1
|
Lovera SO, Gregory A, Morelos KE, Farias P, Carta V, Musgrave CB, Lavallo V. Noncatalyzed Intramolecular B-N and B-O Cross-Coupling of "Inert" Carboranes Lead to the Formation of an Unusual Oxoborane, via Reversible Cluster C-B Bond Scission. J Am Chem Soc 2025; 147:17764-17771. [PMID: 40360424 PMCID: PMC12123610 DOI: 10.1021/jacs.5c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
Polyhalogenated closo-12-vertex carborane anions are thought to be inert species incapable of participating in direct B-X substitution reactions. Here, we show that this is not true and that such species can be easily coaxed into intramolecular cross-coupling cyclizations without the need for a catalyst. When cage C-tethered O and N-heteroallylic anions are generated, a variety of cyclized products can be formed in high yield under mild conditions. Additionally, we show that even C-tethered neutral nucleophiles, such as the pyridine moiety, undergo facile B-X substitution chemistry and these reactions are not dependent on the countercation. Serendipitously, we also found that when these cyclizations are attempted with acetamide derivatives, an unprecedented cluster C-B bond scission reaction occurs, producing an unprecedented oxoborane stabilized by multicentered bonding. Amazingly this molecule can be protonated, leading to reformation of the C-B bond and cluster reorganization, and this process is reversible.
Collapse
Affiliation(s)
- Sergio O. Lovera
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Aaron Gregory
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | | | - Phillip Farias
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Veronica Carta
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Charles B. Musgrave
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Vincent Lavallo
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| |
Collapse
|
2
|
Raviprolu VT, Gregory A, Banda I, McArthur SG, McArthur SE, Goddard WA, Musgrave CB, Lavallo V. Confirmation of Breslow's hypothesis: A carbene stable in liquid water. SCIENCE ADVANCES 2025; 11:eadr9681. [PMID: 40215311 PMCID: PMC11988420 DOI: 10.1126/sciadv.adr9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
In 1958, Breslow proposed that the coenzyme thiamine, also known as vitamin B1, acted as a source of transient carbenes that facilitated the catalytic activity of various important enzymes. This was a controversial hypothesis, as, then and still now, carbenes are believed to be incompatible with water. Although evidence such as deuterium labeling experiments and the trapping of the so-called Breslow intermediate support Breslow's hypothesis, no spectroscopic evidence has ever been presented to prove that carbenes can exist or be generated in water. In this study, we disclose the synthesis and complete spectroscopic characterization by nuclear magnetic resonance and a single-crystal structure of a carbene that can be generated in water and isolated as a stable species, thus unambiguously validating Breslow's visionary hypothesis.
Collapse
Affiliation(s)
- Varun Tej Raviprolu
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Aaron Gregory
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Isaac Banda
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Scott G. McArthur
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
- Department of Chemistry, Butte College, Oroville, CA, USA
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - William A. Goddard
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Vincent Lavallo
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
3
|
Proctor S, Farias P, Carta V, Lavallo V. Beyond the Hawthorne Reaction: Li + Induced Thermal Dehydrocoupling of closo-10-vertex Carborane Anions. Inorg Chem 2025; 64:757-760. [PMID: 39719019 PMCID: PMC11734106 DOI: 10.1021/acs.inorgchem.4c04644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
In the 1970s Hawthorne reported an electrochemical dehydrocoupling reaction of the closo-carborane anion [HCB9H91-] 1 to form the biscarborane [C2B18H182-] 2. In this Communication we show that the said "Hawthorne Reaction" can be achieved thermally and that it tolerates C-butylation. The new compound 2butyl was fully characterized by 11B, 1H, and 13C NMR spectroscopies, high-resolution mass spectrometry, and single-crystal X-ray diffraction. One interesting caveat is that 2 or 2butyl only form thermally when they are salts of Li+ and not NEt4+, Na+, K+, or Cs+. This observation means that Li+ in some way facilitates this process, introducing a new kind of Li+ effect.
