1
|
Mirzaei S, Khosravi H, Hu X, Mirzaei MS, Castro VME, Wang X, Figueroa NA, Chang T, Chen YP, Ríos GP, Gonzalez-Pech NI, Chen YS, Hernández Sánchez R. Catching Fullerenes: Synthesis of Molecular Nanogloves. Angew Chem Int Ed Engl 2025:e202505083. [PMID: 40310683 DOI: 10.1002/anie.202505083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
Herein, we report the synthesis of a new series of rigid, all meta-phenylene, conjugated deep-cavity molecules, displaying high binding affinity towards buckyballs. A facile synthetic approach with an overall combined yield of approximately 53% in the last two steps has been developed using a templating strategy that combines the general structure of resorcin[4]arene and [12]cyclo-meta-phenylene. These two moieties are covalently linked via four acetal bonds, resulting in a glove-like architecture. 1H NMR titration experiments reveal fullerene binding affinities (Ka) exceeding ≥106 M-1. The size complementarity between fullerenes and these scaffolds maximizes CH⋯π and π⋯π interactions, and their host:guest adduct resembles a ball in a glove, hence their name as nanogloves. Fullerene recognition is tested by suspending carbon soot in a solution of nanoglove in 1,1,2,2-tetrachloroethane, where more than a dozen fullerenes are observed, ranging from C60 to C96.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
| | - Hormoz Khosravi
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | - Xiangquan Hu
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | - M Saeed Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | | | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | | | - Tieyan Chang
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Ying-Pin Chen
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Gabriella Prieto Ríos
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
| | | | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
- Rice Advanced Materials Institute, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
Li TR, Das C, Piccini G, Tiefenbacher K. Tetrafluororesorcin[4]arene Hexameric Capsule Enables the Expansion of the Reactivity Space in Supramolecular Catalysis. J Am Chem Soc 2025; 147:11108-11116. [PMID: 39908571 DOI: 10.1021/jacs.4c17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
This study presents the development and catalytic applications of the tetrafluororesorcin[4]arene hexameric capsule (capsule II) as a novel supramolecular catalyst. It demonstrates unprecedented catalytic activity, enabling the β-selective glycosylation of glycals to 2-deoxy glycosides─a transformation that has not been achieved before in molecular and supramolecular catalysis. Mechanistic investigations, including experimental and computational studies, revealed that the high β-selectivity arises from a proton wire mechanism along the capsule's surface, coupling glycal protonation with nucleophile deprotonation. Control experiments confirmed the unique reactivity of capsule II compared to its nonfluorinated predecessor, capsule I, showcasing its potential to expand the boundaries of supramolecular catalysis.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Chintu Das
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - GiovanniMaria Piccini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Basel 4056, Switzerland
| |
Collapse
|
3
|
Andrews KG. Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages. Beilstein J Org Chem 2025; 21:421-443. [PMID: 40041197 PMCID: PMC11878132 DOI: 10.3762/bjoc.21.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The bespoke environments in enzyme active sites can selectively accelerate chemical reactions by as much as 1019. Macromolecular and supramolecular chemists have been inspired to understand and mimic these accelerations and selectivities for applications in catalysis for sustainable synthesis. Over the past 60+ years, mimicry strategies have evolved with changing interests, understanding, and synthetic advances but, ubiquitously, research has focused on use of a molecular "cavity". The activities of different cavities vary with the subset of features available to a particular cavity type. Unsurprisingly, without synthetic access to mimics able to encompass more/all of the functional features of enzyme active sites, examples of cavity-catalyzed processes demonstrating enzyme-like rate accelerations remain rare. This perspective will briefly highlight some of the key advances in traditional cavity catalysis, by cavity type, in order to contextualize the recent development of robust organic cage catalysts, which can exploit stability, functionality, and reduced symmetry to enable promising catalytic modes.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
4
|
Jozeliūnaitė A, Guo S, Sakai N, Matile S. Electric-Field Catalysis on Carbon Nanotubes in Electromicrofluidic Reactors: Monoterpene Cyclizations. Angew Chem Int Ed Engl 2025; 64:e202417333. [PMID: 39387156 PMCID: PMC11753599 DOI: 10.1002/anie.202417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
The control over the movement of electrons during chemical reactions with oriented external electric fields (OEEFs) has been predicted to offer a general approach to catalysis. Recently, we suggested that many problems to realize electric-field catalysis in practice under scalable bulk conditions could possibly be solved on multiwalled carbon nanotubes in electromicrofluidic reactors. Here, we selected monoterpene cyclizations to assess the scope of our system in organic synthesis. We report that electric-field catalysis can function by stabilizing both anionic and cationic transition states, depending on the orientation of the applied field. Moreover, electric-field catalysis can promote reactions which are barely accessible by general Brønsted and Lewis acids and field-free anion-π and cation-π interactions, and drive chemoselectivity toward intrinsically disfavored products without the need for pyrene interfacers attached to the substrate to prolong binding to the carbon nanotubes. Finally, interfacing with chiral organocatalysts is explored and evidence against contributions from redox chemistry is provided.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Shen‐Yi Guo
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| |
Collapse
|
5
|
Wang X, Xu S, Zhang B, Wu H, Liu Y, Zhang X, Wang ZG. Dynamic control of His-hemin coordination and catalysis by reversible host-guest inclusion in peptide assemblies. J Colloid Interface Sci 2025; 678:421-426. [PMID: 39213994 DOI: 10.1016/j.jcis.2024.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Zhang D, Wang L, Wu W, Cao D, Tang H. Macrocyclic catalysis mediated by water: opportunities and challenges. Chem Commun (Camb) 2025; 61:599-611. [PMID: 39655486 DOI: 10.1039/d4cc05733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanospaces within enzymes play a crucial role in chemical reactions in biological systems, garnering significant attention from supramolecular chemists. Inspired by the highly efficient catalysis of enzymes, artificial supramolecular hosts have been developed and widely employed in various reactions, paving the way for innovative and selective catalytic processes and offering new insights into enzymatic catalytic mechanisms. In supramolecular macrocycle systems, weak non-covalent interactions are exploited to enhance substrate solubility, increase local concentration, and stabilize the transition state, ultimately accelerating reaction rates and improving product selectivity. In this review, we will focus on the opportunities and challenges associated with the catalysis of chemical reactions by supramolecular macrocycles in the aqueous phase. Key issues to be discussed include limitations in molecular interaction efficiency in aqueous media, product inhibition, and the incompatibility of catalysts or conditions in "one-pot" reactions.
