1
|
Londi G, Salvadori G, Mazzeo P, Cupellini L, Mennucci B. Protein-Driven Electron-Transfer Process in a Fatty Acid Photodecarboxylase. JACS AU 2025; 5:158-168. [PMID: 39886566 PMCID: PMC11775712 DOI: 10.1021/jacsau.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 02/01/2025]
Abstract
Naturally occurring photoenzymes are rare in nature, but among them, fatty acid photodecarboxylases derived from Chlorella variabilis (CvFAPs) have emerged as promising photobiocatalysts capable of performing the redox-neutral, light-induced decarboxylation of free fatty acids (FAs) into C1-shortened n-alka(e)nes. Using a hybrid QM/MM approach combined with a polarizable embedding scheme, we identify the structural changes of the active site and determine the energetic landscape of the forward electron transfer (fET) from the FA substrate to the excited flavin adenine dinucleotide. We obtain a charge-transfer diradical structure where a water molecule rearranges spontaneously to form a H-bond interaction with the excited flavin, while the FA's carboxylate group twists and migrates away from it. Together, these structural modifications provide the driving force necessary for the fET to proceed in a downhill direction. Moreover, by examining the R451K mutant where the FA substrate is farther from the flavin core, we show that the marked reduction of the electronic coupling is counterbalanced by an increased driving force, resulting in a fET lifetime similar to the WT, thereby suggesting a resilience of the process to this mutation. Finally, through QM/MM molecular dynamic simulations, we reveal that, following fET, the decarboxylation of the FA radical occurs within tens of picoseconds, overcoming an energy barrier of ∼0.1 eV. Overall, by providing an atomistic characterization of the photoactivation of CvFAP, this work can be used for future protein engineering.
Collapse
Affiliation(s)
- Giacomo Londi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Giacomo Salvadori
- Institute
for Computational Biomedicine (INM-9), Forschungszentrum
Jülich, 52428 Jülich, Germany
| | - Patrizia Mazzeo
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| |
Collapse
|
2
|
He Y, Gil AA, Laptenok SP, Fatima A, Collado JT, Iuliano JN, Woroniecka HA, Brust R, Sabbah A, Towrie M, Greetham GM, Sazanovich IV, French JB, Lukacs A, Meech SR, Tonge PJ. Enhancing Proton-Coupled Electron Transfer in Blue Light Using FAD Photoreceptor AppA BLUF. J Am Chem Soc 2025; 147:39-44. [PMID: 39706583 PMCID: PMC11726546 DOI: 10.1021/jacs.4c11817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
The Blue Light Using FAD (BLUF) photoreceptor utilizes a noncovalently bound FAD to absorb light and trigger the initial ultrafast events in receptor activation. FAD undergoes 1 and 2 electron reduction as an enzyme redox cofactor, and studies on the BLUF photoreceptor PixD revealed the formation of flavin radicals (FAD•- and FADH•) during the photocycle, supporting a general mechanism for BLUF operation that involves PCET from a conserved Tyr to the oxidized FAD. However, no radical intermediates are observed in the closely related BLUF proteins AppABLUF and BlsA, and replacing the conserved Tyr with fluoro-Tyr analogs that increase the acidity of the phenol OH has a minor effect on AppABLUF photoactivation in contrast to PixD where the photocycle is halted at FAD•-. The hydrogen bonding network in BLUF proteins contains several strictly conserved residues but differs in the identity of amino acids that interact with the flavin C2═O. In PixD there are two hydrogen bonds to the C2═O, whereas there is only one in AppABLUF. Using TRIR we show that the introduction of a second hydrogen bond to the C2═O in AppABLUF results in the formation of flavin radicals (FAD•- and FADH•) during the photocycle. Subsequent replacement of the conserved Tyr (Y21) in the double mutant with 2,3,5-trifluoroTyr prevents radical formation and generation of the light state, indicating that the AppABLUF photocycle is now similar to that of PixD. The ability to trigger PCET provides fundamental insight into the role of electron transfer in the mechanism of BLUF photoactivation.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sergey P. Laptenok
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Anam Fatima
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Richard Brust
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aya Sabbah
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell,
Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Taguchi M, Sakuraba S, Chan J, Kono H. Unveiling the Photoactivation Mechanism of BLUF Photoreceptor Protein through Hybrid Quantum Mechanics/Molecular Mechanics Free-Energy Calculation. ACS PHYSICAL CHEMISTRY AU 2024; 4:647-659. [PMID: 39634647 PMCID: PMC11613238 DOI: 10.1021/acsphyschemau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain's structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shun Sakuraba
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| | - Justin Chan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hidetoshi Kono
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| |
Collapse
|
4
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
5
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
7
|
Tolentino Collado J, Bodis E, Pasitka J, Szucs M, Fekete Z, Kis-Bicskei N, Telek E, Pozsonyi K, Kapetanaki SM, Greetham G, Tonge PJ, Meech SR, Lukacs A. Single Amino Acid Mutation Decouples Photochemistry of the BLUF Domain from the Enzymatic Function of OaPAC and Drives the Enzyme to a Switched-on State. J Mol Biol 2024; 436:168312. [PMID: 37827329 PMCID: PMC11256462 DOI: 10.1016/j.jmb.2023.168312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.
