1
|
Wu Y, Deng P, Liu L, Zhang J, Liu H, Gao X, Xiao FS, Wang L. Dynamic evolution of metal structures on/in zeolites for catalysis. Chem Soc Rev 2025; 54:4745-4762. [PMID: 40192039 DOI: 10.1039/d5cs00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Dynamic changes of metal species always occur during catalysis, and primarily rely on forming mobile metal species initiated by thermal or chemical conditions. During these processes, a support is important in affecting the catalyst stability and dynamic change pathways. Among several supports, zeolites provide ideal features for regulating the migration of metal species due to their unique pore structures and specific defect sites. This review provides a comprehensive summary of typical cases about dynamic migration of metal species on/in metal-zeolite catalysts, analyzing the mechanisms and driving factors of metal migration under different reaction conditions. We discuss the roles of zeolite supports in the migration process of metal species, particularly their crucial contributions to the stability of metal species and the optimization of active sites. In addition, the potential mechanism of the dynamic migration of metal species, theoretical studies, and practical guidance for designing highly efficient catalysts are also included in this review.
Collapse
Affiliation(s)
- Yuexin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| | - Pengcheng Deng
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lujie Liu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Junyi Zhang
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Haisheng Liu
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Xionghou Gao
- PetroChina Lanzhou Petrochemical Company, Lanzhou, 730000, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Baima Lake Laboratory, Hangzhou, 311121, China
| |
Collapse
|
2
|
Bjerregaard JD, Votsmeier M, Grönbeck H. Influence of aluminium distribution on the diffusion mechanisms and pairing of [Cu(NH 3) 2] + complexes in Cu-CHA. Nat Commun 2025; 16:603. [PMID: 39799150 PMCID: PMC11724864 DOI: 10.1038/s41467-025-55859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NOx (NH3-SCR) depends critically on the presence of paired[ Cu ( NH 3 ) 2 ] + complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of[ Cu ( NH 3 ) 2 ] + complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments. The free energy barrier for[ Cu ( NH 3 ) 2 ] + diffusion between CHA-cages depends sensitively on both the local and distant Al-distribution. Importantly, certain Al-distributions and arrangements of neighboring[ Cu ( NH 3 ) 2 ] + andNH 4 + cations make paired[ Cu ( NH 3 ) 2 ] + complexes exothermic with respect to separated configurations. Our results suggest that the NH3-SCR activity can be enhanced by increasing the Cu-loading and Al-content. The dynamic interplay between[ Cu ( NH 3 ) 2 ] + andNH 4 + diffusion is crucial for the[ Cu ( NH 3 ) 2 ] + mobility and stresses the need to explore large systems including long-range Coulomb interactions when studying diffusion of charged species in zeolites.
Collapse
Affiliation(s)
- Joachim D Bjerregaard
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457, Hanau, Germany.
| | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457, Hanau, Germany
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
| |
Collapse
|
3
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024; 53:11657-11691. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
4
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
5
|
Goswami A, Krishna SH, Gounder R, Schneider WF. Kinetic Monte Carlo Analysis Reveals Non-mean-field Active Site Dynamics in Cu-Zeolite-Catalyzed NO x Reduction. ACS Catal 2024; 14:8376-8388. [PMID: 38868104 PMCID: PMC11166141 DOI: 10.1021/acscatal.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO x with NH3. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cha cage to activate O2 and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO x SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO4]- tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and in situ Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.
Collapse
Affiliation(s)
- Anshuman Goswami
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Siddarth H. Krishna
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Fu Y, Ding W, Lei H, Sun Y, Du J, Yu Y, Simon U, Chen P, Shan Y, He G, He H. Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:11141-11151. [PMID: 38600025 DOI: 10.1021/jacs.3c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.
Collapse
Affiliation(s)
- Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Millan R, Bello-Jurado E, Moliner M, Boronat M, Gomez-Bombarelli R. Effect of Framework Composition and NH 3 on the Diffusion of Cu + in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics. ACS CENTRAL SCIENCE 2023; 9:2044-2056. [PMID: 38033797 PMCID: PMC10683499 DOI: 10.1021/acscentsci.3c00870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 12/02/2023]
Abstract
Cu-exchanged zeolites rely on mobile solvated Cu+ cations for their catalytic activity, but the role of the framework composition in transport is not fully understood. Ab initio molecular dynamics simulations can provide quantitative atomistic insight but are too computationally expensive to explore large length and time scales or diverse compositions. We report a machine-learning interatomic potential that accurately reproduces ab initio results and effectively generalizes to allow multinanosecond simulations of large supercells and diverse chemical compositions. Biased and unbiased simulations of [Cu(NH3)2]+ mobility show that aluminum pairing in eight-membered rings accelerates local hopping and demonstrate that increased NH3 concentration enhances long-range diffusion. The probability of finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity tests of Cu-CHA catalysts with a controlled chemical composition.