Collapse
Affiliation(s)
- Dejun Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Wu B, Tang R, Tan Y. Synthetic molecular cage receptors for carbohydrate recognition. Nat Rev Chem 2025; 9:10-27. [PMID: 39653770 DOI: 10.1038/s41570-024-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/12/2025]
Abstract
A captivating challenge in chemistry lies in achieving robust and precise binding of uncharged, hydrophilic carbohydrate entities. Although past decades have provided a variety of excellent molecular architectures tailored for carbohydrate recognition, including acyclic receptors, macrocycles and foldamers, recent advances have highlighted the potential of synthetic molecular cages. These structures are equipped with intricately designed cavities that contain bespoke noncovalent binding sites for carbohydrate interactions. Constructed with the principles of complementarity and preorganization, these cage receptors demonstrate high affinity and exquisite selectivity in carbohydrate recognition through noncovalent interactions, capitalizing on multivalency and cooperativity. This Review highlights recent advances in the design and application of molecular cages with diverse structures, interactions and binding capacities for carbohydrate recognition. In the concluding remarks, we discuss future avenues for further exploration.
Collapse
Affiliation(s)
- Baoqi Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
8
|
Syntrivanis L, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024; 63:e202412622. [PMID: 39295476 PMCID: PMC11586709 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Department of Biosystems Science and EngineeringETHZurichBaselSwitzerland
| |
Collapse
|
9
|
Khosravi H, Stevens V, Sánchez RH. HFIP as a versatile solvent in resorcin[ n]arene synthesis. Beilstein J Org Chem 2024; 20:2469-2475. [PMID: 39376488 PMCID: PMC11457071 DOI: 10.3762/bjoc.20.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Herein, we present 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as an efficient solvent for synthesizing resorcin[n]arenes in the presence of catalytic amounts of HCl at ambient temperature and within minutes. Remarkably, resorcinols with electron-withdrawing groups and halogens, which are reported in the literature as the most challenging precursors in this cyclization, are tolerated. This method leads to a variety of 2-substituted resorcin[n]arenes in a single synthetic step with isolated yields up to 98%.
Collapse
Affiliation(s)
- Hormoz Khosravi
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Valeria Stevens
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
- Rice Advanced Materials Institute, Houston, Texas 77005, USA
| |
Collapse
|
10
|
Andrews KG, Piskorz TK, Horton PN, Coles SJ. Enzyme-like Acyl Transfer Catalysis in a Bifunctional Organic Cage. J Am Chem Soc 2024; 146:17887-17897. [PMID: 38914009 PMCID: PMC11228979 DOI: 10.1021/jacs.4c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Amide-based organic cage cavities are, in principle, ideal enzyme active site mimics. Yet, cage-promoted organocatalysis has remained elusive, in large part due to synthetic accessibility of robust and functional scaffolds. Herein, we report the acyl transfer catalysis properties of robust, hexaamide cages in organic solvent. Cage structural variation reveals that esterification catalysis with an acyl anhydride acyl carrier occurs only in bifunctional cages featuring internal pyridine motifs and two crucial antipodal carboxylic acid groups. 1H NMR data and X-ray crystallography show that the acyl carrier is rapidly activated inside the cavity as a covalent mixed-anhydride intermediate with an internal hydrogen bond. Michaelis-Menten (saturation) kinetics suggest weak binding (KM = 0.16 M) of the alcohol pronucleophile close to the internal anhydride. Finally, activation and delivery of the alcohol to the internal anhydride by the second carboxylic acid group forms ester product and releases the cage catalyst. Eyring analysis indicates a strong enthalpic stabilization of the transition state (5.5 kcal/mol) corresponding to a rate acceleration of 104 over background acylation, and an ordered, associative rate-determining attack by the alcohol, supported by DFT calculations. We conclude that internal bifunctional organocatalysis specific to the cage structural design is responsible for the enhancement over the background reaction. These results pave the way for organic-phase enzyme mimicry in self-assembled cavities with the potential for cavity elaboration to enact selective acylations.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K
| | - Tomasz K Piskorz
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Peter N Horton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|
11
|
Moeller M, Dhar D, Dräger G, Özbasi M, Struwe H, Wildhagen M, Davari MD, Beutel S, Kirschning A. Sesquiterpene Cyclase BcBOT2 Promotes the Unprecedented Wagner-Meerwein Rearrangement of the Methoxy Group. J Am Chem Soc 2024; 146:17838-17846. [PMID: 38888422 PMCID: PMC11228982 DOI: 10.1021/jacs.4c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Presilphiperfolan-8β-ol synthase (BcBOT2), a substrate-promiscuous sesquiterpene cyclase (STC) of fungal origin, is capable of converting two new farnesyl pyrophosphate (FPP) derivatives modified at C7 of farnesyl pyrophosphate (FPP) bearing either a hydroxymethyl group or a methoxymethyl group. These substrates were chosen based on a computationally generated model. Biotransformations yielded five new oxygenated terpenoids. Remarkably, the formation of one of these tricyclic products can only be explained by a cationically induced migration of the methoxy group, presumably via a Meerwein-salt intermediate, unprecedented in synthetic chemistry and biosynthesis. The results show the great principle and general potential of terpene cyclases for mechanistic studies of unusual cation chemistry and for the creation of new terpene skeletons.
