octacyanidometallates(IV) and [Ni(cyclam)] 2. Inorg Chem 2022; 61:13817-13828. [PMID: 35998671 PMCID: PMC9455600 DOI: 10.1021/acs.inorgchem.2c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
A series of new CN-bridged coordination networks of different
dimensionality
and topology was obtained through the modification of reaction conditions
between [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane)
and [W(CN)8]4–. The factors determining
the reaction pathway are temperature and addition of the LiCl electrolyte.
The products include three negatively charged frameworks incorporating
Li+ guests: the 1D Li2[Ni(cyclam)][W(CN)8]·6H2O (1) straight chain, the
1D Li2[Ni(cyclam)][W(CN)8]·2H2O (2) zigzag chain, and the 2D Li2[Ni(cyclam)]3[W(CN)8]2·24H2O (3) honeycomb-like network, as well as the 3D two-fold interpenetrating
[Ni(cyclam)]5[Ni(CN)4][W(CN)8]2·11H2O (4) network and the 1D
[Ni(cyclam)][Ni(CN)4]·2H2O (5) chain, which result from partial decomposition of the starting
complexes. Together with the previously characterized 3D [Ni(cyclam)]2[W(CN)8]·16H2O (6)
network, they constitute the largest family of CN-bridged coordination
polymers obtained from the same pair of building blocks. All compounds
exhibit paramagnetic behavior because of the separation of paramagnetic
nickel(II) centers through the diamagnetic polycyanidometallates.
However, the presence of the photomagnetically active octacyanidotungstate(IV)
ions allowed observation of the magnetic superexchange after the violet
light excitation (405 nm) for compound 3, which constitutes
the first example of the photomagnetic effect in a NiII–[WIV(CN)8] system. The photomagnetic
investigations for fully hydrated and dehydrated sample of 3, as well as for the isostructural octacyanidomolybdate(IV)-based
network are discussed. Six
coordination networks of different dimensionality and
topology can be obtained from the same pair of building blocks: [Ni(cyclam)]2+ and [W(CN)8]4− depending on
reaction conditions. The negatively charged 2D Li2[Ni(cyclam)]3[W(CN)8]2·nH2O microporous network is the first example of the photomagnetic
effect in a NiII−[WIV(CN)8] system.
Collapse
Affiliation(s)
- Michał Heczko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ewa Sumińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Magott M, Ceglarska M, Rams M, Sieklucka B, Pinkowicz D. Magnetic interactions controlled by light in the family of Fe(II)-M(IV) (M = Mo, W, Nb) hybrid organic-inorganic frameworks. Dalton Trans 2022; 51:8885-8892. [PMID: 35635098 DOI: 10.1039/d2dt00777k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new hybrid organic-inorganic frameworks employing octacyanidometallates and 4,4'-bypiridine dioxide (4,4'-bpdo) as bridging molecules were prepared and characterized. The three-dimensional coordination frameworks {[FeII(μ-4,4'-bpdo)(H2O)2]2[MIV(CN)8]·9H2O}n (Fe2Mo, Fe2W and Fe2Nb; M = Mo, W and Nb) are composed of cyanido-bridged chains, which are interconnected by the organic linkers. Magnetic measurements for Fe2Nb show a two-step transition to the antiferromagnetic state, which results from the cooperation of antiferromagnetic intra- and inter-chain interactions. Fe2Mo and Fe2W, on the other hand, behave as paramagnets at 2 K because of the diamagnetic character of the corresponding octacyanidometallate(IV) building units. However, after 450 nm light irradiation they show transition to the metastable high spin MoIV or WIV states, respectively, with distinct ferromagnetic intrachain spin interactions, as opposed to the antiferromagnetic ones observed in the Fe2Nb framework.
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Magdalena Ceglarska
- Jagiellonian University, Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michał Rams
- Jagiellonian University, Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
14
|
Zhu HL, Meng YS, Hu JX, Oshio H, Liu T. Photo-Induced Magnetic Hysteresis in a Cyanide-bridged Two-dimensional [Mn 2W] Coordination Polymer. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01101h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D magnetic materials have been opening a new horizon in materials science. It is challenging to switch the magnetic hysteresis of 2D magnetic materials via light irradiation, applicable for future...
