1
|
Sk B, Shimura R, Fujita K, Hirata S. Synchronizing the nπ* Transition Dipole in a Benzoyl-Linked N-Fused Ring for Highly Efficient Yellow Afterglow. J Phys Chem Lett 2025; 16:3904-3910. [PMID: 40208896 DOI: 10.1021/acs.jpclett.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
The El-Sayed rule proposes that heteroatom-containing chromophores can enhance the intersystem crossing rate by inducing the nπ* transitions. However, extracting high radiation from the triplet state is often challenging due to the small nπ* transition dipole moment. Herein, we demonstrate that introducing the benzoyl group in a N-fused chromophore (BPM) increases the nπ* transition dipole. Connecting two heads with non-bonded electron pairs leads to an enhanced nπ* transition dipole that facilitates a multi-fold radiation rate enhancement compared to the native N-fused ring. The deuterated form of BPM provides a high room-temperature phosphorescence yield of 54.1% and a long lifetime of 0.32 s. As a result, a high triplet concentration of 1.7 × 10-2 M for the yellow afterglow was achieved for the first time, enabling high-resolution afterglow imaging of nanoparticles in aqueous medium. Enhancing the nπ* transition dipole of the heavy-atom-free organic chromophores could be a practical strategy for harvesting the triplet excitons.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Riku Shimura
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Kazuki Fujita
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
2
|
Mulimani RK, Ueda S, Miyashita R, Tsuru R, Hayashi K, Shimura R, Sk B, Matsuda S, Hirata S. Selective Lower-Occupied Through-Bond Interactions for Efficient Organic Phosphorescence Enabling High-Resolution Long-Wavelength Afterglow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502611. [PMID: 40270334 DOI: 10.1002/adma.202502611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/23/2025] [Indexed: 04/25/2025]
Abstract
Persistent organic room-temperature phosphorescence (RTP) enables high-resolution afterglow bioimaging, independent of autofluorescence. However, the yield of organic RTP in the long-wavelength region is generally low, which limits the high-resolution information that can be obtained from the long-wavelength region. Moreover, this makes it impossible to obtain multicolor and high-resolution afterglow images. This report describes a molecule containing no atoms from the fourth or higher period that exhibits efficient red RTP in high yield. A molecule with red phosphorescent chromophores substituted with multiple phenylthio groups reached an RTP yield of 46.3% and an RTP lifetime of 0.43 s in an appropriate crystalline host medium. The selective lower-occupied through-bond or through-space interactions among molecules significantly enhance the phosphorescence in the long-wavelength region. The highly efficient and bright red persistent RTP induces a red afterglow from individual nanoparticles. Tuning the selective lower-occupied through-bond or through-space interactions allows for the design of high-performance RTP dyes and offers a novel approach to explore high-resolution full-color afterglow imaging.
Collapse
Affiliation(s)
- Rajashekhar K Mulimani
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Sakuya Ueda
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Ryo Miyashita
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Rana Tsuru
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kikuya Hayashi
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Riku Shimura
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Bahadur Sk
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shinji Matsuda
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
3
|
Zhang XP, Wang L, Zhang WX, Chen ZC, Yang C, Xu SY, Du P, Chen BW, He Q, Tian HR, Zhu X, Li M, Wang SS, Deng LL, Chen SH, Zhang Q, Xie SY, Zheng LS. Structurally Compact Penta(N,N-diphenylamino)corannulene as Dopant-free Hole Transport Materials for Stable and Efficient Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202413582. [PMID: 39422656 DOI: 10.1002/anie.202413582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Hole transport materials (HTMs) are essential for improving the stability and efficiency of perovskite solar cells (PSCs). In this study, we have designed and synthesized a novel organic small molecule HTM, cor-(DPA)5, characterized by a bowl-shaped core with symmetric five diphenylamine groups. Compared to already-known HTMs, the bowl-shaped and relatively compact structure of cor-(DPA)5 facilitates intermolecular π-π interactions, promotes film formations, and enhances charge transport. Consequently, the cor-[DPA(2)]5 HTM exhibits high charge mobility, exceptional hydrophobicity, and a significantly elevated glass transition temperature. Superior to previously reported HTMs such as spiro-OMeTAD and cor-OMePTPA, our newly synthesized cor-(DPA)5 HTM is free from any ionic dopants. As a result, the dopant-free cor-[DPA(2)]5-based PSC demonstrates an impressive efficiency of 24.01 %, and exhibits outstanding operational stability. It retains 96 % after continuous exposure to 1 sun irradiation for 800 hours under MPP (maximum power point) tracking in ambient air. These findings present a structurally compact novel HTM and exemplify a new approach to the molecular design of HTM for the development of stable and effective PSCs.