Collapse
Affiliation(s)
| | - Emoke Bodis
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Jonatan Pasitka
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Mihaly Szucs
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Nikolett Kis-Bicskei
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Elek Telek
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Kinga Pozsonyi
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Greg Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, New York 11794, United States.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary.
| |
Collapse
|
8
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Noji T, Tamura H, Ishikita H, Saito K. Difference in the Charge-Separation Energetics between Distinct Conformers in the PixD Photoreceptor. J Phys Chem B 2023; 127:10351-10359. [PMID: 38014591 DOI: 10.1021/acs.jpcb.3c06483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Blue light using flavin (BLUF) domain proteins are photoreceptors in various organisms. The PixD BLUF domain can adopt two conformations, W91out and W91in, with Trp91 either proximal or distal to flavin (FMN). Using a quantum mechanical/molecular mechanical/polarizable continuum model approach, the energetics of charge-separated and biradical states in the two conformations were investigated. In the W91out conformation, the charge-separated state (FMN•-) is more stable than the photoexcited state (FMN*), whereas it is less stable due to an electrostatic repulsive interaction with the Ser28 side chain in the W91in conformation. This leads to a lower activation energy for the charge separation in the W91out conformation, resulting in a faster charge separation compared to that in the W91in conformation. In the W91out conformation, the radical state (FMNH•) is more stable than FMN•- and forms from FMN•-, leading to reorientation of the Gln50 side chain adjacent to FMN and formation of a hydrogen bond between Gln50 and FMN. Subsequently, a signaling state forms through charge recombination. In contrast, in the W91in conformation, FMN•- cannot proceed further, returning to the dark-adapted state, as FMNH• is less stable. Thus, formation of the signaling state exclusively occurs in the W91out conformation.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
10
|
Nakasone Y, Murakami H, Tokonami S, Oda T, Terazima M. Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response. J Biol Chem 2023; 299:105285. [PMID: 37742920 PMCID: PMC10634658 DOI: 10.1016/j.jbc.2023.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cAMP in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC and the BLUF domain with the α3-helix. DSCC of full-length OaPAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroto Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
12
|
Nakanishi T, Hori Y, Shigeta Y, Sato H, Kiyanagi R, Munakata K, Ohhara T, Okazawa A, Shimada R, Sakamoto A, Sato O. Development of an Iron(II) Complex Exhibiting Thermal- and Photoinduced Double Proton-Transfer-Coupled Spin Transition in a Short Hydrogen Bond. J Am Chem Soc 2023; 145:19177-19181. [PMID: 37623927 DOI: 10.1021/jacs.3c06323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Ryoji Kiyanagi
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Koji Munakata
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takashi Ohhara
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rintaro Shimada
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Raics K, Pirisi K, Zhuang B, Fekete Z, Kis-Bicskei N, Pecsi I, Ujfalusi KP, Telek E, Li Y, Collado JT, Tonge PJ, Meech SR, Vos MH, Bodis E, Lukacs A. Photocycle alteration and increased enzymatic activity in genetically modified photoactivated adenylate cyclase OaPAC. J Biol Chem 2023; 299:105056. [PMID: 37468104 PMCID: PMC10448171 DOI: 10.1016/j.jbc.2023.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.