Collapse
Affiliation(s)
- Malte Moeller
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Dipendu Dhar
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle, Germany
| | - Gerald Dräger
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Mikail Özbasi
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Henry Struwe
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Maik Wildhagen
- Institute
for Technical Chemistry, Leibniz University
Hannover, Callinstr.
5, 30167 Hannover, Germany
| | - Mehdi D. Davari
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle, Germany
| | - Sascha Beutel
- Institute
for Technical Chemistry, Leibniz University
Hannover, Callinstr.
5, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz Universität
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
- Uppsala
Biomedical Center (BMC), University Uppsala, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
12
|
Li TR, Das C, Cornu I, Prescimone A, Piccini G, Tiefenbacher K. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage. JACS AU 2024; 4:1901-1910. [PMID: 38818056 PMCID: PMC11134363 DOI: 10.1021/jacsau.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The hexameric resorcin[4]arene capsule has been utilized as one of the most versatile supramolecular capsule catalysts. Enlarging its size would enable expansion of the substrate size scope. However, no larger catalytically active versions have been reported. Herein, we introduce a novel class of macrocycles, named window[1]resorcin[3]arene (wRS), that assemble to a cage-like hexameric host. The new host was studied by NMR, encapsulation experiments, and molecular dynamics simulations. The cage is able to bind tetraalkylammonium ions that are too large for encapsulation inside the hexameric resorcin[4]arene capsule. Most importantly, it retained its catalytic activity, and the accelerated conversion of a large substrate that does not fit the closed hexameric resorcin[4]arene capsule was observed. Thus, it will help to expand the limited substrate size scope of the closed hexameric resorcin[4]arene capsule.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Chintu Das
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Ivan Cornu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Ferrino G, De Rosa M, Della Sala P, Gaeta C, Talotta C, Soriente A, Cao Z, Maity B, Cavallo L, Neri P. The Resorcinarene Hexameric Capsule as a Supramolecular Photoacid to Trigger Olefin Hydroarylation in Confined Space. Chemistry 2024; 30:e202303678. [PMID: 38373184 DOI: 10.1002/chem.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The self-assembled resorcinarene capsule C6 shows remarkable photoacidity upon light irradiation, which is here exploited to catalyze olefin hydroarylation reactions in confined space. An experimental pKa* value range of -3.3--2.8 was estimated for the photo-excited hexameric capsule C6*, and consequently an increase in acidity of 8.8 log units was observed with respect to its ground state (pKa=5.5-6.0). This makes the hexameric capsule the first example of a self-assembled supramolecular photoacid. The photoacid C6* can catalyze hydroarylation reaction of olefins with aromatic substrates inside its cavity, while no reaction occurred between them in the absence of irradiation and/or capsule. DFT calculations corroborated a mechanism in which the photoacidity of C6* plays a crucial role in the protonation step of the aromatic substrate. A further proton transfer to olefin with a concomitant C-C bond formation and a final deprotonation step lead to product releasing.
Collapse
Affiliation(s)
- Giuseppina Ferrino
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Placido Neri
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| |
Collapse
|
14
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
15
|
Cornu I, Syntrivanis LD, Tiefenbacher K. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst. Nat Protoc 2024; 19:313-339. [PMID: 38040980 DOI: 10.1038/s41596-023-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023]
Abstract
The tail-to-head terpene (THT) cyclization is a biochemical process that gives rise to many terpene natural product skeletons encountered in nature. Historically, it has been difficult to achieve THT synthetically without using an enzyme. In this protocol, a hexameric resorcin[4]arene capsule acts as an artificial enzyme mimic to carry out biomimetic THT cyclizations and related carbocationic rearrangements. The precursor molecule bears a leaving group (usually an alcohol or acetate group) and undergoes the THT reaction in the presence of the capsule catalyst and HCl as a cocatalyst. Careful control of several parameters (including water content, amount of HCl cocatalyst, temperature and solvent) is crucial to successfully carrying out the reaction. To facilitate the application of this unique capsule-catalysis methodology, we therefore developed a very detailed procedure that includes the preparation and analysis of all reaction components. In this protocol, we describe how to prepare two different terpenes: isolongifolene and presilphiperfolan-1β-ol. The two procedures differ in the water content required for efficient product formation, and thus exemplify the two common use cases of this methodology. The influence of other crucial reaction parameters and means of precisely controlling them are described. A commercially available substrate, nerol, can be used as simple test substrate to validate the reaction setup. Each synthetic procedure requires 5-7 d, including 1-5 h of hands-on time. The protocol applies to the synthesis of many complex terpene natural products that would otherwise be difficult to access in synthetically useful yields.