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Luyao Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wen-Xin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zuo-Chang Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Si-Yi Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Peng Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bin-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qunyang He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
- Reactive Hazards Evaluation Laboratory, Gulei Innovation Institute, Xiamen University, Zhangzhou, Fujian, 363105, China
| | - Han-Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xuejie Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Meng Li
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan, 475004, China
| | - Shan-Shan Wang
- Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, Fujian, 361005, China
| | - Lin-Long Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Si-Hao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
4
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Hayashi K, Hirata S. High-Resolution Afterglow Patterning Using Cooperative Vapo- and Photo-Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308103. [PMID: 38018335 DOI: 10.1002/smll.202308103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Indexed: 11/30/2023]
Abstract
Bright afterglow room-temperature phosphorescence (RTP) soon after ceasing excitation is a promising technique for greatly increasing anti-counterfeiting capabilities. The development of a process for rapid high-resolution afterglow patterning of crystalline materials can improve both high-speed fabrication of anti-counterfeiting afterglow media and stable afterglow readout compared with those achieved with amorphous materials. Here, the high-resolution afterglow patterning of crystalline materials via cooperative organic vapo- and photo-stimulation is reported. A single crystal of (S)-(-)-2,2'-bis(diphenylphosphino)-5,5',6,6',7,7'8,8'-octahydro-1,1'-binaphthyl [(S)-H8-BINAP] doped with (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP] shows green afterglow RTP. Crystals of (S)-BINAP-doped (S)-H8-BINAP changed to an amorphous state with no afterglow capability on weak continuous photoirradiation under dichloromethane (DCM) vapor. Photoirradiation induced oxidation of the (S)-H8-BINAP host molecule in the crystal. The oxidized (S)-H8-BINAP forms on the crystal surface strongly interacted with DCM molecules, which induces melting of the (S)-BINAP-doped (S)-H8-BINAP crystal and trigger formation of an amorphous state without an afterglow capability. High-resolution afterglow patterning of the crystalline film is rapidly achieved by using cooperative organic vapo- and photo-stimulation. In addition to the benefit of rapid afterglow patterning, the formed afterglow images of the crystalline film can be repeatedly read out under ambient conditions without DCM vapor.
Collapse
Affiliation(s)
- Kikuya Hayashi
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
6
|
Sk B, Hirata S. Symmetry-Breaking Triplet Excited State Enhances Red Afterglow Enabling Ubiquitous Afterglow Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308897. [PMID: 38311585 PMCID: PMC11005713 DOI: 10.1002/advs.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Molecular vibrations are often factors that deactivate luminescence. However, if there are molecular motion elements that enhance luminescence, it may be possible to utilize molecular movement as a design guideline to enhance luminescence. Here, the authors report a large contribution of symmetry-breaking molecular motion that enhances red persistent room-temperature phosphorescence (RTP) in donor-π-donor conjugated chromophores. The deuterated form of the donor-π-donor chromophore exhibits efficient red persistent RTP with a yield of 21% and a lifetime of 1.6 s. A dynamic calculation of the phosphorescence rate constant (kp) indicates that the symmetry-breaking movement has a crucial role in selectively facilitating kp without increasing nonradiative transition from the lowest triplet excited state. Molecules exhibiting efficient red persistent RTP enable long-wavelength excitation, indicating the suitability of observing afterglow readout in a bright indoor environment with a white-light-emitting diode flashlight, greatly expanding the range of anti-counterfeiting applications that use afterglow.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| |
Collapse
|
7
|
