1
|
Guberman-Pfeffer MJ, Herron CL. Cytochrome "nanowires" are physically limited to sub-picoamp currents that suffice for cellular respiration. Front Chem 2025; 13:1549441. [PMID: 40144223 PMCID: PMC11936953 DOI: 10.3389/fchem.2025.1549441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Mineral-respiring microorganisms from hydrothermal vents to terrestrial soils express filaments that electrically connect intracellular respiration to extracellular geochemistry. Filaments dubbed "cytochrome nanowires" (CNs) have been resolved by CryoEM, but whether they are the two-decades-long sought-after physiological "nanowires" remains unproven. To assess their functional competence, we analyzed biological redox conduction in all CNs by computing driving forces in the presence of redox anti-cooperativities, reorganization energies with electronic polarizability, and Marcus rates for diffusive and protein-limited flux models. The chain of heme cofactors in any CN must be densely packed to realize weak (≤0.01 eV) electronic coupling for electron transfer, as evidenced by a single Soret band produced from coincidental absorptions on multiple hemes. Dense packing, in turn, has three consequences: (1) limited driving forces (≤|0.3| eV) due to shared electrostatic microenvironments, (2) strong (≤0.12 eV) redox anti-cooperativities that would accentuate the free energy landscape if the linear heme arrangement did not dictate a contra-thermodynamic oxidation order, and (3) an entropic penalty that is offset by thioether 'tethers' of the hemes to the protein backbone. These linkages physically necessitate the rate-throttling T-stacked motif (10-fold slower than the other highly conserved slip-stacked motif). If the sequence of slip- and T-stacked hemes in the CNs had the fastest known nanosecond rates at every step, a micron-long filament would carry a diffusive 0.02 pA current at a physiological 0.1 V, or a protein-limited current of 0.2 pA. Actual CNs have sub-optimal (≤102-fold lower), but sufficient conductivities for cellular respiration, with at most thousands of filaments needed for total cellular metabolic flux. Reported conductivities once used to argue for metallic-like pili against the cytochrome hypothesis and now attributed to CNs remain inconsistent by 102-105-fold with the physical constraints on biological redox conduction through multiheme architectures.
Collapse
|
2
|
Meng J, Zhang L, He Z, Hu M, Liu J, Bao W, Tian Q, Feng H, Liu H. Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors. J Comput Chem 2025; 46:e27510. [PMID: 39325045 DOI: 10.1002/jcc.27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.86 and 0.74, respectively, both of which are far superior to those of classic scoring function AutoDock Vina and random forest (RF) based generic scoring function RF-Score. TSSF-hDHODH is further used for the virtual screening of potential inhibitors in the FDA-Approved & Pharmacopeia Drug Library. In conjunction with the results from molecular dynamics simulations, crizotinib is identified as a candidate for subsequent structural optimization. This study can be useful for the discovery of hDHODH inhibitors and the development of scoring functions for additional targets.
Collapse
Affiliation(s)
- Jinhui Meng
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Liaoning University, Shenyang, Liaoning, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, Liaoning, China
| | - Zhe He
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Mengfeng Hu
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Jinhan Liu
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Wenzhuo Bao
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Qifeng Tian
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Huawei Feng
- School of Pharmacy, Liaoning University, Shenyang, Liaoning, China
| | - Hongsheng Liu
- Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Liaoning University, Shenyang, Liaoning, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, Liaoning, China
- School of Pharmacy, Liaoning University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Hong R, Alagbe BD, Mattei A, Sheikh AY, Tuckerman ME. Enhanced and Efficient Predictions of Dynamic Ionization through Constant-pH Adiabatic Free Energy Dynamics. J Chem Theory Comput 2024; 20:10010-10021. [PMID: 39513519 PMCID: PMC11603612 DOI: 10.1021/acs.jctc.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge. In this article, using the principles of adiabatic free energy dynamics, we introduce an efficient technique for performing constant pH MD simulations within the framework of the adiabatic free energy dynamics (AFED) approach. We call the new approach pH-AFED. We show that pH-AFED provides highly accurate predictions of protein residue pKa values, with a MUE of 0.5 pKa units when coupled with driven adiabatic free energy dynamics (d-AFED), while reducing the required simulation times by more than an order of magnitude. In addition, pH-AFED can be easily integrated into most constant pH MD codes or implementations and flexibly adapted to work in conjunction with enhanced sampling algorithms that target collective variables. We demonstrate that our approaches, with both pH-AFED standalone as well as pH-AFED combined with collective variable based enhanced sampling, provide promising predictive accuracy, with a MUE of 0.6 and 0.5 pKa units respectively, on a diverse range of proteins and enzymes, ranging up to 186 residues and 21 titratable sites. Lastly, we demonstrate how this approach can be utilized to understand the in vivo performance engineered antibodies for immunotherapy.