Collapse
|
15
|
Pittala N, Cuza E, Pinkowicz D, Magott M, Marchivie M, Boukheddaden K, Triki S. Antagonist elastic interactions tuning spin crossover and LIESST behaviours in Fe II trinuclear-based one-dimensional chains. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01629j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new 1-D spin SCO coordination polymer based on FeII trinuclear units covalently linked by a flexible coligand has been reported as an unusual platform and model system for experimental study on the origin of the step-like feature in 1-D systems.
Collapse
Affiliation(s)
- Narsimhulu Pittala
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Emmelyne Cuza
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mathieu Marchivie
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Kamel Boukheddaden
- Université Paris-Saclay, Université de Versailles Saint Quentin, CNRS, GEMaC UMR 8635, 45 Av. des Etats-Unis, 78035 Versailles Cedex, France
| | - Smail Triki
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| |
Collapse
|
16
|
Puzan A, Zychowicz M, Wang J, Zakrzewski JJ, Reczyński M, Ohkoshi SI, Chorazy S. Tunable magnetic anisotropy in luminescent cyanido-bridged {Dy 2Pt 3} molecules incorporating heteroligand Pt IV linkers. Dalton Trans 2021; 50:16242-16253. [PMID: 34730145 DOI: 10.1039/d1dt03071j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interest in the generation of photoluminescence in lanthanide(III) single-molecule magnets (SMMs) is driven by valuable magneto-optical correlations as well as perspectives toward magnetic switching of emission and opto-magnetic devices linking SMMs with optical thermometry. In the pursuit of enhanced magnetic anisotropy and optical features, the key role is played by suitable ligands attached to the 4f metal ion. In this context, cyanido complexes of d-block metal ions, serving as expanded metalloligands, are promising. We report two novel discrete coordination systems serving as emissive SMMs, {[DyIII(H2O)3(tmpo)3]2[PtIVBr2(CN)4]3}·2H2O (1) and {[DyIII(H2O)(tmpo)4]2[PtIVBr2(CN)4]3}·2CH3CN (2) (tmpo = trimethylphosphine oxide), obtained by combining DyIII complexes with uncommon dibromotetracyanidoplatinate(IV) ions, [PtIVBr2(CN)4]2-. They are built of analogous Z-shaped cyanido-bridged {Dy2Pt3} molecules but differ in the coordination number of DyIII (C.N. = 8 in 1, C.N. = 7 in 2) and the number of coordinated tmpo ligands (three in 1, four in 2) which is related to the applied solvents. As a result, both compounds reveal DyIII-centred slow magnetic relaxation but only 1 shows SMM character at zero dc field, while 2 is a field-induced SMM. The relaxation dynamics in both systems is governed by the Raman relaxation mechanism. These effects were analysed using ac magnetic data and the results of the ab initio calculations with the support of magneto-optical correlations based on low-temperature high-resolution emission spectra. Our findings indicate that heteroligand halogeno-cyanido PtIV complexes are promising precursors for emissive SMMs with the further potential of sensitivity to external stimuli that may be related to the lability of the axially positioned halogeno ligands.
Collapse
Affiliation(s)
- Agnieszka Puzan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland.
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland.
| | - Junhao Wang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland.
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland. .,Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-386 Kraków, Poland.
| |
Collapse
|
17
|
Low-Coordinate Dinuclear Dysprosium(III) Single Molecule Magnets Utilizing LiCl as Bridging Moieties and Tris(amido)amine as Blocking Ligands. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7090125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A low-coordinate dinuclear dysprosium complex {[Dy(N3N)(THF)][LiCl(THF)]}2 (Dy2) with a double bridging ‘LiCl’ moiety and tris(amido)amine (N3N)3− anions as a blocking ligand is synthesized and characterized structurally and magnetically. Thanks to the use of the chelating blocking ligand (N3N)3− equipped with large steric –SiMe3 groups, the coordination sphere of both DyIII ions is restricted to only six donor atoms. The three amido nitrogen atoms determine the orientation of the easy magnetization axes of both DyIII centers. Consequently, Dy2 shows slow magnetic relaxation typical for single molecule magnets (SMMs). However, the effective energy barrier for magnetization reversal determined from the AC magnetic susceptibility measurements is much lower than the separation between the ground and the first excited Kramers doublet based on the CASSCF ab initio calculations. In order to better understand the possible influence of the anticipated intramolecular magnetic interactions in this dinuclear molecule, its GdIII-analog {[Gd(N3N)(THF)][LiCl(THF)]}2 (Gd2) is also synthesized and studied magnetically. Detailed magnetic measurements reveal very weak antiferromagnetic interactions in Gd2. This in turn suggests similar antiferromagnetic interactions in Dy2, which might be responsible for its peculiar SMM behavior and the absence of the magnetic hysteresis loop.
