1
|
Mountaki SA, Whitfield R, Anastasaki A. Oxygen-Tolerant ATRP Depolymerization Enabled by an External Radical Source. Macromol Rapid Commun 2025; 46:e2401067. [PMID: 39985425 DOI: 10.1002/marc.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Although the chemical recycling of polymers synthesized by controlled radical polymerization enables the recovery of pristine monomer at low temperatures, it operates efficiently under strictly anaerobic conditions. Instead, oxygen-tolerant depolymerizations are scarce, and are either restricted to the use of a boiling co-solvent or are performed in closed vessels, often suffering from low conversions. Here, an open-vessel, oxygen-tolerant depolymerization of atom transfer radical polymerization (ATRP)-synthesized polymers is introduced, leading to high percentages of monomer regeneration (>90% depolymerization efficiency). Dissolved oxygen is eliminated by either utilizing high catalyst loadings, or lower catalyst loadings combined with a radical initiator. Notably, the methodology is compatible with various solvents (i.e., anisole, 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), etc.) and a range of commercially available ligands including tris 2-(dimethylamino)ethylamine (Me6TREN) and tris(2-pyridylmethyl)amine (TPMA), as well as more inexpensive alternatives such as tris(2-aminoethyl)amine (TREN) and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA).
Collapse
Affiliation(s)
- Stella Afroditi Mountaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Smook LA, de Beer S. Molecular Design Strategies to Enhance the Electroresponse of Polyelectrolyte Brushes: Effects of Charge Fraction and Chain Length Dispersity. Macromolecules 2025; 58:1185-1195. [PMID: 39958485 PMCID: PMC11823628 DOI: 10.1021/acs.macromol.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response. This limits the application of these brushes to architectures such as small pores or nanojunctions because small biases can generate large field strengths over small distances. Here, we propose a design strategy that enhances the response and lowers the field strength required in these applications. Our coarse-grained simulations highlight two approaches to increase the electroresponse of polyelectrolyte brushes: dispersity in the chain length enhances the electroresponse and a reduction in the number of charged monomers does the same. With these approaches, we increase the relative brush height variation from only 28% to as much as 227% since in partially charged brushes, more chains need to respond to screen the imposed field and the longer chains in disperse brushes can reorganize over large distances. Additionally, we find that disperse brushes show a stratified response where short chains collapse first and long chains stretch first because this stratification minimizes the change in conformational energy. We envision that our insights will enable the application of electroresponsive polyelectrolyte brushes in larger architectures or in small architectures using smaller biases, which could enable a stimulus-responsive pore size modulation that could be used for filtration and molecular separations.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Chen M, You S, Guo T, Ren H, Zhu L, Wang P, Sheng W, Gong C, Li W. CuBr-mediated surface-initiated controlled radical polymerization in air. Chem Sci 2024; 15:19604-19608. [PMID: 39568887 PMCID: PMC11575556 DOI: 10.1039/d4sc06012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Herein, we present a straightforward CuBr-mediated surface-initiated controlled radical polymerization (SI-CRP) method for fabricating polymer brushes using microliter volumes of reaction solution in air and at room temperature. The key advantage of this method is its ability to rapidly grow polymer brushes with oxygen tolerance, driven by the controlled disproportionation of CuI into CuII and Cu0 by CuBr and ligand. We demonstrate the successful preparation of homo-, block, patterned, and wafer-scale polymer brushes. Additionally, the catalyst in CuBr-mediated SI-CRP is reusable, long-lasting, and compatible with various monomers. This work broadens the potential of CuBr for polymer brush growth, making it accessible to both experts and non-experts.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Shuai You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Tingting Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haohao Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Longzu Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Peize Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
4
|
Duan Y, Ma X, Guo J, Shan F, Pan Y, Chen Y, Chen H, Chen G. Fe 0-MAP Prepared Glycosurfaces for Selective Cell Capture: From Adherent to Suspended Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39357029 DOI: 10.1021/acsami.4c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The specific capture of live cells is crucial for various biomedical applications. Existing methods often are limited by complex production processes. This study introduces Fe0-mediated monomer-adaptation polymerization (Fe0-MAP), a convenient and rapid synthesis approach for selective cell capture using surface-engineered glycopolymer brushes. This method utilizes surface-initiated zerovalent iron-mediated reversible-deactivation radical polymerization (Fe0-SI-RDRP), offering advantages like simplicity, biocompatibility and oxygen-tolerance due to the use of iron sheet as catalysts. We successfully employed Fe0-MAP to selective capture both adherent (HeLa, L929) and suspended cells (Ramos, U937) in mammalian cell cultures. Combining excellent biocompatibility, specific and reusable cell capture capabilities, and applicability to suspended cells, Fe0-MAP establishes itself as a promising strategy for selective cell capture, holding significant potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Nantong No.2 Middle School, 500 Changtai Road, Nantong 226300, P. R. China
| | - Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Fangjian Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuchun Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
5
|
Ahadi HM, Fardhan FM, Rahayu D, Pratiwi R, Hasanah AN. Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules 2024; 29:4043. [PMID: 39274891 PMCID: PMC11396677 DOI: 10.3390/molecules29174043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent.