Collapse
Affiliation(s)
- Richard
S. Hong
- AbbVie
Inc., Molecular Profiling and Drug Delivery, Research & Development, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
- Department
of Chemistry, New York University, New York City, New York 10003, United States
| | - Busayo D. Alagbe
- AbbVie
Inc., Molecular Profiling and Drug Delivery, Research & Development, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alessandra Mattei
- AbbVie
Inc., Molecular Profiling and Drug Delivery, Research & Development, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ahmad Y. Sheikh
- AbbVie
Inc., Molecular Profiling and Drug Delivery, Research & Development, 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mark E. Tuckerman
- Department
of Chemistry, New York University, New York City, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, New York, New York 10012, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Oliveira AS, Rubio J, Noble CEM, Anderson JLR, Anders J, Mulholland AJ. Fluctuation Relations to Calculate Protein Redox Potentials from Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:385-395. [PMID: 38150288 PMCID: PMC10782445 DOI: 10.1021/acs.jctc.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The tunable design of protein redox potentials promises to open a range of applications in biotechnology and catalysis. Here, we introduce a method to calculate redox potential changes by combining fluctuation relations with molecular dynamics simulations. It involves the simulation of reduced and oxidized states, followed by the instantaneous conversion between them. Energy differences introduced by the perturbations are obtained using the Kubo-Onsager approach. Using a detailed fluctuation relation coupled with Bayesian inference, these are postprocessed into estimates for the redox potentials in an efficient manner. This new method, denoted MD + CB, is tested on a de novo four-helix bundle heme protein (the m4D2 "maquette") and five designed mutants, including some mutants characterized experimentally in this work. The MD + CB approach is found to perform reliably, giving redox potential shifts with reasonably good correlation (0.85) to the experimental values for the mutants. The MD + CB approach also compares well with redox potential shift predictions using a continuum electrostatic method. The estimation method employed within the MD + CB approach is straightforwardly transferable to standard equilibrium MD simulations and holds promise for redox protein engineering and design applications.
Collapse
Affiliation(s)
- A. S.
F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. Rubio
- School
of Mathematics and Physics, University of
Surrey, Guildford GU2 7XH, U.K.
- Department
of Physics and Astronomy, University of
Exeter, Stocker Road, Exeter EX4
4QL, U.K.
| | - C. E. M. Noble
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. L. R. Anderson
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. Anders
- Department
of Physics and Astronomy, University of
Exeter, Stocker Road, Exeter EX4
4QL, U.K.