Deka R, Dey S, Upadhyay M, Chawla S, Ray D. Conformational Effect of Catechol-Terephthalonitrile Emitters Leading to Ambient Violet Phosphorescence. J Phys Chem A 2024; 128:581-589. [PMID: 38206828 DOI: 10.1021/acs.jpca.3c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Organic ambient violet phosphorescent (AVP) materials are of great interest due to their involvement of high energy and longer-lived triplet excitons. Here, we show three fused ring functionalized donor-acceptor-donor (D-A-D/D-A-D') emitters (BPT1-BPT3), in which two catechol-based donors (3,4-dihydroxybenzophenone, catechol, or 3,5-ditert-butylcatechol) are covalently fused to the terephthalonitrile acceptor via four O-C single bonds. Spectroscopic analysis revealed that all the molecules show AVP (∼390-394 nm, τAVP = 73-101 μs) with phosphorescence quantum yields (ϕP) of 1.8-27.4% due to low singlet-triplet gaps (0.036-0.046 eV) and conformational effects. BPT3 with bulky tert-butyl groups increases AVP (ϕP = 27.4%). Quantum chemistry calculations reveal flat (F1) and twisted (F2) conformers (ground state) with a low energy difference (∼4-5 kcal/mol) for all molecules; the F1 conformer is responsible for efficient AVP, while weak blue thermally activated delayed fluorescence with longer-lived delayed components is realized from the F2 conformer. This approach may provide important clues for the design of high-energy organic phosphorescent materials.
Collapse
Affiliation(s)
- Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
8
|
Badriyah EH, Hayashi K, Sk B, Takano R, Ishida T, Hirata S. Continuous Condensed Triplet Accumulation for Irradiance-Induced Anticounterfeit Afterglow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304374. [PMID: 37897314 PMCID: PMC10754144 DOI: 10.1002/advs.202304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Indexed: 10/30/2023]
Abstract
Afterglow room-temperature emission that is independent of autofluorescence after ceasing excitation is a promising technology for state-of-the-art bioimaging and security devices. However, the low brightness of the afterglow emission is a current limitation for using such materials in a variety of applications. Herein, the continuous formation of condensed triplet excitons for brighter afterglow room-temperature phosphorescence is reported. (S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl ((S)-BINAP) incorporated in a crystalline host lattice showed bright green afterglow room-temperature phosphorescence under strong excitation. The small triplet-triplet absorption cross-section of (S)-BINAP in the whole range of visible wavelengths greatly suppressed the deactivation caused by Förster resonance energy transfer from excited states of (S)-BINAP to the accumulated triplet excitons of (S)-BINAP under strong continuous excitation. The steady-state concentration of the triplet excitons for (S)-BINAP reached 2.3 × 10-2 M, producing a bright afterglow. Owing to the brighter afterglow, afterglow detection using individual particles with sizes approaching the diffraction limit in aqueous conditions and irradiance-dependent anticounterfeiting can be achieved.
Collapse
Affiliation(s)
- Ende Hopsah Badriyah
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Kikuya Hayashi
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Rina Takano
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Takayuki Ishida
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| |
Collapse
|
9
|
Dey S, Pal AK, Upadhyay M, Datta A, Ray D. Modulation of Delayed Fluorescence Guided by Conformational Effect-Mediated Thermally Enhanced Phosphorescence in Phenothiazines-Quinoline-Cl Conjugates. J Phys Chem B 2023; 127:9833-9840. [PMID: 37913786 DOI: 10.1021/acs.jpcb.3c06274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Triplet energy harvesting via thermally activated delayed fluorescence (TADF) from pure organic systems has attracted great attention in organic light-emitting diodes, sensing, and photocatalysis. However, the realization of thermally enhanced phosphorescence (TEP)-guided efficient TADF with a high rate of reverse intersystem crossing (kRISC) still needs to be discovered. Herein, we report two phenothiazine-quinoline conjugates (P2QC, P2QMC) comprising two phenothiazine donors covalently attached to the chlorine-substituted quinolinyl acceptor. Spectroscopic analysis in conjunction with quantum chemistry calculations reveals that TEP in P2QC originated due to slow internal conversion from higher-lying triplet to lowest triplet (T2' → T1') of the quasi-axial (QA) conformer and TADF (kRISC = 1.44 × 108 s-1) originated from the quasi-equatorial (QE) conformer caused by a low singlet-triplet gap (ΔES1-T1 = 0.11 eV) and triplet energy transfer from QA to QE owing to the degenerate ground state of the conformers. In contrast, TADF (kRISC = 0.74 × 108 s-1) and dual phosphorescence under ambient conditions are observed in P2QMC. This study provides a sustainable guideline for developing efficient TADF emitters via conformation effects and energy transfer mechanisms.