Collapse
Affiliation(s)
- Husna Muharram Ahadi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Firghi Muhammad Fardhan
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Driyanti Rahayu
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
6
|
Mountaki S, Whitfield R, Liarou E, Truong NP, Anastasaki A. Open-Air Chemical Recycling: Fully Oxygen-Tolerant ATRP Depolymerization. J Am Chem Soc 2024; 146:18848-18854. [PMID: 38958656 PMCID: PMC11258787 DOI: 10.1021/jacs.4c05621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
While oxygen-tolerant strategies have been overwhelmingly developed for controlled radical polymerizations, the low radical concentrations typically required for high monomer recovery render oxygen-tolerant solution depolymerizations particularly challenging. Here, an open-air atom transfer radical polymerization (ATRP) depolymerization is presented, whereby a small amount of a volatile cosolvent is introduced as a means to thoroughly remove oxygen. Ultrafast depolymerization (i.e., 2 min) could efficiently proceed in an open vessel, allowing a very high monomer retrieval to be achieved (i.e., ∼91% depolymerization efficiency), on par with that of the fully deoxygenated analogue. Oxygen probe studies combined with detailed depolymerization kinetics revealed the importance of the low-boiling point cosolvent in removing oxygen prior to the reaction, thus facilitating effective open-air depolymerization. The versatility of the methodology was demonstrated by performing reactions with a range of different ligands and at high polymer loadings (1 M monomer repeat unit concentration) without significantly compromising the yield. This approach provides a fully oxygen-tolerant, facile, and efficient route to chemically recycle ATRP-synthesized polymers, enabling exciting new applications.
Collapse
Affiliation(s)
- Stella
Afroditi Mountaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Evelina Liarou
- Department
of Chemistry, University of Warwick Library Road, Coventry CV4 7SH, U.K.
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
7
|
Zhao X, Li D, Zhu J, Fan Y, Xu J, Huang X, Nie Z, Chen D. Stably Grafting Polymer Brushes on Both Active and Inert Surfaces Using Tadpole-Like Single-Chain Particles with an Interactive "Head". ACS Macro Lett 2024; 13:882-888. [PMID: 38953383 DOI: 10.1021/acsmacrolett.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We report a "grafting to" method for stably grafting high-molecular-weight polymer brushes on both active and inert surfaces using tadpole-like single-chain particles (TSCPs) with an interactive "head" as grafting units. The TSCPs can be efficiently synthesized through intrachain cross-linking one block of a diblock copolymer; the "head" is the intrachain cross-linked single-chain particle, and the "tail" is a linear polymer chain that has a contour length up to micrometers. When grafted to a surface, the "head", integrating numerous interacting groups, can synergize multiple weak interactions with the surface, thereby enabling stable grafting of the "tail" on both active and traditionally challenging inert surfaces. Because the structural parameters and composition of the "heads" and "tails" can be separately adjusted over a wide range, the interactivity of the "heads" with the surface and properties of the brushes can be controlled orthogonally, accomplishing surface brushes that cannot be achieved by existing methods.
Collapse
Affiliation(s)
- Xiaoya Zhao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Dahua Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Jie Zhu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yanbin Fan
- The Dow Chemical Company, 936 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jiayin Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Xiayun Huang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Zhihong Nie
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| |
Collapse
|
8
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
9
|
Li S, Zhao Y, Huang R, Wang J, Wu D, Zhang W, Zeng Z, Zhang T. Roughness-Mediated SI-Fe 0CRP for Polymer Brush Engineering toward Superior Drag Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27761-27766. [PMID: 38748552 DOI: 10.1021/acsami.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Surface-initiated iron(0)-mediated controlled radical polymerization (SI-Fe0CRP) with low toxicity and excellent biocompatibility is promising for the fabrication of biofunctional polymer coatings. However, the development of Fe(0)-based catalysts remains limited by the lower dissociation activity of the Fe(0) surface in comparison to Cu(0). Here, we found that, by simply polishing the Fe(0) plate surface with sandpaper, the poly(methacryloyloxy)ethyl trimethylammonium chloride brush growth rate has been increased significantly to 3.3 from 0.14 nm min-1 of the pristine Fe(0) plate. The excellent controllability of roughness-mediated SI-Fe0CRP can be demonstrated by customizing multicompartment brushes and triblock brushes. Furthermore, we found that the resulting polymer brush coatings exhibit remarkably low water adhesion (0.097 mN) and an outstanding drag reduction rate of 52% in water. This work provides a promising strategy for regulating the grafting rate of polymer brushes via SI-Fe0CRP for biocompatible marine drag reduction coatings.