- Institute
of Physics and Astronomy, University of
Potsdam, Potsdam 14476, Germany
| | - A. J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
Zaib S, Younas MT, Khan I, Ali HS, McAdam CJ, White JM, Jaber F, Awwad NS, Ibrahium HA. Pyrimidine-morpholine hybrids as potent druggable therapeutics for Alzheimer's disease: Synthesis, biochemical and in silico analyses. Bioorg Chem 2023; 141:106868. [PMID: 37738768 DOI: 10.1016/j.bioorg.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The identification of effective and druggable cholinesterase inhibitors to treat progressive neurodegenerative Alzheimer's disorder remains a continuous drug discovery hunt. In this perspective, the present study investigates the design and discovery of pyrimidine-morpholine hybrids (5a-l) as potent cholinesterase inhibitors. Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction was employed to introduce the structural diversity on the pyrimidine heterocyclic core. A range of commercially available boronic acids was successfully coupled showing a high functional group tolerance. In vitro cholinesterase inhibitory potential using Ellman's method revealed significantly strong potency. Compound 5h bearing a meta-tolyl substituent at 2-position of pyrimidine ring emerged as a lead candidate against AChE with an inhibitory potency of 0.43 ± 0.42 µM, ∼38-fold stronger value than neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 5h also showed the lead inhibition against BuChE with an IC50 value of 2.5 ± 0.04 µM. The kinetics analysis of 5h revealed the non-competitive mode of inhibition against AChE whereas computational modelling results of potent leads depicted diverse contacts with the binding site amino acid residues. Molecular dynamics simulations revealed the stability of biomolecular system, while, ADME analysis demonstrated druglikeness behaviour of potent compounds. Overall, the investigated pyrimidine-morpholine scaffold presented a remarkable potential to be developed as efficacious anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | - Jonathan M White
- School of Chemistry and Bio-21 Institute, University of Melbourne, 3052 Parkville, Australia
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
6
|
Ramírez-López P, Martínez C, Merchán A, Perona A, Hernaiz MJ. Expanding the synthesis of a library of potent glucuronic acid glycodendrons for Dengue virus inhibition. Bioorg Chem 2023; 141:106913. [PMID: 37852115 DOI: 10.1016/j.bioorg.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Multivalent glycodendrons are valuable tools to mimic many structural and functional features of cell-surface glycoconjugates and its focal position scaffolds represent important components to increase specificity and affinity. Previous work in our group described the preparation of a tetravalent glucuronic acid dendron that binds with good affinity to Dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of a new library of potent glucuronic acid dendrons bearing different functional group at the focal position and different level of multivalency are described. Their chemical synthesis was performed sequentially in three stages and with good yields. Namely a) the chemical synthesis of the oligo and polyalkynyl scaffolds, b) assembling with fully protected glucuronic acid-based azide units by using a microwave assisted copper-catalysed azide-alkyne cycloaddition reaction and c) sequential deprotection of hydroxyl and carboxylic acid groups. Surface Plasmon Resonance studies have demonstrated that the valency and the focal position functional group exert influence on the interaction with Dengue virus envelope protein. Molecular modelling studies were carried out in order to understand the binding observed. This work reports an efficient glycodendrons chemical synthesis that provides appropriate focal position functional group and multivalence, that offer an easy and versatile strategy to find new active compounds against Dengue virus.
Collapse
Affiliation(s)
- Pedro Ramírez-López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Carlos Martínez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Alejandro Merchán
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain
| | - María J Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid C.P. 28040, Spain.
| |
Collapse
|
7
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Gu Y, Guberman-Pfeffer MJ, Srikanth V, Shen C, Giska F, Gupta K, Londer Y, Samatey FA, Batista VS, Malvankar NS. Structure of Geobacter cytochrome OmcZ identifies mechanism of nanowire assembly and conductivity. Nat Microbiol 2023; 8:284-298. [PMID: 36732469 PMCID: PMC9999484 DOI: 10.1038/s41564-022-01315-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
OmcZ nanowires produced by Geobacter species have high electron conductivity (>30 S cm-1). Of 111 cytochromes present in G. sulfurreducens, OmcZ is the only known nanowire-forming cytochrome essential for the formation of high-current-density biofilms that require long-distance (>10 µm) extracellular electron transport. However, the mechanisms underlying OmcZ nanowire assembly and high conductivity are unknown. Here we report a 3.5-Å-resolution cryogenic electron microscopy structure for OmcZ nanowires. Our structure reveals linear and closely stacked haems that may account for conductivity. Surface-exposed haems and charge interactions explain how OmcZ nanowires bind to diverse extracellular electron acceptors and how organization of nanowire network re-arranges in different biochemical environments. In vitro studies explain how G. sulfurreducens employ a serine protease to control the assembly of OmcZ monomers into nanowires. We find that both OmcZ and serine protease are widespread in environmentally important bacteria and archaea, thus establishing a prevalence of nanowire biogenesis across diverse species and environments.