Collapse
Affiliation(s)
- Stephen Proctor
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Vincent Lavallo
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Thackeray S, Mahoney J, Arrington A, Wilklow-Marnell M, Brennessel WW. Crystal structures of the (η 2:η 2-cyclo-octa-1,5-diene)(η 6-toluene)-iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh-yl)anthra-quinone ligands. Acta Crystallogr E Crystallogr Commun 2024; 80:1101-1109. [PMID: 39372175 PMCID: PMC11451491 DOI: 10.1107/s2056989024008922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo-octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl-phosphinito)anthra-quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo-octa-1,5-diene)(η6-toluene)-iridium(I) tri-μ-chlorido-bis-({3-[(di-tert-butyl-phosphan-yl)-oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group P. The cation and anion are linked via weak C-H⋯O inter-actions. The stronger inter-molecular attractions are likely the offset parallel π-π inter-actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra-quinone moieties, the latter of which are capped by toluene solvate mol-ecules, making for π-stacks of four mol-ecules each. The related ligand, 2-(di-tert-butyl-phosphinometh-yl)-anthra-quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro-form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis-(carbon-yl{3-[(di-tert-butyl-phosphan-yl)-oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group P. Offset parallel π-π inter-actions between anthra-quinone groups of adjacent mol-ecules link the mol-ecules in one dimension.
Collapse
Affiliation(s)
- Sachin Thackeray
- Department of Chemistry State University of New York at New Paltz New Paltz NY 12561 USA
| | - James Mahoney
- Department of Chemistry State University of New York at New Paltz New Paltz NY 12561 USA
| | - Ashleigh Arrington
- Department of Chemistry State University of New York at New Paltz New Paltz NY 12561 USA
| | - Miles Wilklow-Marnell
- Department of Chemistry State University of New York at New Paltz New Paltz NY 12561 USA
| | - William W. Brennessel
- Department of Chemistry 120 Trustee Road University of Rochester,Rochester NY 14627 USA
| |
Collapse
|
5
|
Jiang HJ, Zuo H, Zhu M, Sharanov I, Irran E, Klare HFT, Tshepelevitsh S, Lõkov M, Leito I, Oestreich M. Chiral Carborane Acids Decorated with Binol-Based Phosphonates: Synthesis, Characterization, and Application. J Org Chem 2024; 89:756-760. [PMID: 38109189 DOI: 10.1021/acs.joc.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The syntheses of hexabrominated closo-carborates decorated with different chiral Binol-derived phosphonates and their conjugate acids are described. X-ray diffraction analysis reveals a polymeric structure for the sodium salt with the anionic units connected by [B-Br-Na-O═P]+ linkages. For the acid, coordination of the proton to the phosphonate's P═O oxygen atom is assumed. The pKa value was estimated by combining experiments and computations. Application of these Brønsted acids as chiral catalysts in an imino-ene and a Mukaiyama-Mannich reaction was moderately successful.
Collapse
Affiliation(s)
- Hua-Jie Jiang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Honghua Zuo
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Min Zhu
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Illia Sharanov
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Sofja Tshepelevitsh
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Märt Lõkov
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
6
|
Effect of Nature of Substituents on Coordination Properties of Mono- and Disubstituted Derivatives of Boron Cluster Anions [BnHn]2– (n = 10, 12) and Carboranes with exo-Polyhedral B–X Bonds (X = N, O, S, Hal). INORGANICS 2022. [DOI: 10.3390/inorganics10120238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
This review systematizes data on the coordination ability of mono- and disubstituted derivatives of boron cluster anions and carboranes in complexation with transition metals. Boron clusters anions [BnHn]2–, monocarborane anions [CBnHn–1]–, and dicarboranes [C2BnHn–2] (with non-functionalized carbon atoms) (n = 10, 12) containing the B–X exo-polyhedral bonds (X = N, O, S, Hal) are discussed. Synthesis and structural features of complexes known to date are described. The effect of complexing metal and substituent attached to the boron cage on the composition and structures of the final complexes is analyzed. It has been established that substituted derivatives of boron cluster anions and carboranes can act as both ligands and counterions. A complexing agent can coordinate substituted derivatives of the boron cluster anions due to three-center two-electron 3c2e MHB bonds, by the substituent functional groups, or a mixed type of coordination can be realized, through the BH groups of the boron cage and the substituent. As for B-substituted carboranes, complexes with coordinated substituents or salts with non-coordinated carborane derivatives have been isolated; compounds with MHB bonding are not characteristic of carboranes.