Collapse
Affiliation(s)
- Shengfei Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuxiang Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhao Huang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianing Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Daheng Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wuxin Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Wu D, Wang J, Yin X, Tan R, Zhang T. Grafting of Poly(ionic liquid) Brushes through Fe 0-Mediated Surface-Initiated Atom Transfer Radical Polymerization for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8393-8399. [PMID: 38442040 DOI: 10.1021/acs.langmuir.3c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Surface-tethered poly(ionic liquid) brushes have attracted considerable attention in widespread fields, from bioengineering to marine antifouling. However, their applications have been constrained due to the poor polymerization efficiency and sophisticated operation process. In this work, we efficiently synthesized the poly(ionic liquid) brushes with unparalleled speed (up to 98 nm h-1) through Fe0-mediated surface-initiated atom transfer radical polymerization (Fe0 SI-ATRP) while consuming only microliter of monomer solution under ambient conditions. We also demonstrated that poly(ionic liquid) brushes with gradient thickness and wettability were easily accessible by regulating the distance between the opposite plates of Fe0 SI-ATRP. Moreover, the resultant poly(ionic liquid) brushes presented excellent antibacterial activities against Escherichia coli (99.2%) and Bacillus subtilis (88.1%) after 24 h and low attachment for proteins and marine algae (≤5%) for over 2 weeks. This research provided pathways to the facile and controllable fabrication of poly(ionic liquid) materials for marine antifouling applications.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang C, Zhao H. Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2439-2464. [PMID: 38279930 DOI: 10.1021/acs.langmuir.3c02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
For over two decades, polymer brushes have found wide applications in industry and scientific research. Now, polymer brush research has been a significant research focus in the community of polymer science. In this review paper, we give an introduction to the synthesis, self-assembly, and applications of one-dimensional (1D) polymer brushes on polymer backbones, two-dimensional (2D) polymer brushes on flat surfaces, and three-dimensional (3D) polymer brushes on spherical particles. Examples of the synthesis of polymer brushes on different substrates are provided. Studies on the formation of the surface nanostructures on solid surfaces are also reviewed in this article. Multicomponent polymer brushes on solid surfaces are able to self-assemble into surface micelles (s-micelles). If the s-micelles are linked to the substrates through cleavable linkages, the s-micelles can be cleaved from the substrates, and the cleaved s-micelles are able to self-assemble into hierarchical structures. The formation of the surface nanostructures by coassembly of polymer brushes and "free" polymer chains (coassembly approach) or polymerization-induced surface self-assembly approach, is discussed. The applications of the polymer brushes in colloid and biomedical science are summarized. Finally, perspectives on the development of polymer brushes are offered in this article.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
12
|
Hu X, Szczepaniak G, Lewandowska-Andralojc A, Jeong J, Li B, Murata H, Yin R, Jazani AM, Das SR, Matyjaszewski K. Red-Light-Driven Atom Transfer Radical Polymerization for High-Throughput Polymer Synthesis in Open Air. J Am Chem Soc 2023; 145:24315-24327. [PMID: 37878520 PMCID: PMC10636753 DOI: 10.1021/jacs.3c09181] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MB•) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 μL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (Đ < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Lewandowska-Andralojc
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Uniwersytetu
Poznanskiego 10, 61-614 Poznan, Poland
| | - Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bingda Li
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Wu D, Li W, Zhang T. Surface-Initiated Zerovalent Metal-Mediated Controlled Radical Polymerization (SI-Mt 0CRP) for Brush Engineering. Acc Chem Res 2023; 56:2329-2340. [PMID: 37616063 DOI: 10.1021/acs.accounts.3c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
ConspectusThe surface-tethered polymer brush has become a powerful approach to tailoring the chemical and physical properties of surfaces and interfaces and revealed broad application prospects in widespread fields such as self-cleaning, surface lubrication, and antibiofouling. Access to these diverse functional polymer brushes is highly dependent on versatile and powerful surface-initiated controlled radical polymerization (SI-CRP) strategies. However, conventional SI-CRP typically requires oxygen exclusion, large amounts of catalysts and monomer solution, and a long reaction time, making it time-consuming and sophisticated. When using a two-plate system consisting of an initiator-bearing substrate and a metal plate, we and our collaborators introduced surface-initiated zerovalent metal-mediated controlled radical polymerization (SI-Mt0CRP). In the SI-Mt0CRP setup, a metal(0) plate (Cu, Fe, Zn, or Sn) is placed proximately to an initiator-functionalized substrate and forms a confined polymerization system which considerably simplifies the synthesis of a wide range of polymer brushes with high grafting densities over large areas (up to the meter scale).In comparison to classical SI-ATRP (catalyzed by metal salts), SI-Mt0CRP demonstrates oxygen tolerance, high controllability, good retention of chain-end functionality, and facile recyclability of the metal catalysts (i.e., metal foil/plate). Taking advantage of the confined geometry of the SI-Mt0CRP setup, polymer brushes with various conformations and architectures are easily accessible while consuming only microliter volumes of monomer solution and without complicated operations under ambient conditions. Owing to these attractive characteristics, SI-Mt0CRP has become a versatile technique for functionalizing materials for targeted applications, ranging from the areas of surface science to materials science and nanotechnology.In this Account, we summarize the recent advances of SI-Mt0CRP catalyzed by zerovalent metals (e.g., Cu, Fe, Zn, and Sn) and highlight the intrinsic advantages of the featured experimental setup, compared with the "classical" SI-CRP in which metal salt, powder, or wire is applied. We further discuss the synthetic features and proposed mechanism of SI-Mt0CRP while emphasizing the various external technologies' (including "on water" reaction, galvanic replacement, lithography, and capillary microfluidic) integrated polymerization systems. We also describe structural polymer brushes, including block copolymers, patterned and gradient structures, and arrayed and binary polymer brushes. Finally, we introduce the diverse polymer brushes that have been prepared using these techniques, with a focus on targeted and emerging applications. We anticipate that the discussion presented in this Account will promote a better understanding of the SI-Mt0CRP technique and advance the future development of practical surface brushing.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gazzola G, Filipucci I, Rossa A, Matyjaszewski K, Lorandi F, Benetti EM. Oxygen Tolerance during Surface-Initiated Photo-ATRP: Tips and Tricks for Making Brushes under Environmental Conditions. ACS Macro Lett 2023; 12:1166-1172. [PMID: 37526233 DOI: 10.1021/acsmacrolett.3c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving tolerance toward oxygen during surface-initiated reversible deactivation radical polymerization (SI-RDRP) holds the potential to translate the fabrication of polymer brush-coatings into upscalable and technologically relevant processes for functionalizing materials. While focusing on surface-initiated photoinduced atom transfer radical polymerization (SI-photoATRP), we demonstrate that a judicious tuning of the composition of reaction mixtures and the adjustment of the polymerization setup enable to maximize the compatibility of this grafting technique toward environmental conditions. Typically, the presence of O2 in the polymerization medium limits the attainable thickness of polymer brushes and causes the occurrence of "edge effects", i.e., areas at the substrates' edges where continuous oxygen diffusion from the surrounding environment inhibits brush growth. However, the concentrations of the Cu-based catalyst and "free" alkyl halide initiator in solution emerge as key parameters to achieve a more efficient consumption of oxygen and yield uniform and thick brushes, even for polymerization mixtures that are more exposed to air. Precise variation of reaction conditions thus allows us to identify those variables that become determinants for making the synthesis of brushes more tolerant toward oxygen, and consequently more practical and upscalable.