Collapse
Affiliation(s)
- Yangqi Gu
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- PNAC division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Matthew J Guberman-Pfeffer
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vishok Srikanth
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Cong Shen
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Microbiology, Yale University, New Haven, CT, USA
| | - Fabian Giska
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Yuri Londer
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fadel A Samatey
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Guberman-Pfeffer MJ. Assessing Thermal Response of Redox Conduction for Anti-Arrhenius Kinetics in a Microbial Cytochrome Nanowire. J Phys Chem B 2022; 126:10083-10097. [PMID: 36417757 PMCID: PMC9743091 DOI: 10.1021/acs.jpcb.2c06822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A micrometers-long helical homopolymer of the outer-membrane cytochrome type S (OmcS) from Geobacter sulfurreducens is proposed to transport electrons to extracellular acceptors in an ancient respiratory strategy of biogeochemical and technological significance. OmcS surprisingly exhibits higher conductivity upon cooling (anti-Arrhenius kinetics), an effect previously attributed to H-bond restructuring and heme redox potential shifts. Herein, the temperature sensitivity of redox conductivity is more thoroughly examined with conventional and constant-redox and -pH molecular dynamics and quantum mechanics/molecular mechanics. A 30 K drop in temperature constituted a weak perturbation to electron transfer energetics, changing electronic couplings (⟨Hmn⟩), reaction free energies (ΔGmn), reorganization energies (λmn), and activation energies (Ea) by at most |0.002|, |0.050|, |0.120|, and |0.045| eV, respectively. Changes in ΔGmn reflected -0.07 ± 0.03 V shifts in redox potentials that were caused in roughly equal measure by altered electrostatic interactions with the solvent and protein. Changes in intraprotein H-bonding reproduced the earlier observations. Single-particle diffusion and multiparticle steady-state flux models, parametrized with Marcus theory rates, showed that biologically relevant incoherent hopping cannot qualitatively or quantitatively describe electrical conductivity measured by atomic force microscopy in filamentous OmcS. The discrepancy is attributed to differences between solution-phase simulations and solid-state measurements and the need to model intra- and intermolecular vibrations explicitly.
Collapse
Affiliation(s)
- Matthew J. Guberman-Pfeffer
- Department
of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, Connecticut06510, United States,Microbial
Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut06516, United States,
| |
Collapse
|
10
|
de Oliveira VM, Liu R, Shen J. Constant pH molecular dynamics simulations: Current status and recent applications. Curr Opin Struct Biol 2022; 77:102498. [PMID: 36410222 PMCID: PMC9933785 DOI: 10.1016/j.sbi.2022.102498] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
Many important protein functions are carried out through proton-coupled conformational dynamics. Thus, the ability to accurately model protonation states dynamically has wide-ranging implications. Over the past two decades, two main types of constant pH methods (discrete and continuous) have been developed to enable proton-coupled molecular dynamics (MD) simulations. In this short review, we discuss the current status of the development and highlight recent applications that have advanced our understanding of protein structure-function relationships. We conclude the review by outlining the remaining challenges in the method development and projecting important areas for future applications.