Collapse
Affiliation(s)
- Ivan Cornu
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
16
|
Klucznik T, Syntrivanis LD, Baś S, Mikulak-Klucznik B, Moskal M, Szymkuć S, Mlynarski J, Gadina L, Beker W, Burke MD, Tiefenbacher K, Grzybowski BA. Computational prediction of complex cationic rearrangement outcomes. Nature 2024; 625:508-515. [PMID: 37967579 PMCID: PMC10864989 DOI: 10.1038/s41586-023-06854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Recent years have seen revived interest in computer-assisted organic synthesis1,2. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field1,3-7, including examples leading to advanced natural products6,7. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton8-12. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types1-7 but will help rationalize and discover new, mechanistically complex transformations.
Collapse
Affiliation(s)
- Tomasz Klucznik
- Allchemy, Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Leonidas-Dimitrios Syntrivanis
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| | - Sebastian Baś
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Mikulak-Klucznik
- Allchemy, Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Louis Gadina
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Beker
- Allchemy, Highland, IN, USA.
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Martin D Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Molecule Maker Laboratory Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Molecule Maker Laboratory at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Bartosz A Grzybowski
- Allchemy, Highland, IN, USA.
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- IBS Center for Algorithmic and Robotized Synthesis, CARS, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
- Department of Chemistry, UNIST, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
| |
Collapse
|
17
|
Iuliano V, Talotta C, De Rosa M, Soriente A, Neri P, Rescifina A, Floresta G, Gaeta C. Insights into the Friedel-Crafts Benzoylation of N-Methylpyrrole inside the Confined Space of the Self-Assembled Resorcinarene Capsule. Org Lett 2023; 25:6464-6468. [PMID: 37641853 PMCID: PMC10496122 DOI: 10.1021/acs.orglett.3c01935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/31/2023]
Abstract
Friedel-Crafts benzoylation of N-methylpyrrole 2 can run inside the confined space of the hexameric resorcinarene capsule C. The bridged water molecules at the corner of C act as H-bonding donor groups to polarize the C-Cl bond of benzoyl chlorides 3a-f. Confinement effects on the regiochemistry of the FC benzoylation of N-methylpyrrole are observed. The nature of the para-substituents of 3a-f and their ability to establish H-bonds with the water molecules of C work synergistically with the steric constrictions imposed by the capsule to drive the regiochemistry of products 4a-f. QM investigations indicate that inside the cavity of C, the FC benzoylation of 2 has a bimolecular concerted SN2 mechanism, appropriately, above-plane nucleophilic vinylic substitution (SNVπ)─supported by H-bonding interactions between water molecules and both the leaving Cl atom and the carbonyl group.
Collapse
Affiliation(s)
- Veronica Iuliano
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Carmen Talotta
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Margherita De Rosa
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Annunziata Soriente
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Placido Neri
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Antonio Rescifina
- Dipartimento
di Scienze del Farmaco, Università
di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Dipartimento
di Scienze del Farmaco, Università
di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Carmine Gaeta
- Laboratory
of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A.
Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
18
|
Gutiérrez López MÁ, Tan ML, Frontera A, Matile S. The Origin of Anion-π Autocatalysis. JACS AU 2023; 3:1039-1051. [PMID: 37124310 PMCID: PMC10131205 DOI: 10.1021/jacsau.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Mei-Ling Tan
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| |
Collapse
|
19
|
Némethová I, Schmid D, Tiefenbacher K. Supramolecular Capsule Catalysis Enables the Exploration of Terpenoid Chemical Space Untapped by Nature. Angew Chem Int Ed Engl 2023; 62:e202218625. [PMID: 36727480 DOI: 10.1002/anie.202218625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Terpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3-phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Collapse
Affiliation(s)
- Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
20
|
Diao D, Simaan AJ, Martinez A, Colomban C. Bioinspired complexes confined in well-defined capsules: getting closer to metalloenzyme functionalities. Chem Commun (Camb) 2023; 59:4288-4299. [PMID: 36946593 DOI: 10.1039/d2cc06990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Reproducing the key features offered by metalloprotein binding cavities is an attractive approach to overcome the main bottlenecks of current open artificial models (in terms of stability, efficiency and selectivity). In this context, this featured article brings together selected examples of recent developments in the field of confined bioinspired complexes with an emphasis on the emerging hemicryptophane caged ligands. In particular, we focused on (1) the strategies allowing the insulation and protection of complexes sharing similarities with metalloprotein active sites, (2) the confinement-induced improvement of catalytic efficiencies and selectivities and (3) very recent efforts that have been made toward the development of bioinspired complexes equipped with weakly binding artificial cavities.