Collapse
Affiliation(s)
- Gianluca Gazzola
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Irene Filipucci
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Andrea Rossa
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
15
|
Kapil K, Jazani AM, Szczepaniak G, Murata H, Olszewski M, Matyjaszewski K. Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules 2023; 56:2017-2026. [PMID: 36938511 PMCID: PMC10019465 DOI: 10.1021/acs.macromol.2c02537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH2) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using CuII/Me6TREN (Me6TREN = tris[2-(dimethylamino)ethyl]amine) and EYH2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA480) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Simple and Safe Liquid Seal Approach to Oxygen-tolerant ATRP. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Parkatzidis K, Boner S, Wang HS, Anastasaki A. Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach. ACS Macro Lett 2022; 11:841-846. [PMID: 35731694 PMCID: PMC9301913 DOI: 10.1021/acsmacrolett.2c00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Producing polymers from renewable resources via more sustainable approaches has become increasingly important. Herein we present the polymerization of monomers obtained from biobased renewable resources, employing an environmentally friendly photoinduced iron-catalyzed atom transfer radical polymerization (ATRP) in low-toxicity solvents. We demonstrate that renewable monomers can be successfully polymerized into sustainable polymers with controlled molecular weights and narrow molar mass distributions (Đ as low as 1.17). This is in contrast to reversible addition-fragmentation chain-transfer (RAFT) polymerization, arguably the most commonly employed method to polymerize biobased monomers, which led to poorer molecular weight control and higher dispersities for these specific monomers (Đs ∼ 1.4). The versatility of our approach was further highlighted by the temporal control demonstrated through intermittent "on/off" cycles, controlled polymerizations of a variety of monomers and chain lengths, oxygen-tolerance, and high end-group fidelity exemplified by the synthesis of block copolymers. This work highlights photoinduced iron-catalyzed ATRP as a powerful tool for the synthesis of renewable polymers.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Silja Boner
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Hyun Suk Wang
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Athina Anastasaki
- -Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
18
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yuan B, Huang T, Lv X, Jiang L, Sun X, Zhang Y, Tang J. Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromol Rapid Commun 2022; 43:e2200218. [PMID: 35751146 DOI: 10.1002/marc.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Indexed: 12/17/2022]
Abstract
A well-controlled bioenhanced reversible addition-fragmentation chain transfer (RAFT) in the presence of air is carried out by using glucose oxidase (GOx), glucose, ascorbic acid (Asc acid), and ppm level of hemin. The catalytic concentration of hemin is employed to enhance hydrogen peroxide (H2 O2 )/Asc acid redox initiation, achieving rapid RAFT polymerization. Narrow molecular weight distributions and high monomer conversion (Ð as low as 1.09 at >95% conversion) are achieved within tens of minutes. Several kinds of monomers are used to verify the universal implication of the presented method. The influences of the pH and feed ratio of each component on the polymerization rate are assessed. Besides, a polymerization rate regulation is realized by managing Asc acid addition. This work significantly increases the rate of redox-initiated GOx-deoxygen RAFT polymerization by using simple and green reactants, facilitating the application of RAFT polymerization in areas such as biomedical applications.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
21
|
Yin X, Wu D, Yang H, Wang J, Huang R, Zheng T, Sun Q, Chen T, Wang L, Zhang T. Seawater-Boosting Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:693-698. [PMID: 35570805 DOI: 10.1021/acsmacrolett.2c00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron-mediated surface-initiated reversible deactivation radical polymerization (Fe0 SI-RDRP) is an appealing approach to produce robust polymer surfaces with low toxicity and biocompatibility, while its application has been limited so far due to the poor activity of iron-based catalysts. Herein, we show that the iron(0)-mediated surface-initiated atom transfer radical polymerization (Fe0 SI-ATRP) could be significantly enhanced by simply using seawater as reaction media. In comparison, there was no polymer brush formation in deionized water. This method could convert a range of monomers to well-defined polymer brushes with unparalleled speed (up to 31.5 nm min-1) and a minor amount of monomer consumption (μL). Moreover, the resultant polymer brush shows chain-end fidelity which could be exemplified by repetitive Fe0 SI-ATRP to obtain tetrablock brushes. Finally, we show the preparation of polymer-brush-gated ion-selective membranes by Fe0 SI-ATRP for osmotic energy conversion, which gives excellent power densities of 5.93 W m-2, outperforming the most reported as well as commercialized benchmark (5 W m-2).