Collapse
|
18
|
Johannsen S, Ossinger S, Markussen T, Tuczek F, Gruber M, Berndt R. Electron-Induced Spin-Crossover in Self-Assembled Tetramers. ACS NANO 2021; 15:11770-11778. [PMID: 34133115 DOI: 10.1021/acsnano.1c02698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spin crossover compound Fe(H2B(pyrazole)(pyridylpyrazole))2 was investigated in detail on Ag(111) with scanning tunneling microscopy (STM). A large fraction of the deposited molecules condenses into gridlike tetramers. Two molecules of each tetramer may be converted between two states by current injection. We attribute this effect to a spin transition. This interpretation is supported by control experiments on the analogous, magnetically passive Zn compound that forms virtually identical tetramers but exhibits no switching. The switching yields were studied for various electron energies, and the resulting values exceed those reported from other SCO systems by 2 orders of magnitude. The other two molecules of a tetramer were immutable. However, they may be used as contacts for current injection that leads to conversion of one of their neighbors. This "remote" switching is fairly efficient with yields reduced by only one to two orders of magnitude compared to direct excitation of a switchable molecule. We present a model of the tetramer structure that reproduces key observations from the experiments. In particular, sterical blocking prevents spin crossover of two molecules of a tetramer. Density functional theory calculations show that the model indeed represents a minimum energy structure. They also reproduce STM images and corroborate a remote-switching mechanism that is based on electron transfer between molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Sascha Ossinger
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Troels Markussen
- Synopsys Denmark, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
19
|
Magott M, Gaweł B, Sarewicz M, Reczyński M, Ogorzały K, Makowski W, Pinkowicz D. Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chem Sci 2021; 12:9176-9188. [PMID: 34276948 PMCID: PMC8261731 DOI: 10.1039/d1sc02060a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Bartłomiej Gaweł
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Karolina Ogorzały
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Wacław Makowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
20
|
Kawabata S, Nakabayashi K, Imoto K, Klimke S, Renz F, Ohkoshi SI. Second harmonic generation on chiral cyanido-bridged Fe II-Nb IV spin-crossover complexes. Dalton Trans 2021; 50:8524-8532. [PMID: 34075991 DOI: 10.1039/d1dt01324f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating chiral organic ligands into cyanido-bridged FeII-NbIV assemblies synthesized chiral spin-crossover complexes, FeII2[NbIV(CN)8](L)8·6H2O (L = R-, S-, or rac-1-(3-pyridyl)ethanol: R-FeNb, S-FeNb, or rac-FeNb). Rietveld analyses based on a racemic complex of rac-FeNb indicate that the chiral complexes have a cubic crystal structure in the I213 space group with a three-dimensional cyanido-bridged FeII-NbIV coordination network. All the complexes exhibit spin crossover between the high-spin (HS) and the low-spin (LS) FeII states without thermal hysteresis. Chiral complexes of R-FeNb and S-FeNb show second harmonic generation (SHG) due to their non-centrosymmetric structure. The I213 space group provides second-order susceptibility tensor elements of χxyz, χyzx, and χzxy, which contribute to SHG. The temperature-dependent second harmonic light intensity change is due to spin crossover between FeIIHS and FeIILS.