Collapse
Affiliation(s)
- Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
10
|
Sk B, Hirata S. Förster resonance energy transfer involving the triplet state. Chem Commun (Camb) 2023; 59:6643-6659. [PMID: 37139987 DOI: 10.1039/d3cc00748k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Triplet harvesting is important for high-efficiency optoelectronics devices, time-resolved bioimaging, sensing, and anti-counterfeiting devices. Förster resonance energy transfer (FRET) from the donor (D) to the acceptor (A) is important to efficiently harvest the triplet excitons after a variety of excitations. However, general explanations of the key factors of FRET from the singlet state (FRETS-S) via reverse intersystem crossing and FRET from the triplet state (FRETT-S) have not been reported beyond spectral overlap between emission of the D and absorption of the A. This feature article gives an overview of FRET involving the triplet state. After discussing the contribution of the radiation yield from the state of the D considering spin-forbidden factors of FRET, a variety of schemes involving triplet states, such as FRETS-Svia reverse intersystem crossing from the triplet state, dual FRETS-S and FRETT-S, and selective FRETT-S, are introduced. Representative examples, including the chemical structure and FRET for triplet harvesting, are highlighted using emerging applications in optoelectronics and afterglow imaging. Finally, recent developments of using FRET involving triplet states for high-efficiency optoelectronic devices and time-resolved bioimaging are discussed. This article provides crucial information for controlling state-of-the-art properties using FRET involving the triplet state.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Shuzo Hirata
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
11
|
Zheng X, Han Q, Lin Q, Li C, Jiang J, Guo Q, Ye X, Yuan WZ, Liu Y, Tao X. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. MATERIALS HORIZONS 2023; 10:197-208. [PMID: 36331106 DOI: 10.1039/d2mh00998f] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.
Collapse
Affiliation(s)
- Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
12
|
Fukasawa K, Sugawara Y, Tsuru R, Yamashita T, Hirata S. Enhanced Red Persistent Room-Temperature Phosphorescence Induced by Orthogonal Structure Disruption during Electronic Relaxation. J Phys Chem Lett 2022; 13:7788-7796. [PMID: 35973202 DOI: 10.1021/acs.jpclett.2c01878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bright, persistent, room-temperature phosphorescence (RTP) at long wavelengths is crucial for high-resolution imaging in the absence of in vivo autofluorescence. However, efficient long-wavelength RTP is difficult. Here, enhanced red RTP based on a unique mechanism was observed from deuterated dibenzo[g.p]chrysenes substituted with a phenoxazine. The yield was 16%, with an average lifetime of 1.8 s. An orthogonal dihedral angle between the dibenzo[g.p]chrysene and the phenoxazine in the lowest excited singlet state allowed a forbidden fluorescence to increase triplet generation. When the dihedral angle changed, disengagement of the forbidden fluorescence from the excited singlet state occurred, and the lowest triplet excited state had a facilitated phosphorescence rate without increasing its nonradiative transition rate. The facilitated phosphorescence rate as well as the large triplet yield led to the enhanced red RTP.