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Runhao Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qi Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Mao W, Tay XT, Sarkar J, Wang CG, Goto A. Air-tolerant Reversible Complexation Mediated Polymerization (RCMP) Using Aldehyde as Oxygen Remover a. Macromol Rapid Commun 2022; 43:e2200091. [PMID: 35338552 DOI: 10.1002/marc.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Indexed: 11/08/2022]
Abstract
An air-tolerant reversible complexation mediated polymerization (RCMP) technique, which can be carried out without prior deoxygenation, was developed. The system contains a monomer, an alkyl iodide initiating dormant species, air (oxygen), an aldehyde, N-hydroxyphthalimide (NHPI), and a base. Oxygen is consumed via the NHPI-catalyzed conversion of the aldehyde (RCHO) to a carboxylic acid (RCOOH). The generated RCOOH is further converted to a carboxylate anion (RCOO- ) by the base. The RCOO- generated in situ works as an RCMP catalyst; the polymerization proceeds with the monomer, alkyl iodide dormant species, and RCOO- catalyst. Thus, the system is not only air-tolerant but also does not require additional RCMP catalysts, which is a notable feature of this system. (NHPI is used as an oxidation catalyst for converting RCHO to RCOOH.) This technique is amenable to methyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, and styrene, yielding polymers with relatively low-dispersity (Mw /Mn = 1.20-1.49), where Mw and Mn are the weight- and number-average molecular weights, respectively. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weijia Mao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiu Ting Tay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
24
|
Yin X, Wu D, Yang H, Wang J, Zhang X, Li H, Zheng T, Wang L, Zhang T. Galvanic-Replacement-Assisted Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:296-302. [PMID: 35575363 DOI: 10.1021/acsmacrolett.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we present a facile and robust strategy, namely, galvanic-replacement-assisted surface-initiated Cu(0)-mediated atom transfer radical polymerization (gr-SI-Cu0ATRP, or gr-SI-Cu0CRP) for polymer brush engineering under ambient conditions. In gr-SI-Cu0ATRP, highly active and nanostructured Cu(0) surfaces are obtained by a simple galvanic replacement on zinc/aluminum surfaces in dilute Cu2+ solution. Polymer brush growth rate is extremely high (up to ∼904 nm in 30 min polymerization); meanwhile, both nano Cu(0) surfaces and Cu2+ solution can be reused multiple times without losing grafting efficiency. We also demonstrate that the gr-SI-Cu0ATRP is advantageous for polymer brush engineering on arbitrary substrates, including flexible (polyethylene terephthalate), curved (polycarbonate), and porous (anodic aluminum oxide), and endow the substrates with various functionalities, for example, anti-icing, antifogging, and ion selectivity.
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoxuan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
25
|
Masuda T, Takai M. Design of biointerfaces composed of soft materials using controlled radical polymerizations. J Mater Chem B 2022; 10:1473-1485. [PMID: 35044413 DOI: 10.1039/d1tb02508b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soft interface materials have an immense potential for the improvement of biointerfaces, which are the interface of biological and artificially designed materials. Controlling the chemical and physical structures of the interfaces at the nanometer level plays an important role in understanding the mechanism of the functioning and its applications. Controlled radical polymerization (CRP) techniques, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, have been developed in the field of precision polymer chemistry. It allows the formation of well-defined surfaces such as densely packed polymer brushes and self-assembled nanostructures of block copolymers. More recently, a novel technique to prepare polymers containing biomolecules, called biohybrids, has also been developed, which is a consequence of the advancement of CRP so as to proceed in an aqueous media with oxygen. This review article summarizes recent advances in CRP for the design of biointerfaces.
Collapse
Affiliation(s)
- Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
26
|
Wang YM, Kálosi A, Halahovets Y, Romanenko I, Slabý J, Homola J, Svoboda J, de los Santos Pereira A, Pop-Georgievski O. Grafting density and antifouling properties of poly[ N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym Chem 2022. [DOI: 10.1039/d2py00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(HPMA) brushes prepared by a grafting-from method suppress fouling from blood plasma by an order of magnitude better than the polymer brushes of the same molecular weight prepared by a grafting-to method.