Collapse
Affiliation(s)
- Shintaro Kawabata
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Stephen Klimke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Kaushik K, Ghosh S, Kamilya S, Rouzières M, Mehta S, Mondal A. Reversible Photo- and Thermo-Induced Spin-State Switching in a Heterometallic { 5d-3d} W 2Fe 2 Molecular Square Complex. Inorg Chem 2021; 60:7545-7552. [PMID: 33929177 DOI: 10.1021/acs.inorgchem.1c01014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the complex-as-a-ligand strategy, self-assembly of [W(CN)8]3- and iron(II) with bidentate nitrogen donor ligand bik (bik = bis(1-methyl-1H-imidazol-2-yl)ketone) ligand affords a cyanide-bridged [W2Fe2] molecular square complex [HNBu3]2{[W(CN)8]2[Fe(bik)2]2}·6H2O·CH3OH (1). The complex was characterized by single-crystal X-ray diffraction analyses, (photo)magnetic studies, optical reflectivity, electrochemical studies, and spectroscopic studies. Structural analyses revealed that in the [W2Fe2] square motif tungsten(V) and iron(II) centers reside in an alternate corner of the square and are bridged by the cyanide ligands. Complex 1 exhibits thermo-induced spin crossover (SCO) between {WV (S = 1/2) - FeIILS (S = 0)} and {WV (S = 1/2) - FeIIHS (S = 2)} pairs near room temperature and photoinduced spin-state switching with TLIESST = 70 K under light irradiation at low temperature. To the best of our knowledge, 1 represents the first complex containing iron(II) and [WV(CN)8]3- units exhibiting both SCO and photomagnetic effect.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
22
|
Liu Q, Hu JX, Meng YS, Jiang WJ, Wang JL, Wen W, Wu Q, Zhu HL, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single-Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021; 60:10537-10541. [PMID: 33569868 DOI: 10.1002/anie.202017249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/29/2022]
Abstract
The production of photo-switchable molecular nanomagnets with substantial coercivity, which is indispensable for information storage and process applications, is challenging. Introducing photo-responsive spin-crossover units provides a feasible means of controlling the magnetic anisotropy, interactions, and overall nanomagnet properties. Herein, we report a cyanide-bridged chain 1⋅12H2 O ({[(Pz Tp)FeIII (CN)3 ]2 FeII (Pmat)2 }n ⋅12 H2 O) generated by linking the FeII -based spin-crossover unit with the [(Pz Tp)Fe(CN)3 ]- (Pz Tp: tetrakis(pyrazolyl)borate) building block in the presence of asymmetric ditopic ligand Pmat ((4-pyridine-4-yl)methyleneamino-1,2,4-triazole). Structural characterization revealed that the introduction of this asymmetric ligand led to a distorted coordination environment of FeII ions, which were equatorially coordinated by four cyanide N atoms, and apically coordinated by one pyridine N atom and one triazole N atom. Upon 808-nm light irradiation, 1⋅12H2 O underwent photoinduced spin-crossover and exhibited single-chain magnet behavior with a coercive field of up to 1.3 T. This represents a 3d-based photoinduced single-chain magnet exhibiting pronounced hysteresis.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Ji-Xiang Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Jun-Li Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024, Dalian, China
| |
Collapse
|
23
|
Liu Q, Hu J, Meng Y, Jiang W, Wang J, Wen W, Wu Q, Zhu H, Zhao L, Liu T. Asymmetric Coordination Toward a Photoinduced Single‐Chain Magnet Showing High Coercivity Values. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Ji‐Xiang Hu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen‐Jing Jiang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Jun‐Li Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Qiong Wu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Hai‐Lang Zhu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
24
|
Sellin M, Rupf SM, Abram U, Malischewski M. Eightfold Electrophilic Methylation of Octacyanotungstate [W(CN) 8] 4-/3-: Preparation of Homoleptic, Eight-Coordinate Methyl Isocyanide Complexes [W(CNMe) 8] 4+/5. Inorg Chem 2021; 60:5917-5924. [PMID: 33775090 DOI: 10.1021/acs.inorgchem.1c00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Homoleptic eightfold coordinated methyl isocyanide complexes of W(IV) and W(V) have been prepared for the first time. The reaction of [NBu4]4[W(CN)8] with methyl triflate (MeOTf) gives [W(CNMe)8][OTf]4. The even stronger methylating mixture of methyl fluoride (MeF) and arsenic pentafluoride (AsF5) in liquid sulfur dioxide (SO2) is able to fully alkylate both [NBu4]4[W(CN)8] and [NBu4]3[W(CN)8]. The paramagnetic octakis(methyl isocyanide)tungsten(V) complex [W(CNMe)8][AsF6]5 is thermally highly unstable above -30 °C. All compounds have been characterized via single-crystal X-ray diffraction and IR, Raman, and NMR or EPR spectroscopy.