Collapse
Affiliation(s)
- Kei Fukasawa
- Department of Applied Chemistry, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yuma Sugawara
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Rana Tsuru
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Takashi Yamashita
- Department of Applied Chemistry, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Shuzo Hirata
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
13
|
Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nat Commun 2022; 13:4890. [PMID: 35986007 PMCID: PMC9391375 DOI: 10.1038/s41467-022-32029-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIntermolecular interactions, including attractive and repulsive interactions, play a vital role in manipulating functionalization of the materials from micro to macro dimensions. Despite great success in generation of ultralong organic phosphorescence (UOP) by suppressing non-radiative transitions through attractive interactions recently, there is still no consideration of repulsive interactions on UOP. Herein, we proposed a feasible approach by introducing carboxyl groups into organic phosphors, enabling formation of the intense repulsive interactions between the isolated molecules and the matrix in rigid environment. Our experimental results show a phosphor with a record lifetime and quantum efficiency up to 3.16 s and 50.0% simultaneously in film under ambient conditions. Considering the multiple functions of the flexible films, the potential applications in anti-counterfeiting, afterglow display and visual frequency indicators were demonstrated. This finding not only outlines a fundamental principle to achieve bright organic phosphorescence in film, but also expands the potential applications of UOP materials.
Collapse
|
14
|
Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Karmakar S, Dey S, Upadhyay M, Ray D. Phenoxazine-Quinoline Conjugates: Impact of Halogenation on Charge Transfer Triplet Energy Harvesting via Aggregate Induced Phosphorescence. ACS OMEGA 2022; 7:16827-16836. [PMID: 35601330 PMCID: PMC9118413 DOI: 10.1021/acsomega.2c01909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature phosphorescence (RTP) from organic compounds has attracted increasing attention in the field of data security, sensing, and bioimaging. However, realization of RTP with an aggregate induced phosphorescence (AIP) feature via harvesting supersensitive excited charge transfer triplet (3CT) energy under visible light excitation (VLE) in single-component organic systems at ambient conditions remains unfulfilled. Organic donor-acceptor (D-A) based orthogonal structures can therefore be used to harvest the energy of the 3CT state at ambient conditions under VLE. Here we report three phenoxazine-quinoline conjugates (PQ, PQCl, PQBr), in which D and A parts are held in orthogonal orientation around the C-N single bond; PQCl and PQBr are substituted with halogens (Cl, Br) while PQ has no halogen atom. Spectroscopic studies and quantum chemistry calculations combining reference compounds (Phx, QPP) reveal that all the compounds in film at ambient conditions show fluorescence and green-RTP due to (i) radiative decay of both singlet charge transfer (1CT) and triplet CT (3CT) states under VLE, (ii) energetic nondegeneracy of 1CT and 3CT states (1CT- 3CT, 0.17-0.21 eV), and (iii) spatial separation of highest and lowest unoccupied molecular orbitals. Further, we found in a tetrahydrofuran-water mixture (f w = 90%, v/v) that both PQCl (10-5 M) and PQBr (10-5 M) show concentration-dependent AIP with phosphorescence quantum yields (ϕP) of ∼25% and ∼28%, respectively, whereas aggregate induced quenching (ACQ) was observed in PQ. The phosphorescence lifetimes (τP) of the PQCl and PQBr aggregates were shown to be ∼22-62 μs and ∼22-59 μs, respectively. The ϕP of the powder samples is found to be 0.03% (PQ), 15.6% (PQCl), and 13.0% (PQBr), which are significantly lower than that of the aggregates (10-5 M, f w = 90%, v/v). Film (Zeonex, 0.1 wt %) studies revealed that ϕP of PQ (7.1%) is relatively high, while PQCl and PQBr exhibit relatively low ϕP values (PQCl, 9.7%; PQBr, 8.8%), as compared with that of powder samples. In addition, we found in single-crystal X-ray analysis that multiple noncovalent interactions along with halogen···halogen (Cl···Cl) interactions between the neighboring molecules play an important role to stabilize the 3CT caused by increased rigidity of the molecular backbone. This design principle reveals a method to understand nondegeneracy of 1CT and 3CT states, and RTP with a concentration-dependent AIP effect using halogen substituted twisted donor-acceptor conjugates.