Collapse
Affiliation(s)
- Yu-Min Wang
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Anna Kálosi
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| | | | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
27
|
Zaborniak I, Chmielarz P. Comestible curcumin: From kitchen to polymer chemistry as a photocatalyst in metal-free ATRP of (meth)acrylates. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Rolland M, Truong NP, Parkatzidis K, Pilkington EH, Torzynski AL, Style RW, Dufresne ER, Anastasaki A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS AU 2021; 1:1975-1986. [PMID: 34841413 PMCID: PMC8611665 DOI: 10.1021/jacsau.1c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nanoemulsion technology enables the production of uniform nanoparticles for a wide range of applications. However, existing nanoemulsion strategies are limited to the production of spherical nanoparticles. Here, we describe a low-energy nanoemulsion method to produce nanoparticles with various morphologies. By selecting a macro-RAFT agent (poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA))) that dramatically lowers the interfacial tension between monomer droplets and water, we can easily produce nanoemulsions at room temperature by manual shaking for a few seconds. With the addition of a common ionic surfactant (SDS), these nanoscale droplets are robustly stabilized at both the formation and elevated temperatures. Upon polymerization, we produce well-defined block copolymers forming nanoparticles with a wide range of controlled morphologies, including spheres, worm balls, worms, and vesicles. Our nanoemulsion polymerization is robust and well-controlled even without stirring or external deoxygenation. This method significantly expands the toolbox and availability of nanoemulsions and their tailor-made polymeric nanomaterials.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Kostas Parkatzidis
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Emily H. Pilkington
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Alexandre L. Torzynski
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Robert W. Style
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
29
|
Yuan B, Huang T, Wang X, Ding Y, Jiang L, Zhang Y, Tang J. Oxygen-Tolerant RAFT Polymerization Catalyzed by a Recyclable Biomimetic Mineralization Enhanced Biological Cascade System. Macromol Rapid Commun 2021; 43:e2100559. [PMID: 34713523 DOI: 10.1002/marc.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/17/2021] [Indexed: 12/12/2022]
Abstract
An enzyme cascade system including glucose oxidase (GOx) and iron porphyrin (DhHP-6) is encapsulated in a metal-organic framework called zeolitic imidazolate framework-8 (ZIF-8) through one-step facile synthesis. The composite (GOx&DhHP-6@ZIF-8) is then used to initiate oxygen-tolerant reversible addition-fragmentation chain-transfer polymerization for different methacrylate monomers, such as 2-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and poly(ethylene glycol) methyl ether methacrylate (Mn = 500 g mol-1 ). The composite shows the robustness toward solvent and temperatures, all polymerizations using above monomers and catalyzing by GOx&DhHP-6@ZIF-8 exhibits high monomer conversion (>85%) and narrow molar mass dispersity (<1.3). Besides, acrylic and acrylamide monomers such as 2-hydroxyethyl acrylate and N,N-dimethylacrylamide are also carried to demonstrate the broad applicability. Proton nuclear magnetic resonance characterization and chain extension experiments confirm the retaining end groups of the resultant polymers, which is a significant feature of living polymerization. More importantly, the process of recycling the composite through a centrifuge is simplistic, and the composite still maintains similar activity compared to the original composites after five times. This low-cost and easily separated composite catalyst represents a versatile strategy to synthesize well-defined functional polymers suitable for industrial-scale production.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghuo Wang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Ding
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
|
31
|
Rittinghaus RD, Karabulut A, Hoffmann A, Herres‐Pawlis S. Nachtaktiv: Eisen‐Guanidin‐Komplex katalysiert ROP auf der schlafenden Seite der ATRP. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruth D. Rittinghaus
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1a 52074 Aachen Deutschland
| | - Aylin Karabulut
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1a 52074 Aachen Deutschland
| | - Alexander Hoffmann
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1a 52074 Aachen Deutschland
| | - Sonja Herres‐Pawlis
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1a 52074 Aachen Deutschland
| |
Collapse
|
32
|
Rittinghaus RD, Karabulut A, Hoffmann A, Herres‐Pawlis S. Active in Sleep: Iron Guanidine Catalyst Performs ROP on Dormant Side of ATRP. Angew Chem Int Ed Engl 2021; 60:21795-21800. [PMID: 34270162 PMCID: PMC8518923 DOI: 10.1002/anie.202109053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Copolymers are the answer to property limitations of homopolymers. In order to use the full variety of monomers available, catalysts active in more than one polymerization mechanism are currently investigated. Iron guanidine catalysts have shown to be extraordinarily active in ROP of lactide and herein prove their versatility by also promoting ATRP of styrene. The presented iron complex is the first polymerizing lactide and styrene simultaneously to a defined block copolymer in a convenient one-pot synthesis. Both mechanisms work hand in hand with ROP using the dominantly present FeII species on the dormant side of the ATRP equilibrium. This orthogonal copolymerization by a benign iron catalyst opens up new pathways to biocompatible polymerization procedures broadening the scope of ATRP applications.
Collapse
Affiliation(s)
- Ruth D. Rittinghaus
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 1a52074AachenGermany
| | - Aylin Karabulut
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 1a52074AachenGermany
| | - Alexander Hoffmann
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 1a52074AachenGermany
| | - Sonja Herres‐Pawlis
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 1a52074AachenGermany
| |
Collapse
|
33
|
Albers RF, Magrini T, Romio M, Leite ER, Libanori R, Studart AR, Benetti EM. Fabrication of Three-Dimensional Polymer-Brush Gradients within Elastomeric Supports by Cu 0-Mediated Surface-Initiated ATRP. ACS Macro Lett 2021; 10:1099-1106. [PMID: 35549080 DOI: 10.1021/acsmacrolett.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu0-mediated surface-initiated ATRP (Cu0 SI-ATRP) emerges as a versatile, oxygen-tolerant process to functionalize three-dimensional (3D), microporous supports forming single and multiple polymer-brush gradients with a fully tunable composition. When polymerization mixtures are dispensed on a Cu0-coated plate, this acts as oxygen scavenger and source of active catalyst. In the presence of an ATRP initiator-bearing microporous elastomer placed in contact with the metallic plate, the reaction solution infiltrates by capillarity through the support, simultaneously triggering the controlled growth of polymer brushes. The polymer grafting process proceeds with kinetics that are determined by the progressive infiltration of the reaction solution within the microporous support and by the continuous diffusion of catalyst regenerated at the Cu0 surface. The combination of these effects enables the accessible generation of 3D polymer-brush gradients extending across the microporous scaffolds used as supports, finally providing materials with a continuous variation of interfacial composition and properties.