Collapse
Affiliation(s)
- Malte Sellin
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Susanne Margot Rupf
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Moritz Malischewski
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
25
|
Huang W, Ma X, Sato O, Wu D. Controlling dynamic magnetic properties of coordination clusters via switchable electronic configuration. Chem Soc Rev 2021; 50:6832-6870. [PMID: 34151907 DOI: 10.1039/d1cs00101a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Large-sized coordination clusters have emerged as a new class of molecular materials in which many metal atoms and organic ligands are integrated to synergize their properties. As dynamic magnetic materials, such a combination of multiple components functioning as responsive units has many advantages over monometallic systems due to the synergy between constituent components. Understanding the nature of dynamic magnetism at an atomic level is crucial for realizing the desired properties, designing responsive molecular nanomagnets, and ultimately unlocking the full potential of these nanomagnets for practical applications. Therefore, this review article highlights the recent development of large-sized coordination clusters with dynamic magnetic properties. These dynamic properties can be associated with spin transition, electron transfer, and valence fluctuation through their switchable electronic configurations. Subsequently, the article also highlights specialized characterization techniques with different timescales for supporting switching mechanisms, chemistry, and properties. Afterward, we present an overview of coordination clusters (such as cyanide-bridged and non-cyanide assemblies) with dynamic magnetic properties, namely, spin transition and electron transfer in magnetically bistable systems and mixed-valence complexes. In particular, the response mechanisms of coordination clusters are highlighted using representative examples with similar transition principles to gain insights into spin state and mixed-valence chemistry. In conclusion, we present possible solutions to challenges related to dynamic magnetic clusters and potential opportunities for a wide range of intelligent next-generation devices.
Collapse
Affiliation(s)
- Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | | | | | | |
Collapse
|
26
|
Komine M, Imoto K, Namai A, Yoshikiyo M, Ohkoshi SI. Photoswitchable Nonlinear-Optical Crystal Based on a Dysprosium-Iron Nitrosyl Metal Assembly. Inorg Chem 2021; 60:2097-2104. [PMID: 33497219 DOI: 10.1021/acs.inorgchem.0c03493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitrosyl metal complexes (M-NO), in which nitrosyl ligands are coordinated to transition-metal ions, have been studied from the viewpoints of physiological activity, catalytic activity, and photosensitivity. The structural flexibility and electric polarization of the nitrosyl ligand are attractive characteristics. Herein we show a photoswitchable nonlinear-optical (NLO) crystal based on a dysprosium-iron nitrosyl assembly. This crystal is composed of a one-dimensional chain structure in the polar Pna21 space group. Because of spontaneous electric polarization, it exhibits a NLO effect of second harmonic generation (SHG). The SHG signal reversibly changes by alternate irradiation with 473 and 804 nm laser lights. The observed photoreversible switching effect on SHG is caused by photoinduced linkage isomerization of the metal nitrosyl sites, i.e., M-N+═O ↔ M-O═N+. Such an optically switchable NLO crystal should be useful for optical devices such as optical filters and optical shutters as well as probes in SHG microscopy.
Collapse
Affiliation(s)
- Masaya Komine
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Palii A, Aldoshin S, Tsukerblat B. Mixed-valence clusters: Prospects for single-molecule magnetoelectrics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Brzozowska M, Handzlik G, Kurpiewska K, Zychowicz M, Pinkowicz D. Pseudo-tetrahedral vs. pseudo-octahedral Er III single molecule magnets and the disruptive role of coordinated TEMPO radical. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00262g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrahedral ErIII complexes are potential candidates for high-performance single molecule magnets (SMMs).