Collapse
|
7
|
Zhang C, Wang J, Lin Z, Ye Q. Synthesis, Characterization, and Properties of Three-Dimensional Analogues of 9-Borafluorenes. Inorg Chem 2022; 61:18275-18284. [DOI: 10.1021/acs.inorgchem.2c03111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Shen Y, Kong X, Yang F, Bian HD, Cheng G, Cook TR, Zhang Y. Deep Blue Phosphorescence from Platinum Complexes Featuring Cyclometalated N-Pyridyl Carbazole Ligands with Monocarborane Clusters (CB 11H 12-). Inorg Chem 2022; 61:16707-16717. [PMID: 36205461 DOI: 10.1021/acs.inorgchem.2c02467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of deep blue phosphorescent materials in high-performance displays and solid-state lighting requires high quantum efficiencies and color purities. Here, we describe the preparation and luminescent properties of novel platinum triplet emitters featuring cyclometalated N-pyridyl-carbazole ligands functionalized with closo-monocarborane clusters [CB11H12]-. All reported complexes were fully characterized by using standard small molecule techniques (UV-vis, cyclic voltammetry, nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS)), and their solid-state structures were elucidated by X-ray diffraction. These platinum phosphors emit in the blue region of the visible wavelength spectrum in both the solid and solution states. Complex 4a exhibits the highest luminous efficiency at λem = 439 nm with a photoluminescent quantum yield (PLQY) of 60% by dispersing in a PMMA matrix. Electrochemical and computational studies of complexes 4a and 4b revealed that the blue phosphorescence originates mainly from intraligand 3π → π* (3ILCT) transitions with relatively small 3MLCT mixing. A deep-blue OLED containing 4a as the light-emitting dopant was successfully fabricated using a solution-processed method, and the device exhibited blue photoluminescence with CIE coordinates of (0.17, 0.15) and a maximum external quantum efficiency (EQEmax) value of 6.2%. This article represents the pioneering study of a deep blue PhOLED using a Pt complex bearing a closo-monocarborane anion substituent, providing a new avenue into the preparation of novel triplet emitters based on boron-rich cluster anions.
Collapse
Affiliation(s)
- Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Fengjie Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - He-Dong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| |
Collapse
|
9
|
Zhang C, Liu X, Wang J, Ye Q. A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability. Angew Chem Int Ed Engl 2022; 61:e202205506. [PMID: 35713166 PMCID: PMC9541227 DOI: 10.1002/anie.202205506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E-H bond activation (E=B, Si, Ge) was investigated. While the reaction with B-H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on Nα upon N2 elimination, the Si-H (Et3 SiH, PhMe2 SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5int and 6int being isolated and characterized. In contrast, the cooperative Ge-H was reversible and stayed at the 1,2-addition step.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
| | - Xiaocui Liu
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
| | - Junyi Wang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongHong Kong
| | - Qing Ye
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Zhang C, Liu X, Wang J, Ye Q. A Three‐Dimensional Inorganic Analogue of 9,10‐Diazido‐9,10‐Diboraanthracene – A Lewis Superacidic Azido Borane with Reactivity and Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chonghe Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Xiaocui Liu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Junyi Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Qing Ye
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
11
|
Ho LP, Tamm M. N‐Heterocyclic Carbenes Carrying Weakly Coordinating Anions. Chemistry 2022; 28:e202200530. [PMID: 35357045 PMCID: PMC9325441 DOI: 10.1002/chem.202200530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Luong Phong Ho
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
12
|
Tej V, McArthur S, Banda I, Gregory A, Fisher SP, McArthur S, Lavallo V. Fusing 10-vertex closo-Carborane Anions with N-Heterocyclic Carbenes. Chem Commun (Camb) 2022; 58:10580-10582. [DOI: 10.1039/d2cc02596e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovered by Knöth in 1964, the 10-vertex closo-carborane anion [HCB9H91-] is a classical bicapped square antiprism that contains an unusual pentacoordinate carbon center. Compared to its larger icosahedral cousin [HCB11H111-],...