Collapse
Affiliation(s)
- Reisel Millan
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Estefanía Bello-Jurado
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Manuel Moliner
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Rafael Gomez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Molokova AY, Abasabadi RK, Borfecchia E, Mathon O, Bordiga S, Wen F, Berlier G, Janssens TVW, Lomachenko KA. Elucidating the reaction mechanism of SO 2 with Cu-CHA catalysts for NH 3-SCR by X-ray absorption spectroscopy. Chem Sci 2023; 14:11521-11531. [PMID: 37886093 PMCID: PMC10599480 DOI: 10.1039/d3sc03924b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The application of Cu-CHA catalysts for the selective catalytic reduction of NOx by ammonia (NH3-SCR) in exhaust systems of diesel vehicles requires the use of fuel with low sulfur content, because the Cu-CHA catalysts are poisoned by higher concentrations of SO2. Understanding the mechanism of the interaction between the Cu-CHA catalyst and SO2 is crucial for elucidating the SO2 poisoning and development of efficient catalysts for SCR reactions. Earlier we have shown that SO2 reacts with the [Cu2II(NH3)4O2]2+ complex that is formed in the pores of Cu-CHA upon activation of O2 in the NH3-SCR cycle. In order to determine the products of this reaction, we use X-ray absorption spectroscopy (XAS) at the Cu K-edge and S K-edge, and X-ray emission spectroscopy (XES) for Cu-CHA catalysts with 0.8 wt% Cu and 3.2 wt% Cu loadings. We find that the mechanism for SO2 uptake is similar for catalysts with low and high Cu content. We show that the SO2 uptake proceeds via an oxidation of SO2 by the [Cu2II(NH3)4O2]2+ complex, resulting in the formation of different CuI species, which do not react with SO2, and a sulfated CuII complex that is accumulated in the pores of the zeolite. The increase of the SO2 uptake upon addition of oxygen to the SO2-containing feed, evidenced by X-ray adsorbate quantification (XAQ) and temperature-programmed desorption of SO2, is explained by the re-oxidation of the CuI species into the [Cu2II(NH3)4O2]2+ complexes, which makes them available for reaction with SO2.
Collapse
Affiliation(s)
- Anastasia Yu Molokova
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Reza K Abasabadi
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
- Umicore Denmark ApS Kogle Allé 1 2970 Hørsholm Denmark
| | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Olivier Mathon
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Fei Wen
- Umicore AG & Co Rodenbacher Chaussee 4 63457 Hanau Germany
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | | | - Kirill A Lomachenko
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
| |
Collapse
|
9
|
Radhakrishnan S, Smet S, Chandran CV, Sree SP, Duerinckx K, Vanbutsele G, Martens JA, Breynaert E. Prediction of Cu Zeolite NH 3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules 2023; 28:6456. [PMID: 37764230 PMCID: PMC10537069 DOI: 10.3390/molecules28186456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Selective catalytic reduction (SCR) of NOx by ammonia is one of the dominant pollution abatement technologies for near-zero NOx emission diesel engines. A crucial step in the reduction of NOx to N2 with Cu zeolite NH3-SCR catalysts is the generation of a multi-electron donating active site, implying the permanent or transient dimerization of Cu ions. Cu atom mobility has been implicated by computational chemistry as a key factor in this process. This report demonstrates how variable temperature 1H NMR reveals the Cu induced generation of sharp 1H resonances associated with a low concentration of sites on the zeolite. The onset temperature of the appearance of these signals was found to strongly correlate with the NH3-SCR activity and was observed for a range of catalysts covering multiple frameworks (CHA, AEI, AFX, ERI, ERI-CHA, ERI-OFF, *BEA), with different Si/Al ratios and different Cu contents. The results point towards universal applicability of variable temperature NMR to predict the activity of a Cu-zeolite SCR catalyst. The unique relationship of a spectroscopic feature with catalytic behavior for zeolites with different structures and chemical compositions is exceptional in heterogeneous catalysis.
Collapse
Affiliation(s)
- Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sam Smet
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C. Vinod Chandran
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sreeprasanth Pulinthanathu Sree
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gina Vanbutsele
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A. Martens
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| |
Collapse
|
10
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
11
|
Lei H, Chen D, Yang JY, Khetan A, Jiang J, Peng B, Simon U, Ye D, Chen P. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO x Reduction over Cu-SSZ-13 Zeolites by In Situ UV-Vis Spectroscopy and Time-Dependent DFT Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12465-12475. [PMID: 37556316 DOI: 10.1021/acs.est.3c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., μ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.