Collapse
Affiliation(s)
- Katalin Raics
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Bo Zhuang
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Ildiko Pecsi
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | | | - Elek Telek
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang City, China
| | | | - Peter J Tonge
- Department of Chemistry, Stony Brook University, New York, USA
| | | | - Marten H Vos
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France
| | - Emoke Bodis
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
14
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
15
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
16
|
Chen Z, Kang XW, Zhou Y, Zhou Z, Tang S, Zou S, Wang K, Huang J, Ding B, Zhong D. Dissecting the Ultrafast Stepwise Bidirectional Proton Relay in a Blue-Light Photoreceptor. J Am Chem Soc 2023; 145:3394-3400. [PMID: 36722850 DOI: 10.1021/jacs.2c10206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.
Collapse
Affiliation(s)
- Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
17
|
Mazzeo P, Hashem S, Lipparini F, Cupellini L, Mennucci B. Fast Method for Excited-State Dynamics in Complex Systems and Its Application to the Photoactivation of a Blue Light Using Flavin Photoreceptor. J Phys Chem Lett 2023; 14:1222-1229. [PMID: 36716231 PMCID: PMC9923743 DOI: 10.1021/acs.jpclett.2c03797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.
Collapse
|
18
|
Hontani Y, Mehlhorn J, Domratcheva T, Beck S, Kloz M, Hegemann P, Mathes T, Kennis JTM. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J Am Chem Soc 2023; 145:1040-1052. [PMID: 36607126 PMCID: PMC9853863 DOI: 10.1021/jacs.2c10621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands
| | - Jennifer Mehlhorn
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tatiana Domratcheva
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany,Department
of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sebastian Beck
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institute
of Physics, ELI-Beamlines, Na Slovance 2, 182
21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Tilo Mathes
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,Institut
für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, De Boelelaan, The Netherlands,
| |
Collapse
|
19
|
The nature of proton-coupled electron transfer in a blue light using flavin domain. Proc Natl Acad Sci U S A 2022; 119:e2203996119. [PMID: 35737837 PMCID: PMC9245699 DOI: 10.1073/pnas.2203996119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model. We find that, in both the functional wild-type (WT) and the nonfunctional Q48E and Q48A, forward PCET happens in the range of 105 ps to 344 ps, with a kinetic isotope effect (KIE) measured to be ∼1.8 to 2.4, suggesting that the nature of the forward PCET is concerted. Remarkably, only WT proceeds with an ultrafast reverse PCET process (31 ps, KIE = 4.0), characterized by an inverted kinetics of the intermediate FMNH˙. Our results reveal that the reverse PCET is driven by proton transfer via an intervening imidic Gln.
Collapse
|
20
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Tokonami S, Onose M, Nakasone Y, Terazima M. Slow Conformational Changes of Blue Light Sensor BLUF Proteins in Milliseconds. J Am Chem Soc 2022; 144:4080-4090. [PMID: 35196858 DOI: 10.1021/jacs.1c13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light sensor using flavin (BLUF) proteins consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region exhibits a red shift. Ultimately, the light information received in the BLUF domain is transmitted to the functional region. It has been believed that this red shift is complete within nanoseconds. In this study, slow reaction kinetics were discovered in milliseconds (τ1- and τ2-phase) for all the BLUF proteins examined (AppA, OaPAC, BlrP1, YcgF, PapB, SyPixD, and TePixD). Despite extensive reports on BLUF, this is the first clear observation of the BLUF protein absorption change with the duration in the millisecond time region. From the measurements of some domain-deleted mutants of OaPAC and two chimeric mutants of PixD proteins, it was found that the slower dynamics (τ2-phase) are strongly affected by the size and nature of the C-terminal region adjacent to the BLUF domain. Hence, this millisecond reaction is a significant indicator of conformational changes in the C-terminal region, which is essential for the biological functions. On the other hand, the τ1-phase commonly exists in all BLUF proteins, including any mutants. The origin of the slow dynamics was studied using site-specific mutants. These results clearly show the importance of Trp in the BLUF domain. Based on this, a reaction scheme for the BLUF reaction is proposed.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Morihiko Onose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Dwijayanti A, Zhang C, Poh CL, Lautier T. Toward Multiplexed Optogenetic Circuits. Front Bioeng Biotechnol 2022; 9:804563. [PMID: 35071213 PMCID: PMC8766309 DOI: 10.3389/fbioe.2021.804563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
Collapse
Affiliation(s)
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Lautier
- CNRS@CREATE, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
23
|
Sun Z, Kalhor P, Xu Y, Liu J. Extensive numerical tests of leapfrog integrator in middle thermostat scheme in molecular simulations. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Payam Kalhor