Collapse
|
13
|
Mills HA, Alsarhan F, Ong TC, Gembicky M, Rheingold AL, Spokoyny AM. Icosahedral m-Carboranes Containing Exopolyhedral B-Se and B-Te Bonds. Inorg Chem 2021; 60:19165-19174. [PMID: 34855370 DOI: 10.1021/acs.inorgchem.1c02981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chalcogen-containing carboranes have been known for several decades and possess stable exopolyhedral B(9)-Se and B(9)-Te σ bonds despite the electron-donating ability of the B(9) vertex. While these molecules are known, little has been done to thoroughly evaluate their electrophilic and nucleophilic behavior. Herein, we report an assessment of the electrophilic reactivity of m-carboranylselenyl(II), -tellurenyl(II), and -tellurenyl(IV) chlorides and establish their reactivity pattern with Grignard reagents, alkenes, alkynes, enolates, and electron-rich arenes. These electrophilic reactions afford unique electron-rich B-Y-C (Y = Se, Te) bonding motifs not commonly found before. Furthermore, we show that m-carboranylselenolate, and even m-carboranyltellurolate, can be competent nucleophiles and participate in nucleophilic aromatic substitution reactions. Arene substitution chemistry is shown to be further extended to electron-rich species via palladium-mediated cross-coupling chemistry.
Collapse
Affiliation(s)
- Harrison A Mills
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fadi Alsarhan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ta-Chung Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Recent advances on carborane-based ligands in low-valent group 13 and group 14 elements chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zapf L, Radius U, Finze M. 1,3-Bis(tricyanoborane)imidazoline-2-ylidenate Anion-A Ditopic Dianionic N-Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021; 60:17974-17980. [PMID: 33961330 PMCID: PMC8453866 DOI: 10.1002/anie.202105529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 01/14/2023]
Abstract
The 1,3-bis(tricyanoborane)imidazolate anion 1 was obtained in high yield from lithium imidazolate and B(CN)3 -pyridine adduct. Anion 1 is chemically very robust and thus allowed the isolation of the corresponding H5 O2 + salt. Furthermore, monoanion 1 served as starting species for the novel dianionic N-heterocyclic carbene (NHC), 1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion 3 that acts as ditopic ligand via the carbene center and the cyano groups at boron. First reactions of this new NHC 3 with methyl iodide, elemental selenium, and [Ni(CO)4 ] led to the methylated imidazolate ion 4, the dianionic selenium adduct 5, and the dianionic nickel tricarbonyl complex 6. These NHC derivatives provide a first insight into the electronic and steric properties of the dianionic NHC 3. Especially the combination of properties, such as double negative charge, different coordination sites, large buried volume and good σ-donor and π-acceptor ability, make NHC 3 a unique and promising ligand and building block.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB)Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
16
|
Zapf L, Radius U, Finze M. Das 1,3‐Bis(tricyanoboran)imidazolin‐2‐ylidenat‐Anion – Ein ditopischer dianionischer N‐heterocyclischer Carben‐Ligand. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ludwig Zapf
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Udo Radius
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Maik Finze
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
17
|
Zhu JL, Zhu P, Mei J, Xie J, Guan J, Zhang KL. Proton conduction and luminescent sensing property of two newly constructed positional isomer-dependent redox-active Mn(II)-organic frameworks. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Handelmann J, Babu CN, Steinert H, Schwarz C, Scherpf T, Kroll A, Gessner VH. Towards the rational design of ylide-substituted phosphines for gold(i)-catalysis: from inactive to ppm-level catalysis. Chem Sci 2021; 12:4329-4337. [PMID: 34168748 PMCID: PMC8179644 DOI: 10.1039/d1sc00105a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The implementation of gold catalysis into large-scale processes suffers from the fact that most reactions still require high catalyst loadings to achieve efficient catalysis thus making upscaling impractical. Here, we report systematic studies on the impact of the substituent in the backbone of ylide-substituted phosphines (YPhos) on the catalytic activity in the hydroamination of alkynes, which allowed us to increase the catalyst performance by orders of magnitude. While electronic changes of the ligand properties by introduction of aryl groups with electron-withdrawing or electron-donating groups had surprisingly little impact on the activity of the gold complexes, the use of bulky aryl groups with ortho-substituents led to a remarkable boost in the catalyst activity. However, this catalyst improvement is not a result of an increased steric demand of the ligand towards the metal center, but due to steric protection of the reactive ylidic carbon centre in the ligand backbone. The gold complex of the thus designed mesityl-substituted YPhos ligand YMesPCy2, which is readily accessible in one step from a simple phosphonium salt, exhibited a high catalyst stability and allowed for turnover numbers up to 20 000 in the hydroamination of a series of different alkynes and amines. Furthermore, the catalyst was also active in more challenging reactions including enyne cyclisation and the formation of 1,2-dihydroquinolines.