Collapse
Affiliation(s)
- Donglin Diao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | | | - Cédric Colomban
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
21
|
Li TR, Piccini G, Tiefenbacher K. Supramolecular Capsule-Catalyzed Highly β-Selective Furanosylation Independent of the S N1/S N2 Reaction Pathway. J Am Chem Soc 2023; 145:4294-4303. [PMID: 36751707 DOI: 10.1021/jacs.2c13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The resorcin[4]arene capsule was found to catalyze β-selective furanosylation reactions for a variety of different furanosyl donors: α-d- and α-l-arabinosyl-, α-l-fucosyl-, α-d-ribosyl-, α-d-xylosyl-, and even α-d-lyxosyl fluorides. The scope is only limited by the inherently finite volume inside the closed capsular catalyst. The catalyst is readily available on a multi-100 g scale and can be recycled for at least seven rounds without significant loss in activity, yield, and selectivity. The mechanistic investigations indicated that the furanosylation mechanism is shifted toward an SN1 reaction on the mechanistic continuum between the prototypical SN1 and SN2 substitution types, as compared to the pyranosylation reaction inside the same catalyst. This is especially true for the lyxosyl donor, as indicated by the nucleophile reaction order of 0.26, and supported by metadynamics calculations. The mechanistic shift toward SN1 is of high interest as it indicates that this catalyst not only enables β-selective furanosylations and pyranoslyations independently of the substrate configuration but in addition also independently of the operating mechanism. To our knowledge, there is no alternative catalyst available that displays such properties.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
22
|
Spatola E, Frateloreto F, Del Giudice D, Olivo G, Di Stefano S. Cyclization Reactions in Confined Space. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
23
|
Horin I, Slovak S, Cohen Y. Diffusion NMR Reveals the Structures of the Molecular Aggregates of Resorcin[4]arenes and Pyrogallol[4]arenes in Aromatic and Chlorinated Solvents. J Phys Chem Lett 2022; 13:10666-10670. [PMID: 36354303 DOI: 10.1021/acs.jpclett.2c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hexameric assemblies of resorcinarenes and pyrogallolarenes are fascinating structures that can serve as nanoreactors in which new chemistry and catalysis occur. Recently, it was suggested based on SANS or SAXS that C11-resorcin[4]arene (1) forms octameric aggregates of a micellar rather than capsular structure in toluene. Here, using NMR spectroscopy, diffusion NMR, and DOSY performed on solutions of C11-resorcin[4]arene (1), C11-pyrogallol[4]arene (2), and mixtures thereof in protonated and deuterated solvents, we found that, in benzene and toluene, 1 primarily formed hexameric capsules accompanied by a minor product with diffusion characteristics consistent with an octameric assembly. In chloroform, 1 formed hexameric capsules. In toluene, 2D NMR revealed two populations of encapsulated toluene molecules in the same capsule of 1. The addition of tetrahexylammonium bromide to the assemblies of 1 in aromatic solvents drove the equilibrium toward the formation of the hexameric capsules. Interestingly, 2 formed only hexameric capsules in all solvents tested.
Collapse
|
24
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Deng S, Zheng J, Ma Y, Wang S, Yang X, Ma P. Supramolecular Self‐Assembly Modes of Cyclopentanocucurbit[6]uril and Aromatic Amines. ChemistrySelect 2022. [DOI: 10.1002/slct.202202520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaojie Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Jun Zheng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Yue Ma
- Guiyang College of Humanities and Science Guiyang 550025 China
| | - Shanfei Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Xinan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Peihua Ma
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| |
Collapse
|
26
|
Hopping protons in supramolecular catalysis. Nat Chem 2022; 14:969-971. [PMID: 36028621 DOI: 10.1038/s41557-022-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE, Badjić JD. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022; 61:e202207418. [PMID: 35723284 PMCID: PMC9544755 DOI: 10.1002/anie.202207418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/23/2022]
Abstract
Living systems use chemical fuels to transiently assemble functional structures. As a step toward constructing abiotic mimics of such structures, we herein describe dissipative formation of covalent basket cage CBC 5 by reversible imine condensation of cup-shaped aldehyde 2 (i.e., basket) with trivalent aromatic amine 4. This nanosized [4+4] cage (V=5 nm3 , Mw =6150 Da) has shape of a truncated tetrahedron with four baskets at its vertices and four aromatic amines forming the faces. Importantly, tris-aldehyde basket 2 and aliphatic tris-amine 7 undergo condensation to give small [1+1] cage 6. The imine metathesis of 6 and aromatic tris-amine 4 into CBC 5 was optimized to bias the equilibrium favouring 6. Addition of tribromoacetic acid (TBA) as a chemical fuel perturbs this equilibrium to result in the transient formation of CBC 5, with subsequent consumption of TBA via decarboxylation driving the system back to the starting state.
Collapse
Affiliation(s)
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Carson E. Ward
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| |
Collapse
|
28
|
Li TR, Huck F, Piccini G, Tiefenbacher K. Mimicry of the proton wire mechanism of enzymes inside a supramolecular capsule enables β-selective O-glycosylations. Nat Chem 2022; 14:985-994. [PMID: 35798949 DOI: 10.1038/s41557-022-00981-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022]
Abstract
Enzymes achieve high substrate and product selectivities by orientating and activating the substrate(s) appropriately inside a confined and finely optimized binding pocket. Although some basic aspects of enzymes have already been mimicked successfully with man-made catalysts, substrate activation by proton wires inside enzyme pockets has not been recreated with man-made catalysts so far. A proton wire facilitates the dual activation of a nucleophile and an electrophile via a reciprocal proton transfer, enabling highly stereoselective reactions under mild conditions. Here we present evidence for such an activation mode inside the supramolecular resorcin[4]arene capsule and demonstrate that it enables catalytic and highly β-selective glycosylation reactions-still a major challenge in glycosylation chemistry. Extensive control experiments provide very strong evidence that the reactions take place inside the molecular container. We show that this activation strategy is compatible with a broad scope of glycoside donors and nucleophiles, and is only limited by the cavity size.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Basel, Switzerland.,NCCR Molecular Systems Engineering, Basel, Switzerland
| | - Fabian Huck
- Department of Chemistry, University of Basel, Basel, Switzerland.,NCCR Molecular Systems Engineering, Basel, Switzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto Eulero, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland. .,NCCR Molecular Systems Engineering, Basel, Switzerland. .,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
29
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Badjic JD, Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| | | | | | | | | |
Collapse
|
31
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
32
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
33
|
De Rosa M, Gambaro S, Soriente A, Della Sala P, Iuliano V, Talotta C, Gaeta C, Rescifina A, Neri P. Carbocation catalysis in confined space: activation of trityl chloride inside the hexameric resorcinarene capsule. Chem Sci 2022; 13:8618-8625. [PMID: 35974771 PMCID: PMC9337730 DOI: 10.1039/d2sc02901d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The hexameric resorcinarene capsule is able to promote carbocation catalysis inside its cavity.