Collapse
Affiliation(s)
- Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, Qingdao 266237 China
| | - Abhishek Khetan
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780 Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
12
|
Dietschreit JCB, Diestler DJ, Gómez-Bombarelli R. Entropy and Energy Profiles of Chemical Reactions. J Chem Theory Comput 2023; 19:5369-5379. [PMID: 37535443 DOI: 10.1021/acs.jctc.3c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The description of chemical processes at the molecular level is often facilitated by the use of reaction coordinates or collective variables (CVs). The CV measures the progress of the reaction and allows the construction of profiles that track how specific properties evolve as the reaction progresses. Whereas CVs are routinely used, especially alongside enhanced sampling techniques, the links among reaction profiles, thermodynamic state functions, and reaction rate constants are not rigorously exploited. Here, we report a unified treatment of such reaction profiles. Tractable expressions are derived for the free-energy, internal-energy, and entropy profiles as functions of only the CV. We demonstrate the ability of this treatment to extract quantitative insight from the entropy and internal-energy profiles of various real-world physicochemical processes, including intramolecular organic reactions, ionic transport in superionic electrolytes, and molecular transport in nanoporous materials.
Collapse
Affiliation(s)
- Johannes C B Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dennis J Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Abdul Nasir J, Guan J, Keal TW, Desmoutier AW, Lu Y, Beale AM, Catlow CRA, Sokol AA. Influence of Solvent on Selective Catalytic Reduction of Nitrogen Oxides with Ammonia over Cu-CHA Zeolite. J Am Chem Soc 2022; 145:247-259. [PMID: 36548055 PMCID: PMC9837844 DOI: 10.1021/jacs.2c09823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The copper-exchanged zeolite Cu-CHA has received considerable attention in recent years, owing to its application in the selective catalytic reduction (SCR) of NOx species. Here, we study the NH3-SCR reaction mechanism on Cu-CHA using the hybrid quantum mechanical/molecular mechanical (QM/MM) technique and investigate the effects of solvent on the reactivity of active Cu species. To this end, a comparison is made between water- and ammonia-solvated and bare Cu species. The results show the promoting effect of solvent on the oxidation component of the NH3-SCR cycle since the formation of important nitrate species is found to be energetically more favorable on the solvated Cu sites than in the absence of solvent molecules. Conversely, both solvent molecules are predicted to inhibit the reduction component of the NH3-SCR cycle. Diffuse reflectance infrared fourier-transform spectroscopy (DRIFTS) experiments exploiting (concentration) modulation excitation spectroscopy (MES) and phase-sensitive detection (PSD) identified spectroscopic signatures of Cu-nitrate and Cu-nitrosamine (H2NNO), important species which had not been previously observed experimentally. This is further supported by the QM/MM-calculated harmonic vibrational analysis. Additional insights are provided into the reactivity of solvated active sites and the formation of key intermediates including their formation energies and vibrational spectroscopic signatures, allowing the development of a detailed understanding of the reaction mechanism. We demonstrate the role of solvated active sites and their influence on the energetics of important species that must be explicitly considered for an accurate understanding of NH3-SCR kinetics.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department
of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.,
| | - Jingcheng Guan
- Department
of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.
| | - Thomas W. Keal
- Scientific
Computing Department, STFC Daresbury Laboratory, Keckwick Lane, Daresbury, WarringtonWA4 4AD, U.K.
| | - Alec W. Desmoutier
- Department
of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.
| | - You Lu
- Scientific
Computing Department, STFC Daresbury Laboratory, Keckwick Lane, Daresbury, WarringtonWA4 4AD, U.K.
| | - Andrew M. Beale
- Department
of Chemistry, Christopher Ingold Building, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.,UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, OxfordshireOX11 0FA, U.K.
| | - C. Richard A. Catlow
- Department
of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.,UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, OxfordshireOX11 0FA, U.K.,School
of Chemistry, Cardiff University, Park Place, CardiffCF10 3AT, U.K.,
| | - Alexey A. Sokol
- Department
of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.,
| |
Collapse
|
15
|
Mechanism for SO Poisoning of Cu-CHA during Low Temperature NH-SCR. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Ye H, Ren K, Wang P, Wang L. The investigation of the NH3-SCR performance of a copper-based AEI-CHA intergrown zeolite catalyst. Front Chem 2022; 10:1069824. [DOI: 10.3389/fchem.2022.1069824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
This work prepared an ISAPO-34/SAPO-18 intergrown zeolite using phosphate organoamine as the structure guiding agent. Physical-chemical characterizations by XRD, SEM, TG, and BET showed that the SAPO-34/SAPO-18 presents a cross-stacked cubic block-like microscopic morphology, with characteristic diffusive diffraction peaks at 2θ = 16–18° and 30–33° and a specific surface area of 557 m2 g−1. The series of copper-based catalysts prepared from SAPO-34/SAPO-18 showed a shift of the active temperature window to a lower temperature with increasing copper content. Moreover, the Brønsted acid site decreased significantly due to copper ion exchange and zeolite structure framework damage. Among them, the 1.2 wt% sample showed the widest active temperature window, with a T90 range of 175–435°C. After low-temperature hydrothermal aging treatment, the zeolite structure was eroded and the catalyst activity deteriorated significantly.