Collapse
Affiliation(s)
- Jens Handelmann
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Chatla Naga Babu
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Henning Steinert
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christopher Schwarz
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Thorsten Scherpf
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Alexander Kroll
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
19
|
Chernenko AY, Astakhov AV, Kutyrev VV, Gordeev EG, Burykina JV, Minyaev ME, Khrustalev VN, Chernyshev VM, Ananikov VP. Stabilization of the Pd–NHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00453k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
New NHC ligands containing a base-ionizable RNH substituent at the C3 atom of the 1,2,4-triazole ring provide superior stability of the Pd–NHC bond against cleavage in strong alkaline media.
Collapse
Affiliation(s)
| | | | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
| | - Evgeniy G. Gordeev
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | | | | | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI)
- Novocherkassk
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| |
Collapse
|
20
|
Liu XR, Cui PF, Guo ST, Yuan RZ, Jin GX. Stepwise B–H bond activation of a meta-carborane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00732g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stepwise multiple B–H bond activation is a major challenge in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng-Fei Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Shu-Ting Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Mu X, Hopp M, Dziedzic RM, Waddington MA, Rheingold AL, Sletten EM, Axtell JC, Spokoyny AM. Expanding the Scope of Palladium-Catalyzed B - N Cross-Coupling Chemistry in Carboranes. Organometallics 2020; 39:4380-4386. [PMID: 34012188 DOI: 10.1021/acs.organomet.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past several years, a number of strategies for the functionalization of dicarba-closo-dodecaboranes (carboranes) have emerged. Despite these developments, B - N bond formation on the carborane scaffold remains a challenge due to the propensity of strong nucleophiles to partially deboronate the parent closo-carborane cluster into the corresponding nido form. Here we show that azide, sulfonamide, cyanate, and phosphoramidate nucleophiles can be straightforwardly cross-coupled onto the B(9) vertices of the o- and m-carborane core from readily accessible precursors without significant deboronation by-products, laying the groundwork for further study into the utility and properties of these new B-aminated carborane species. We further showcase select reactivity of the installed functional groups highlighting some unique features stemming from the combination of the electron-donating B(9) position and the large steric profile of the B-connected carborane substituent.
Collapse
Affiliation(s)
- Xin Mu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Morgan Hopp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal M Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Kataki-Anastasakou A, Axtell JC, Hernandez S, Dziedzic RM, Balaich GJ, Rheingold AL, Spokoyny AM, Sletten EM. Carborane Guests for Cucurbit[7]uril Facilitate Strong Binding and On-Demand Removal. J Am Chem Soc 2020; 142:20513-20518. [PMID: 33253553 DOI: 10.1021/jacs.0c09361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-affinity guests have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling widespread applications, but hindering CB[7] materials from being returned to their guest-free state for reuse. Here, we present polyhedral boron clusters (carboranes) as strongly binding, yet easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we prepared boron-functionalized 9-amino-ortho-carborane that binds to CB[7] with a Ka ≈ 1010 M-1. Upon basic treatment, ortho-carborane readily undergoes deboronation to yield anionic nido-carborane, a poor guest for CB[7], facilitating recovery of guest-free CB[7]. We showcase the utility of the modified ortho-carborane guest by recycling a CB[7]-functionalized resin. With this report, we introduce stimuli-responsive decomplexation as an additional consideration in the design of high-affinity host-guest complexes.