Collapse
Affiliation(s)
- Rebecca Faggion Albers
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Edson R. Leite
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
34
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
35
|
Lu Z, Yang H, Fu X, Zhao R, Zhao Y, Cai J, Xiao L, Hou L. Fully-π conjugated covalent organic frameworks as catalyst for photo-induced atom transfer radical polymerization with ppm-level copper concentration under LED irradiation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting “Band‐Aid” for “Everyone”: Filter Paper‐Assisted Surface‐Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Bin Li
- Physik Department TUM-Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| |
Collapse
|
37
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting "Band-Aid" for "Everyone": Filter Paper-Assisted Surface-Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021; 60:13621-13625. [PMID: 33751767 PMCID: PMC8252564 DOI: 10.1002/anie.202103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/18/2022]
Abstract
We report herein a facile and generalized approach to the modification of solid surfaces with polymer brushes under ambient conditions: filter paper-assisted surface-initiated Cu0 -mediated controlled radical polymerization (PSI-CuCRP). The polymerization solution wetted filter paper is sandwiched between a copper plate and an initiator-modified substrate, which allows the creation of a surface-initiated polymerization (SIP) "band-aid" so that everyone can perform the surface grafting selectively with good control over the quality of the polymer brushes employing low concentration and microliter amounts of the monomer solution. The versatility of this method is demonstrated by grafting different homo-, block-, and multicomponent polymer brushes by using the same activation system and reaction conditions, the polymerization process can be precisely controlled to yield uniform polymers and show high chain-end functionality which is exemplified by in situ tetra-copolymerization. The combination of photolithography and paper cutting enables to prepare arbitrary three-dimensional patterned polymer brushes on the surface.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wenbo Sheng
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Bin Li
- Physik DepartmentTUM-Technische Universität MünchenJames-Franck-Straße 185748GarchingGermany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| |
Collapse
|
38
|
Chen Y, Zhang L, Jin Y, Lin X, Chen M. Recent Advances in Living Cationic Polymerization with Emerging Initiation/Controlling Systems. Macromol Rapid Commun 2021; 42:e2100148. [PMID: 33969566 DOI: 10.1002/marc.202100148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Indexed: 12/27/2022]
Abstract
While the conventional living cationic polymerization (LCP) provided opportunities to synthesizing well-defined polymers with predetermined molecular weights, desirable chemical structures and narrow dispersity, it is still important to continuously innovate new synthetic methods to meet the increasing requirements in advanced material engineering. Consequently, a variety of novel initiation/controlling systems have be demonstrated recently, which have enabled LCP with spatiotemporal control, broadened scopes of monomers and terminals, more user-friendly operations and reaction conditions, as well as improved thermomechanical properties for obtained polymers. In this work, recent advances in LCP is summarized with emerging initiation/controlling systems, including chemical-initiated/controlled cationic reversible addition-fragmentation chain transfer (RAFT) polymerization, photoinitiated/controlled LCP, electrochemical-controlled LCP, thionyl/selenium halide-initiated LCP, organic acid-assisted LCP, and stereoselective LCP. It is hoped that this summary will provide useful knowledge to people in related fields and stimulate new ideas to promote the development and application of LCP in both academia and industry.