Collapse
Affiliation(s)
- Vinicius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, Maryland, U.S.A
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, Maryland, U.S.A
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, 20201, MD, USA.
| |
Collapse
|
11
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Santo AAE, Lazaroti VHR, Feliciano GT. Multidimensional redox potential/p Ka coupling in multicopper oxidases from molecular dynamics: implications for the proton transfer mechanism. Phys Chem Chem Phys 2021; 23:27348-27354. [PMID: 34854859 DOI: 10.1039/d1cp03095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilirubin oxidases (BOD) are metalloenzymes that catalyze the conversion of O2 and bilirubin to biliverdin and water in the metabolism of chlorophyll and porphyrin. In this work we have used the CpHMD method to analyze the effects of the different oxidation states on the BOD trinuclear cluster (TNC). Our results demonstrate that there is a link between the different oxidation states of copper ions and the protonation capacity of nearby titratable residues. Each configuration affects pKa differently, creating proton gradients within the enzyme that act in an extremely orderly manner. This order is closely linked to the catalytic mechanism and leads us to the conclusion of the entry of the O2 molecule and its reduction in water molecules is associated with the probability of the release of protons from nearby acid groups. With this information, we deduce that under the initial reaction conditions the acidic side chains of nearby residues can be protonated; this allows the enzyme to reduce the activation energy of the reaction by coupling the proton transfer to oxidation state changes in the metallic center.
Collapse
Affiliation(s)
- Anderson A E Santo
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Vitor Hugo R Lazaroti
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Gustavo T Feliciano
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| |
Collapse
|
13
|
Poor Person's pH Simulation of Membrane Proteins. Methods Mol Biol 2021. [PMID: 34302678 DOI: 10.1007/978-1-0716-1468-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
pH conditions are central to the functioning of all biomolecules. However, implications of pH changes are nontrivial on a molecular scale. Though a rigorous microscopic definition of pH exists, its implementation in classical molecular dynamics (MD) simulations is cumbersome, and more so in large integral membrane systems. In this chapter, an integrative pipeline is described that combines Multi-Conformation Continuum Electrostatics (MCCE) computations with MD simulations to capture the effect of transient protonation states on the coupled conformational changes in transmembrane proteins. The core methodologies are explained, and all the software required to set up this pipeline are outlined with their key parameters. All associated analyses of structure and function are provided using two case studies, namely those of bioenergetic complexes: NADH dehydrogenase (complex I) and Vo domain of V-type ATPase. The hybrid MCCE-MD pipeline has allowed the discovery of hydrogen bond networks, ligand binding pathways, and disease-causing mutations.
Collapse
|
14
|
Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment. J Phys Chem B 2020; 125:128-136. [PMID: 33378205 DOI: 10.1021/acs.jpcb.0c09974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of tyrosine to form the neutral tyrosine radical via proton-coupled electron transfer is essential for a wide range of biological processes. The precise measurement of the proton-coupled redox potentials of tyrosine (Y) in complex protein environments is challenging mainly because of the highly oxidizing and reactive nature of the radical state. Herein, a computational strategy is presented for predicting proton-coupled redox potentials in a protein environment. In this strategy, both the reduced Y-OH and oxidized Y-O• forms of tyrosine are sampled with molecular dynamics using a molecular mechanical force field. For a large number of conformations, a quantum mechanical/molecular mechanical (QM/MM) electrostatic embedding scheme is used to compute the free-energy differences between the reduced and oxidized forms, including the zero-point energy and entropic contributions as well as the impact of the protein electrostatic environment. This strategy is applied to a series of fluorinated tyrosine derivatives embedded in a de novo α-helical protein denoted as α3Y. The force fields for both the reduced and oxidized forms of these noncanonical fluorinated tyrosine residues are parameterized for general use. The calculated relative proton-coupled redox potentials agree with experimentally measured values with a mean unsigned error of 24 mV. Analysis of the simulations illustrates that hydrogen-bonding interactions between tyrosine and water increase the redox potentials by ∼100-250 mV, with significant variations because of the fluctuating protein environment. This QM/MM approach enables the calculation of proton-coupled redox potentials of tyrosine and other residues such as tryptophan in a variety of protein systems.
Collapse
|