Collapse
Affiliation(s)
- Anna Kataki-Anastasakou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Selena Hernandez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal M Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Gary J Balaich
- Department of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, Suite 2N-255, Air Force Academy, Colorado 80840, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Zhang H, Wang J, Yang W, Xiang L, Sun W, Ming W, Li Y, Lin Z, Ye Q. Solution-Phase Synthesis of a Base-Free Benzoborirene and a Three-Dimensional Inorganic Analogue. J Am Chem Soc 2020; 142:17243-17249. [PMID: 32941023 DOI: 10.1021/jacs.0c06538] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The base-free benzoborirene 1,2-BR-1,2-C6H4 (7) and its three-dimensional inorganic analogue 1,2-BR-1,2-C2B10H10 (13) have been successfully synthesized by Cp2ZrBr2 and LiCl elimination, respectively. The Cl analogue of the key intermediate for the formation of benzoborirene 7 has been isolated and structurally characterized, thus suggesting the reaction pathway via benzyne Zr complex formation, B-Br/Cbenzyne-Zr σ-bond metathesis, and a Cp2ZrBr2 elimination/ring-closing process. The rationality of the reaction pathway has been confirmed by DFT calculations. In addition, the title compounds shared the same reactivity pattern (i.e., 1,3-silyl migration) toward MeIiPr (8), thus allowing for the synthetic approach to the first carborane-substituted iminoborane 14.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, P. R. China
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Weiguang Yang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Libo Xiang
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Weicheng Sun
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Wenbo Ming
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Yinxin Li
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, P. R. China
| |
Collapse
|
24
|
Buades AB, Kelemen Z, Arderiu VS, Zaulet A, Viñas C, Teixidor F. A fast and simple B-C bond formation in metallacarboranes avoiding halometallacarboranes and transition metal catalysts. Dalton Trans 2020; 49:3525-3531. [PMID: 32108183 DOI: 10.1039/c9dt04695j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An electrophilic substitution on metallacarboranes by using a stabilized carbocation that can be made in situ is reported for the first time. This new synthetic methodology provides a new perspective on easy metallacarborane derivatization with organic fragments, which enhances the properties of both fragments and widens their possible applications.
Collapse
Affiliation(s)
- Ana B Buades
- Institut de Ciència de Materials de Barcelona - CSIC, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Barthes C, Duhayon C, Canac Y, César V. N-Cyclopropenio-imidazol-2-ylidene: An N-heterocyclic carbene bearing an N-cationic substituent. Chem Commun (Camb) 2020; 56:3305-3308. [PMID: 32073051 DOI: 10.1039/d0cc00477d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic NHC 1+ bearing an N-bound 2,3-bis(diisopropylamino)cyclopropenium group is reported. From an easily available dicationic imidazolium precursor, the coordination abilities and stereo-electronic properties of 1+ are evaluated by the formation of Pd(ii), Rh(i) and Au(i) complexes. The cationic gold(i) complex is implemented in representative intramolecular Au(i)-catalyzed cyclizations.
Collapse
Affiliation(s)
- Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| |
Collapse
|
26
|
Hailmann M, Radacki K, Finze M. Silver(I) Clusters Stabilized by the Carba‐
closo
‐dodecaboranylethynyl Ligand with
O
‐Donor Coligands and Template Ions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Hailmann
- Institut für Anorganische Chemie Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institut für Anorganische Chemie Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institut für Anorganische Chemie Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) Julius‐Maximilians‐Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|