Collapse
Affiliation(s)
| | | | | | | | - Dawid Pinkowicz
- Jagiellonian University
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| |
Collapse
|
29
|
Kobylarczyk J, Liberka M, Stanek JJ, Sieklucka B, Podgajny R. Tuning of the phase transition between site selective SCO and intermetallic ET in trimetallic magnetic cyanido-bridged clusters. Dalton Trans 2020; 49:17321-17330. [PMID: 33206068 DOI: 10.1039/d0dt03340e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline phases composed of trimetallic 3d-5d-5d' {Fe9[Re(CN)8]6-x[W(CN)8]x(MeOH)24}·yMeOH (x = 1 (1), 2 (2), 3 (3), 4 (4) and 5 (5); y = 10-15) clusters were obtained by altering the octacyanidometalate composition. The temperature dependent studies involving SC XRD, SQUID magnetic measurements, IR spectroscopy and 57Fe Mössbauer spectroscopy revealed reversible phase transition with the retention of single crystal character in each congener. The transition was assisted by reversible spin-crossover (SCO) HSFeII↔LSFeII transition at the central Fe1(ii) site for Fe9Re5W1 (1), Fe9Re4W2 (2), Fe9Re3W3 (3) and Fe9Re2W4 (4). In contrast, the tungsten-rich congener Fe9Re1W5 (5) exhibited nontrivial behavior with the SCO transition being stopped halfway through the cooling process, to be completed with single electron transfer (ET) from the external Fe2(ii) center towards one of the neighboring W(v) sites. The critical temperature Tc of SCO has been systematically increased from 193 K (1) to 247 K (4). All experimental data indicate the domination of the Fe(ii)-W(v) valence states in all crystals 1-5, however, with increasing quantity of [W(CN)8]3- (and decreasing quantity of [Re(CN)8]3-), the valence equilibrium Fe(ii)-W(v) ↔ Fe(iii)-W(iv) was systematically shifted to the right, starting from congener 3. The overall electronic configuration at low temperatures and variable amounts and location of spin carriers along the whole series suggest the remarkable competition between magnetic super-exchange Fe(ii)-CN-W(v) interactions and intermolecular interactions. The observed behavior is in line with the information collected previously for the bimetallic congeners Fe9Re6 and Fe9W6, to shed light on the role of the mixed tri-metallic composition in changing the properties observed for the relevant bimetallic cyanido-bridged skeletons.
Collapse
Affiliation(s)
- Jedrzej Kobylarczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
30
|
Huang XD, Wen GH, Bao SS, Jia JG, Zheng LM. Thermo- and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties. Chem Sci 2020; 12:929-937. [PMID: 34163859 PMCID: PMC8178979 DOI: 10.1039/d0sc04851h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial smart materials with switchable multifunctionality are of immense interest owing to their wide application in sensors, displays and memory devices. Lanthanide complexes are promising multifunctional materials integrating optical and magnetic characteristics. However, synergistic manipulation of different physical properties in lanthanide systems is still challenging. Herein we designed and synthesized a mononuclear complex [DyIII(SCN)3(depma)2(4-hpy)2] (1), which incorporates 9-diethylphosphonomethylanthracene (depma) as a photo-active component and 4-hydroxypyridine (4-hpy) as a polar component. This compound shows several unusual features: (a) reversible thermo-responsive phase transition associated with the order-disorder transition of 4-hpy and SCN-, which leads to thermochromic behavior and dielectric anomaly; (b) reversible photo-induced dimerization of anthracene groups, which leads to synergistic switching of luminescence, magnetic and dielectric properties. To our knowledge, compound 1 is the first example of lanthanide complexes that show stimuli-triggered synergistic and reversible switching of luminescence, magnetic and dielectric properties.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
31
|
Muddassir M, Alarifi A, Afzal M. Synthesis, structural topology, DFT, and photoluminescence properties of Sm(III) and octacyanomolybdate(V) building-block-based 1-D chain complex. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
|
33
|
Yoshida T, Nakabayashi K, Tokoro H, Yoshikiyo M, Namai A, Imoto K, Chiba K, Ohkoshi SI. Extremely low-frequency phonon material and its temperature- and photo-induced switching effects. Chem Sci 2020; 11:8989-8998. [PMID: 34123153 PMCID: PMC8163449 DOI: 10.1039/d0sc02605k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022] Open
Abstract
Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm-1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm-1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co-W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal-organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.
Collapse
Affiliation(s)
- Takaya Yoshida
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Marie Yoshikiyo
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kouji Chiba
- Material Science Div., MOLSIS Inc. Tokyo Daia Bldg., 1-28-38 Shinkawa, Chuo-ku Tokyo 104-0033 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
34
|
Jankowski R, Reczyński M, Chorazy S, Zychowicz M, Arczyński M, Kozieł M, Ogorzały K, Makowski W, Pinkowicz D, Sieklucka B. Guest-Dependent Pressure-Induced Spin Crossover in Fe II 4 [M IV (CN) 8 ] 2 (M=Mo, W) Cluster-Based Material Showing Persistent Solvent-Driven Structural Transformations. Chemistry 2020; 26:11187-11198. [PMID: 32227503 DOI: 10.1002/chem.202000146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Indexed: 01/28/2023]
Abstract
Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.