Collapse
Affiliation(s)
- Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Stefania Gambaro
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Veronica Iuliano
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, viale Andrea Doria, 6, 95125 Catania, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| |
Collapse
|
34
|
La Manna P, Talotta C, Gaeta C, Cohen Y, Slovak S, Rescifina A, Sala PD, De Rosa M, Soriente A, Neri P. Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Org Chem Front 2022. [DOI: 10.1039/d2qo00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The confined space inside the hexameric pyrogallol[4]arene capsule (CP6) has been exploited for the catalysis of the 1,3-dipolar cycloaddition (1,3-DC) between the proline-based iminium derivative I and nitrone 3, in the presence of the non-competitive benzene solvent.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| |
Collapse
|
35
|
Pfeuffer-Rooschüz J, Schmid L, Prescimone A, Tiefenbacher K. Xanthene[ n]arenes: Exceptionally Large, Bowl-Shaped Macrocyclic Building Blocks Suitable for Self-Assembly. JACS AU 2021; 1:1885-1891. [PMID: 34841407 PMCID: PMC8611668 DOI: 10.1021/jacsau.1c00343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 05/05/2023]
Abstract
A new class of macrocycles denoted as "xanthene[n]arenes" was synthesized. In contrast to most other macrocycles, they feature a conformationally restricted bowl shape due to the attached alkyl groups at the linking methylene units. This facilitates the synthesis of cavitands and the self-assembly to molecular capsules via noncovalent interactions. The derivatization potential of the novel macrocycles was demonstrated on the xanthene[3]arene scaffold. Besides a deep cavitand and an oxygen-embedded zigzag hydrocarbon belt[12]arene, a modified macrocycle was synthesized that self-assembles into a hydrogen-bonded tetrameric capsule, demonstrating the potential of xanthene[n]arenes as a new set of macrocyclic building blocks.
Collapse
Affiliation(s)
| | - Lucius Schmid
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zürich, Mattenstrasse
26, CH-4058 Basel, Switzerland
- or
| |
Collapse
|
36
|
Buonsenso F, Ghirga F, Romeo I, Siani G, Pilato S, Quaglio D, Pierini M, Botta B, Calcaterra A. Exploring the Assembly of Resorc[4]arenes for the Construction of Supramolecular Nano-Aggregates. Int J Mol Sci 2021; 22:ijms222111785. [PMID: 34769216 PMCID: PMC8584166 DOI: 10.3390/ijms222111785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Many biologically active compounds feature low solubility in aqueous media and, thus, poor bioavailability. The formation of the host-guest complex by using calixarene-based macrocycles (i.e., resorcinol-derived cyclic oligomers) with a good solubility profile can improve solubilization of hydrophobic drugs. Herein, we explore the ability of resorc[4]arenes to self-assemble in polar solutions, to form supramolecular aggregates, and to promote water-solubility of an isoflavone endowed with anti-cancer activity, namely Glabrescione B (GlaB). Accordingly, we synthesized several architectures featuring a different pattern of substitution on the upper rim including functional groups able to undergo acid dissociation (i.e., carboxyl and hydroxyl groups). The aggregation phenomenon of the amphiphilic resorc[4]arenes has been investigated in a THF/water solution by UV–visible spectroscopy, at different pH values. Based on their ionization properties, we demonstrated that the supramolecular assembly of resorc[4]arene-based systems can be modulated at given pH values, and thus promoting the solubility of GlaB.
Collapse
Affiliation(s)
- Fabio Buonsenso
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
| | - Isabella Romeo
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
- Center for Life Nano and Neuroscience, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Gabriella Siani
- Department of Pharmacy, University of Chieti “G. D’Annunzio”, Via dei Vestini 31, 66013 Chieti, Italy; (G.S.); (S.P.)
| | - Serena Pilato
- Department of Pharmacy, University of Chieti “G. D’Annunzio”, Via dei Vestini 31, 66013 Chieti, Italy; (G.S.); (S.P.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
- Correspondence: (D.Q.); (M.P.)
| | - Marco Pierini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
- Correspondence: (D.Q.); (M.P.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (F.G.); (I.R.); (B.B.); (A.C.)
| |
Collapse
|
37
|
Poole D, Mathew S, Reek JNH. Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. J Am Chem Soc 2021; 143:16419-16427. [PMID: 34591465 PMCID: PMC8517980 DOI: 10.1021/jacs.1c04924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/26/2022]
Abstract
The hexameric undecyl-resorcin[4]arene capsule (C11R6) features eight discrete structural water molecules located at the vertices of its cubic suprastructure. Combining NMR spectroscopy with classical molecular dynamics (MD), we identified and characterized two distinct species of this capsule, C11R6-A and C11R6-B, respectively featuring 8 and 15 water molecules incorporated into their respective hydrogen-bonded networks. Furthermore, we found that the ratio of the C11R6-A and C11R6-B found in solution can be modulated by controlling the water content of the sample. The importance of this supramolecular modulation in C11R6 capsules is highlighted by its ability to perform acid-catalyzed transformations, which is an emergent property arising from the hydrogen bonding within the suprastructure. We show that the conversion of C11R6-A to C11R6-B enhances the catalytic rate of a model Diels-Alder cyclization by 10-fold, demonstrating the cofactor-derived control of a supramolecular catalytic process that emulates natural enzymatic systems.