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Fujisawa T, Masuda S, Takeuchi S, Tahara T. Femtosecond Time-Resolved Absorption Study of Signaling State of a BLUF Protein PixD from the Cyanobacterium Synechocystis: Hydrogen-Bond Rearrangement Completes during Forward Proton-Coupled Electron Transfer. J Phys Chem B 2021; 125:12154-12165. [PMID: 34726926 DOI: 10.1021/acs.jpcb.1c05957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond time-resolved absorption measurements were carried out for the dark and signaling states of a BLUF (Blue Light Using FAD) protein, PixD, from the cyanobacterium Synechocystis. When the dark state was excited, FAD semiquinone radical (FADH•) was produced from the S1 state, and FADH• led to the signaling state. On the other hand, photoexcitation of the signaling state generated FADH• and FAD anion radical (FAD•-), and they decayed back to the original signaling state. In both cases, FADH• was formed and decayed with a proton-coupled electron transfer (PCET) via the hydrogen-bond network that involves FAD, Gln50, and Tyr8, and hence the kinetics of FADH• directly reflects the hydrogen-bond structure in the FAD-binding sites. It was found that the formation rate of FADH• was significantly different between the dark and signaling states, whereas the decay rate was the same. This indicates that the hydrogen-bond network of FAD-Gln50-Tyr8 in the dark and signaling states is initially different but it becomes indistinguishable after FADH• is formed, implying that the FAD-Gln50-Tyr8 hydrogen-bond network is rearranged during the PCET to generate FADH•. The present results best agree with the model in which the Gln tautomerizes without rotation in the signaling-state formation.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
25
|
Andrikopoulos PC, Chaudhari AS, Liu Y, Konold PE, Kennis JTM, Schneider B, Fuertes G. QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Phys Chem Chem Phys 2021; 23:13934-13950. [PMID: 34142688 PMCID: PMC8246142 DOI: 10.1039/d1cp00447f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022]
Abstract
Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.
Collapse
Affiliation(s)
- Prokopis C Andrikopoulos
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Aditya S Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Patrick E Konold
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| |
Collapse
|
26
|
Khrenova MG, Kulakova AM, Nemukhin AV. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase. J Chem Inf Model 2021; 61:1215-1225. [PMID: 33677973 DOI: 10.1021/acs.jcim.0c01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (blue light sensor using flavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to the reaction products, cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi), catalyzed by ACs initiated by excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes that modulate cellular concentrations of signaling messengers. The photoactivated AC from the soil bacterium Beggiatoa sp. (bPAC) is an important model showing a considerable increase in the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore-binding pocket results in switching of the position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in the BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild-type bPAC.
Collapse
Affiliation(s)
- Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071 Russian Federation
| | - Anna M Kulakova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
27
|
Pirisi K, Nag L, Fekete Z, Iuliano JN, Tolentino Collado J, Clark IP, Pécsi I, Sournia P, Liebl U, Greetham GM, Tonge PJ, Meech SR, Vos MH, Lukacs A. Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems. Photochem Photobiol Sci 2021; 20:369-378. [PMID: 33721272 DOI: 10.1007/s43630-021-00024-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.
Collapse
Affiliation(s)
- Katalin Pirisi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Lipsa Nag
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Ildikó Pécsi
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0QX, Oxon, UK
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marten H Vos
- Laboratoire d'Optique et Biosciences, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti Str. 12, 7624, Pecs, Hungary.
| |
Collapse
|
28
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Curtolo F, Arantes GM. Mechanisms for Flavin-Mediated Oxidation: Hydride or Hydrogen-Atom Transfer? J Chem Inf Model 2020; 60:6282-6287. [DOI: 10.1021/acs.jcim.0c00945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Felipe Curtolo
- Department of Biochemistry, Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Guilherme M. Arantes
- Department of Biochemistry, Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
30
|
Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020; 117:26626-26632. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.
Collapse
|
31
|
Chaihan K, Kungwan N. Effect of number and different types of proton donors on excited-state intramolecular single and double proton transfer in bipyridine derivatives: theoretical insights. NEW J CHEM 2020. [DOI: 10.1039/d0nj01304h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intra-HBs are strengthened upon photoexcitation, confirmed by red-shift in vibrational mode and topology analysis. Number and type of donors result in difference in photophysical properties. Occurrence of ESIPT depends on barrier and reaction energy.
Collapse
Affiliation(s)
- Komsun Chaihan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- The Graduate School
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- Center of Excellence in Materials Science and Technology
| |
Collapse
|