Collapse
|
16
|
Acharya N, Dey S, Deka R, Ray D. Molecular-Level Understanding of Dual-RTP via Host-Sensitized Multiple Triplet-to-Triplet Energy Transfers and Data Security Application. ACS OMEGA 2022; 7:3722-3730. [PMID: 35128280 PMCID: PMC8811933 DOI: 10.1021/acsomega.1c06390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
Dual-room-temperature phosphorescence (DRTP) from organic molecules is of utmost importance in chemical physics. The Dexter-type triplet-to-triplet energy transfer mechanism can therefore be used to achieve DRTP at ambient conditions. Here, we report two donor-acceptor (D-A)-based guests (CQN1, CQN2) in which the donor (D) and acceptor (A) parts are held in angular orientation around the C-N single bond. Spectroscopic analysis along with computational calculations revealed that both guests are incapable of emitting either thermally activated delayed fluorescence (TADF) or RTP at ambient conditions due to large singlet-triplet gaps, which are presented to show host (benzophenone, BP)-sensitized DRTP via multiple intermolecular triplet-to-triplet energy transfer (TTET) channels that originate from the triplet state (T1 BP) of BP to the triplet states (T1 D, T1 A) of the D and A parts (TTET-I:T1 BP → T1 D; TTET-II:T1 BP → T1 A). In addition, an intramolecular TTET channel that occurs from the T1 D to T1 A states of the D and A parts of CQN2 is also activated due to the low triplet (T1 D)-triplet (T1 A) gap at ambient conditions. The efficiency of TTET processes was found to be 100%. The phosphorescence quantum yields (ϕP) and lifetimes (τP) were shown to be 13-20% and 0.48-0.55 s, respectively. Given the high lifetime of the DRTP feature of both host-guest systems (1000:1 molar ratio), a data security application is achieved. This design principle provides the first solid proof that DRTP via radiative decay of the dark triplet states of the D and A parts of D-A-based non-TADF systems is possible, revealing a method to increase the efficiency and lifetime of DRTP.
Collapse
|
17
|
Kusama T, Hirata S. Thermo-Reversible Persistent Phosphorescence Modulation Reveals the Large Contribution Made by Rigidity to the Suppression of Endothermic Intermolecular Triplet Quenching. Front Chem 2021; 9:788577. [PMID: 34869234 PMCID: PMC8636281 DOI: 10.3389/fchem.2021.788577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The suppression of thermally driven triplet deactivation is crucial for efficient persistent room-temperature phosphorescence (pRTP). However, the mechanism by which triplet deactivation occurs in metal-free molecular solids at room temperature (RT) remains unclear. Herein, we report a large pRTP intensity change in a molecular guest that depended on the reversible amorphous–crystal phase change in the molecular host, and we confirm the large contribution made by the rigidity of the host in suppressing intermolecular triplet quenching in the guest. (S)-(−)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl ((S)-BINAP) was doped as a guest into a highly purified (S)-bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl ((S)-H8-BINAP) host. It was possible to reversibly form the amorphous and crystalline states of the solid by cooling to RT from various temperatures. The RTP yield (Φp) originating from the (S)-BINAP was 6.7% in the crystalline state of the (S)-H8-BINAP host, whereas it decreased to 0.31% in the amorphous state. Arrhenius plots showing the rate of nonradiative deactivation from the lowest triplet excited state (T1) of the amorphous and crystalline solids indicated that the large difference in Φp between the crystalline and amorphous states was mostly due to the discrepancy in the magnitude of quenching of intermolecular triplet energy transfer from the (S)-BINAP guest to the (S)-H8-BINAP host. Controlled analyses of the T1 energy of the guest and host, and of the reorganization energy of the intermolecular triplet energy transfer from the guest to the host, confirmed that the large difference in intermolecular triplet quenching was due to the discrepancy in the magnitude of the diffusion constant of the (S)-H8-BINAP host between its amorphous and crystalline states. Quantification of both the T1 energy and the diffusion constant of molecules used in solid materials is crucial for a meaningful discussion of the intermolecular triplet deactivation of various metal-free solid materials.
Collapse
Affiliation(s)
- Tomoya Kusama
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Shuzo Hirata
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|