Collapse
Affiliation(s)
- Yinan Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
39
|
Szczepaniak G, Fu L, Jafari H, Kapil K, Matyjaszewski K. Making ATRP More Practical: Oxygen Tolerance. Acc Chem Res 2021; 54:1779-1790. [PMID: 33751886 DOI: 10.1021/acs.accounts.1c00032] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atom-transfer radical polymerization (ATRP) is a well-known technique for the controlled polymerization of vinyl monomers under mild conditions. However, as with any other radical polymerization, ATRP typically requires rigorous oxygen exclusion, making it time-consuming and challenging to use by nonexperts. In this Account, we discuss various approaches to achieving oxygen tolerance in ATRP, presenting the overall progress in the field.Copper-mediated ATRP, which we first discovered in the late 1990s, uses a CuI/L activator that reversibly reacts with the dormant C(sp3)-X polymer chain end, forming a X-CuII/L deactivator and a propagating radical. Oxygen interferes with activation and chain propagation by quenching the radicals and oxidizing the activator. At ATRP equilibrium, the activator is present at a much higher concentration than the propagating radicals. Thus, oxidation of the activator is the dominant inhibition pathway. In conventional ATRP, this reaction is irreversible, so oxygen must be strictly excluded to achieve good results.Over the last two decades, our group has developed several ATRP techniques based on the concept of regenerating the activator. When the oxidized activator is continuously converted back to its active reduced form, then the catalytic system itself can act as an oxygen scavenger. Regeneration can be accomplished by reducing agents and photo-, electro-, and mechanochemical stimuli. This family of methods offers a degree of oxygen tolerance, but most of them can tolerate only a limited amount of oxygen and do not allow polymerization in an open vessel.More recently, we discovered that enzymes can be used in auxiliary catalytic systems that directly deoxygenate the reaction medium and protect the polymerization process. We developed a method that uses glucose oxidase (GOx), glucose, and sodium pyruvate to very effectively scavenge oxygen and enable open-vessel ATRP. By adding a second enzyme, horseradish peroxidase (HPR), we managed to extend the role of the auxiliary enzymatic system to generating carbon-based radicals and changed ATRP from an oxygen-sensitive to an oxygen-fueled reaction.While performing control experiments for the enzymatic methods, we noticed that using sodium pyruvate under UV irradiation triggers polymerization without the presence of GOx. This serendipitous discovery allowed us to develop the first oxygen-proof, small-molecule-based, photoinduced ATRP system. It has oxygen tolerance similar to that of the enzymatic methods, exhibits superior compatibility with both aqueous media and organic solvents, and avoids problems associated with purifying polymers from enzymes. The system was able to rapidly polymerize N-isopropylacrylamide, a challenging monomer, with a high degree of control.These contributions have substantially simplified the use of ATRP, making it more practical and accessible to everyone.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
41
|
Shen J, Qiao J, Qi L. Thermoresponsive Porous Polymer Membrane as a Switchable Enzyme Reactor for d-Amino Acid Oxidase Kinetics Study. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ji Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
|
44
|
Słowikowska M, Chajec K, Michalski A, Zapotoczny S, Wolski K. Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr 3 under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5139. [PMID: 33202639 PMCID: PMC7697009 DOI: 10.3390/ma13225139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).
Collapse
Affiliation(s)
- Monika Słowikowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Kamila Chajec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Adam Michalski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| |
Collapse
|
45
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
46
|
Szczepaniak G, Łagodzińska M, Dadashi-Silab S, Gorczyński A, Matyjaszewski K. Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. Chem Sci 2020; 11:8809-8816. [PMID: 34123134 PMCID: PMC8163335 DOI: 10.1039/d0sc03179h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N-isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights (M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP (Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Matylda Łagodzińska
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Department of Chemistry, University of Oxford South Parks Road Oxford OX13QZ UK
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
47
|
Parkatzidis K, Wang HS, Truong NP, Anastasaki A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Liarou E, Han Y, Sanchez AM, Walker M, Haddleton DM. Rapidly self-deoxygenating controlled radical polymerization in water via in situ disproportionation of Cu(i). Chem Sci 2020; 11:5257-5266. [PMID: 34122982 PMCID: PMC8159280 DOI: 10.1039/d0sc01512a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Rapidly self-deoxygenating Cu-RDRP in aqueous media is investigated. The disproportionation of Cu(i)/Me6Tren in water towards Cu(ii) and highly reactive Cu(0) leads to O2-free reaction environments within the first seconds of the reaction, even when the reaction takes place in the open-air. By leveraging this significantly fast O2-reducing activity of the disproportionation reaction, a range of well-defined water-soluble polymers with narrow dispersity are attained in a few minutes or less. This methodology provides the ability to prepare block copolymers via sequential monomer addition with little evidence for chain termination over the lifetime of the polymerization and allows for the synthesis of star-shaped polymers with the use of multi-functional initiators. The mechanism of self-deoxygenation is elucidated with the use of various characterization tools, and the species that participate in the rapid oxygen consumption is identified and discussed in detail.
Collapse
Affiliation(s)
- Evelina Liarou
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| | - Yisong Han
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Ana M Sanchez
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Marc Walker
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - David M Haddleton
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
49
|
Rolland M, Truong NP, Whitfield R, Anastasaki A. Tailoring Polymer Dispersity in Photoinduced Iron-Catalyzed ATRP. ACS Macro Lett 2020; 9:459-463. [PMID: 35648502 DOI: 10.1021/acsmacrolett.0c00121] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although dispersity (Đ) plays an important role in controlling polymer properties, there are very few chemical methods that can sufficiently tune it. Here we report a simple, batch, and environmentally benign photoinduced iron-catalyzed ATRP methodology that enables the efficient control of Đ for both homopolymers and block copolymers. We show that by judiciously varying the concentration of the FeBr3/TBABr catalyst, a range of dispersities can be obtained (1.18 < Đ < 1.80) while maintaining monomodal molecular weight distributions. High end-group fidelity was confirmed by MALDI-ToF-MS and was further supported by the efficient synthesis of in situ block copolymers where the dispersity of the second block could be controlled upon demand. Importantly, through the use of low ppm amounts of the catalyst, perfect temporal control could be attained during intermittent "on/off" cycles. This work considerably expands the chemical toolbox for tuning Đ of homo- and block copolymers.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| |
Collapse
|
50
|
Dadashi-Silab S, Matyjaszewski K. Iron Catalysts in Atom Transfer Radical Polymerization. Molecules 2020; 25:E1648. [PMID: 32260141 PMCID: PMC7180715 DOI: 10.3390/molecules25071648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.
Collapse
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|