Collapse
Affiliation(s)
- David
A. Poole
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
38
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Nemat SJ, Tiefenbacher K. Thioderivatives of Resorcin[4]arene and Pyrogallol[4]arene: Are Thiols Tolerated in the Self-Assembly Process? Org Lett 2021; 23:6861-6865. [PMID: 34432471 DOI: 10.1021/acs.orglett.1c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Three novel thiol bearing resorcin[4]arene and pyrogallol[4]arene derivatives were synthesized. Their properties were studied with regards to self-assembly, disulfide chemistry, and Brønsted acid catalysis. This work demonstrates that (1) one aromatic thiol on the resorcin[4]arene framework is tolerated in the self-assembly process to a hexameric hydrogen bond-based capsule, (2) thio-derivatized resorcin[4]arene analogs can be covalently linked through disulfides, and (3) the increased acidity of aromatic thio-substituent is not sufficient to replace HCl as cocatalyst for capsule catalyzed terpene cyclizations.
Collapse
Affiliation(s)
- Suren J Nemat
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.,National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.,National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
40
|
Hao X, Li TR, Chen H, Gini A, Zhang X, Rosset S, Mazet C, Tiefenbacher K, Matile S. Bioinspired Ether Cyclizations within a π-Basic Capsule Compared to Autocatalysis on π-Acidic Surfaces and Pnictogen-Bonding Catalysts. Chemistry 2021; 27:12215-12223. [PMID: 34060672 PMCID: PMC8456975 DOI: 10.1002/chem.202101548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/15/2022]
Abstract
While the integration of supramolecular principles in catalysis attracts increasing attention, a direct comparative assessment of the resulting systems catalysts to work out distinct characteristics is often difficult. Herein is reported how the broad responsiveness of ether cyclizations to diverse inputs promises to fill this gap. Cyclizations in the confined, π-basic and Brønsted acidic interior of supramolecular capsules, for instance, are found to excel with speed (exceeding general Brønsted acid and hydrogen-bonding catalysts by far) and selective violations of the Baldwin rules (as extreme as the so far unique pnictogen-bonding catalysts). The complementary cyclization on π-acidic aromatic surfaces remains unique with regard to autocatalysis, which is shown to be chemo- and diastereoselective with regard to product-like co-catalysts but, so far, not enantioselective.
Collapse
Affiliation(s)
- Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road Erxianqiao, Chengdu, 610059, P.R. China
| | - Tian-Ren Li
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Hao Chen
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Andrea Gini
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Xiang Zhang
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Science, Northwest A&F University, Xianyang Shi, Yangling, 712100, P. R. China
| | - Stéphane Rosset
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
41
|
Sokolova D, Tiefenbacher K. Optimized iminium-catalysed 1,4-reductions inside the resorcinarene capsule: achieving >90% ee with proline as catalyst. RSC Adv 2021; 11:24607-24612. [PMID: 34354825 PMCID: PMC8278068 DOI: 10.1039/d1ra04333a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
In previous work, we demonstrated that iminium-catalysed 1,4-reductions inside the supramolecular resorcinarene capsule display increased enantioselectivities as compared to their regular solution counterparts. Utilizing proline as the chiral catalyst, enantioselectivities remained below 80% ee. In this study, the reaction conditions were optimized by determining the optimal capsule loading and HCl content. Additionally, it was found that alcohol additives increase the enantioselectivity of the capsule-catalysed reaction. As a result, we report enantioselectivities of up to 92% ee for iminium-catalysed 1,4-reductions relying on proline as the sole chiral source. This is of high interest, as proline is unable to deliver high enantioselectivities for 1,4-reductions in a regular solution setting. Investigations into the role of the alcohol additive revealed a dual role: it not only slowed down the background reaction but also increased the capsule-catalysed reaction rate. A supramolecular container enables highly enantioselective iminium chemistry using simple proline as the chiral source.![]()
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel 4058 Basel Switzerland .,Department of Biosystems Science and Engineering, ETH Zürich 4058 Basel Switzerland
| |
Collapse
|
42
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
43
|
Molecular Cage Promoted Aerobic Oxidation or Photo-Induced Rearrangement of Spiroepoxy Naphthalenone. Catalysts 2021. [DOI: 10.3390/catal11040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a Pd4L2-type molecular cage (1) and catalyzed reactions of spiroepoxy naphthalenone (2) in water, where selective formation of 2-(hydroxymethyl)naphthalene-1,4-dione (3) via aerobic oxidation, or 1-hydroxy-2-naphthaldehyde (4) via photo-induced rearrangement under N2 have been accomplished. Encapsulation of four molecules of guest 2 within cage 1, i.e., (2)4⊂1, has been confirmed by NMR, and a final host-guest complex of 3⊂1 has also been determined by single crystal X-Ray diffraction study. While the photo-induced ring-opening isomerization from 2 to 4 are known, appearance of charge-transfer absorption on the host-guest complex of (2)4⊂1 allows low-power blue LEDs irradiation to promote this process.