Collapse
Affiliation(s)
- Robert Jankowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Mikołaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Mirosław Arczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Marcin Kozieł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Karolina Ogorzały
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Wacław Makowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387, Krakow, Poland
| |
Collapse
|
35
|
Chorazy S, Zakrzewski JJ, Magott M, Korzeniak T, Nowicka B, Pinkowicz D, Podgajny R, Sieklucka B. Octacyanidometallates for multifunctional molecule-based materials. Chem Soc Rev 2020; 49:5945-6001. [PMID: 32685956 DOI: 10.1039/d0cs00067a] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.
Collapse
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
36
|
Chorazy S, Charytanowicz T, Pinkowicz D, Wang J, Nakabayashi K, Klimke S, Renz F, Ohkoshi S, Sieklucka B. Octacyanidorhenate(V) Ion as an Efficient Linker for Hysteretic Two‐Step Iron(II) Spin Crossover Switchable by Temperature, Light, and Pressure. Angew Chem Int Ed Engl 2020; 59:15741-15749. [DOI: 10.1002/anie.202007327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Tomasz Charytanowicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Junhao Wang
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Nakabayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Stephen Klimke
- Institute of Inorganic Chemistry Leibniz University Hannover Callinstrasse 9 30167 Hannover Germany
| | - Franz Renz
- Institute of Inorganic Chemistry Leibniz University Hannover Callinstrasse 9 30167 Hannover Germany
| | - Shin‐ichi Ohkoshi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Barbara Sieklucka
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
37
|
Chorazy S, Charytanowicz T, Pinkowicz D, Wang J, Nakabayashi K, Klimke S, Renz F, Ohkoshi S, Sieklucka B. Octacyanidorhenate(V) Ion as an Efficient Linker for Hysteretic Two‐Step Iron(II) Spin Crossover Switchable by Temperature, Light, and Pressure. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Tomasz Charytanowicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Junhao Wang
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Nakabayashi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Stephen Klimke
- Institute of Inorganic Chemistry Leibniz University Hannover Callinstrasse 9 30167 Hannover Germany
| | - Franz Renz
- Institute of Inorganic Chemistry Leibniz University Hannover Callinstrasse 9 30167 Hannover Germany
| | - Shin‐ichi Ohkoshi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Barbara Sieklucka
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
38
|
Photoinduced Mo−CN Bond Breakage in Octacyanomolybdate Leading to Spin Triplet Trapping. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Qi X, Pillet S, de Graaf C, Magott M, Bendeif EE, Guionneau P, Rouzières M, Marvaud V, Stefańczyk O, Pinkowicz D, Mathonière C. Photoinduced Mo-CN Bond Breakage in Octacyanomolybdate Leading to Spin Triplet Trapping. Angew Chem Int Ed Engl 2020; 59:3117-3121. [PMID: 31793123 DOI: 10.1002/anie.201914527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 01/30/2023]
Abstract
The photoinduced properties of the octacoordinated complex K4 MoIV (CN)8 ⋅2 H2 O were studied by theoretical calculations, crystallography, and optical and magnetic measurements. The crystal structure recorded at 10 K after blue light irradiation reveals an heptacoordinated Mo(CN)7 species originating from the light-induced cleavage of one Mo-CN bond, concomitant with the photoinduced formation of a paramagnetic signal. When this complex is heated to 70 K, it returns to its original diamagnetic ground state, demonstrating full reversibility. The photomagnetic properties show a partial conversion into a triplet state possessing significant magnetic anisotropy, which is in agreement with theoretical studies. Inspired by these results, we isolated the new compound [K(crypt-222)]3 [MoIV (CN)7 ]⋅3 CH3 CN using a photochemical pathway, confirming that photodissociation leads to a stable heptacyanomolybdate(IV) species in solution.
Collapse
Affiliation(s)
- Xinghui Qi
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600, Pessac, France
| | - Sébastien Pillet
- Université de Lorraine, CNRS, CRM2, Nancy, 54506, Vandoeuvre-les-Nancy, France
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Carrer Marcellí Domingo 1, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Michał Magott
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - El-Eulmi Bendeif
- Université de Lorraine, CNRS, CRM2, Nancy, 54506, Vandoeuvre-les-Nancy, France
| | - Philippe Guionneau
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600, Pessac, France
| | | | - Valérie Marvaud
- Sorbonne Université, IPCM-CNRS-UMR-8232, cc 229, 4 place Jussieu, 75252, Paris Cedex 05, France
| | - Olaf Stefańczyk
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600, Pessac, France.,Present address: Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Dawid Pinkowicz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Corine Mathonière
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600, Pessac, France
| |
Collapse
|