Collapse
|
44
|
Chwastek M, Cmoch P, Szumna A. Dodecameric Anion-Sealed Capsules based on Pyrogallol[5]arenes and Resorcin[5]arenes. Angew Chem Int Ed Engl 2021; 60:4540-4544. [PMID: 33372317 DOI: 10.1002/anie.202013105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Indexed: 11/09/2022]
Abstract
The paper reports formation of exceptionally large capsular species (diameter of c. a. 30 Å) by interactions of polyphenolic macrocycles with 5-fold symmetry with anions. Pyrogallol[5]arenes and resorcin[5]arenes interact with anions via hydrogen bonds involving phenolic OH groups or aromatic CH groups. Based on NMR titration experiments, diffusion coefficients, and geometric requirements, it is postulated that the capsules have (P5H)12 (X- )60 or (R5H)12 (X- )60 stoichiometry and a unique geometry of one of the Platonic solids-a dodecahedron. The capsules exist in THF and in benzene, but not in chloroform, reflecting competitive effects in the solvation of anions. It is also demonstrated that mechanochemical pre-treatment (dry-milling) of solid samples is indispensable to initialize self-assembly in benzene.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| |
Collapse
|
45
|
Chwastek M, Cmoch P, Szumna A. Dodecameric Anion‐Sealed Capsules based on Pyrogallol[5]arenes and Resorcin[5]arenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 Warsaw Poland
| |
Collapse
|
46
|
Affiliation(s)
- Dominic Danielsiek
- Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Gerald Dyker
- Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
47
|
Zhang T, Le Corre L, Reinaud O, Colasson B. A Promising Approach for Controlling the Second Coordination Sphere of Biomimetic Metal Complexes: Encapsulation in a Dynamic Hydrogen-Bonded Capsule. Chemistry 2021; 27:434-443. [PMID: 33048410 DOI: 10.1002/chem.202004370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Indexed: 11/09/2022]
Abstract
The design of biomimetic models of metalloenzymes needs to take into account many factors and is therefore a challenging task. We propose in this work an original strategy to control the second coordination sphere of a metal centre and its distal environment. A biomimetic complex, reproducing the first coordination sphere, is encapsulated in a self-assembled hydrogen-bonded capsule. The cationic complex is co-encapsulated with its counter-anion or with solvent molecules. The capsule is dynamic, allowing a fast in/out exchange of the co-encapsulated species. It also provides both a hydrogen-bonding site in the second coordination sphere and a source of proton as it can be deprotonated in the presence of the complex, providing a globally neutral host-guest assembly. This simple and broad scope strategy is unprecedented in biomimetic studies. The approach appears to be a very promising method for the stabilisation of reactive species and for the study of their reactivity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Laurent Le Corre
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Olivia Reinaud
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Benoit Colasson
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
48
|
Li L, Tuo W, Zhu Q, Sepehrpour H, Yao Y, Yan C, Liu L, Li D, Xie Y, Zhang C, Wang M, Sun Y. Resorcinarene Induced Assembly of Carotene and Lutein into Hierarchical Superstructures. J Am Chem Soc 2020; 142:20583-20587. [DOI: 10.1021/jacs.0c10901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Wei Tuo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Qihua Zhu
- Department of Medicinal Chemistry, Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Lizhe Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Yajing Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
49
|
Choi H, Baek K, Toenjes ST, Gustafson JL, Smith DK. Redox-Responsive H-Bonding: Amplifying the Effect of Electron Transfer Using Proton-Coupled Electron Transfer. J Am Chem Soc 2020; 142:17271-17276. [PMID: 32981317 DOI: 10.1021/jacs.0c07841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new strategy to create highly redox-responsive H-bond dimers based on proton-coupled electron transfer is proposed that capitalizes on the importance of secondary H-bonds in determining overall binding strength in H-bond dimers. Electron transfer induced proton transfer across a H-bond can be used to significantly strengthen the overall binding by both creating strong ionic H-bonds and changing the secondary H-bonds from unfavorable to favorable. The viability and potency of this approach are demonstrated with an electroactive DAD (A = H-acceptor, D = H-donor) array, H(MQ+)H, paired with an electroinactive ADA array, O(NH)O. NMR titration of H(MQ+)H with O(NH)O in 0.1 M NBu4PF6/CD2Cl2 gives a Kassoc of 500 M-1, typical of DAD-ADA dimers. However, upon two-electron reduction in 0.1 M NBu4PF6/CH2Cl2, cyclic voltammetry studies indicate a 1.8 × 105 increase in binding strength, corresponding to a very large Kassoc of 9 × 107 M-1. The latter value is typical of DDD-AAA H-bond dimers, consistent with proton transfer across the central H-bond upon reduction.
Collapse
Affiliation(s)
- Hyejeong Choi
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Kiyeol Baek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Sean T Toenjes
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| |
Collapse
|
50
|
Wang J, Young TA, Duarte F, Lusby PJ. Synergistic Noncovalent Catalysis Facilitates Base-Free Michael Addition. J Am Chem Soc 2020; 142:17743-17750. [DOI: 10.1021/jacs.0c08639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianzhu Wang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Tom A. Young
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Paul J. Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| |
Collapse
|