Collapse
|
17
|
Chen W, Tarach KA, Yi X, Liu Z, Tang X, Góra-Marek K, Zheng A. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite. Nat Commun 2022; 13:7106. [DOI: 10.1038/s41467-022-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractBy employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 − C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.
Collapse
|
18
|
Guo J, Wang A, Lin H. Enhanced phosphorus resistance of sodium-promoted Cu/CHA catalysts towards NH3-SCR. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Yuan HY, Sun N, Chen J, Yang HG, Hu P, Wang H. Activity Self-Optimization Steered by Dynamically Evolved Fe 3+@Fe 2+ Double-Center on Fe 2O 3 Catalyst for NH 3-SCR. JACS AU 2022; 2:2352-2358. [PMID: 36311837 PMCID: PMC9597592 DOI: 10.1021/jacsau.2c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Identification of the active centers dynamically stable under the reaction condition is of paramount importance but challenging because of the limited knowledge of steady-state chemistry on catalysts at the atomic level. Herein, focusing on the Fe2O3 catalyst for the selective catalytic reduction of NO with NH3 (NH3-SCR) as a model system, we reveal quantitatively the self-evolving Fe3+@Fe2+ (∼1:1) double-centers under the in-situ condition by the first-principles microkinetic simulations, which enables the accurate prediction of the optimal industry operating temperature (590 K). The cooperation of this double-center achieves the self-optimization of catalytic activity and rationalizes the intrinsic origin of Fe2O3 catalyzing NH3-SCR at middle-high temperatures instead of high temperatures. Our findings demonstrate the atomic-level self-evolution of active sites and the dynamically adjusted activity variation of the catalyst under the in-situ condition during the reaction process and provide insights into the reaction mechanism and catalyst optimization.
Collapse
Affiliation(s)
- Hai Yang Yuan
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Ningning Sun
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianfu Chen
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hua Gui Yang
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - P. Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, Belfast BT9, U.K.
| | - Haifeng Wang
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Research Institute of
Industrial Catalysis and Centre for Computational Chemistry, School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
20
|
Dietschreit JCB, Diestler DJ, Hulm A, Ochsenfeld C, Gómez-Bombarelli R. From free-energy profiles to activation free energies. J Chem Phys 2022; 157:084113. [DOI: 10.1063/5.0102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given a chemical reaction going from reactant (R) to the product (P) on a potential energy surface (PES) and a collective variable (CV) discriminating between R and P, we define the free-energy profile (FEP) as the logarithm of the marginal Boltzmann distribution of the CV. This FEP is not a true free energy. Nevertheless, it is common to treat the FEP as the “free-energy” analog of the minimum potential energy path and to take the activation free energy, [Formula: see text], as the difference between the maximum at the transition state and the minimum at R. We show that this approximation can result in large errors. The FEP depends on the CV and is, therefore, not unique. For the same reaction, different discriminating CVs can yield different [Formula: see text]. We derive an exact expression for the activation free energy that avoids this ambiguity. We find [Formula: see text] to be a combination of the probability of the system being in the reactant state, the probability density on the dividing surface, and the thermal de Broglie wavelength associated with the transition. We apply our formalism to simple analytic models and realistic chemical systems and show that the FEP-based approximation applies only at low temperatures for CVs with a small effective mass. Most chemical reactions occur on complex, high-dimensional PES that cannot be treated analytically and pose the added challenge of choosing a good CV. We study the influence of that choice and find that, while the reaction free energy is largely unaffected, [Formula: see text] is quite sensitive.
Collapse
Affiliation(s)
- Johannes C. B. Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
22
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Molokova A, Borfecchia E, Martini A, Pankin IA, Atzori C, Mathon O, Bordiga S, Wen F, Vennestrøm PNR, Berlier G, Janssens TVW, Lomachenko KA. SO 2 Poisoning of Cu-CHA deNO x Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy. JACS AU 2022; 2:787-792. [PMID: 35557768 PMCID: PMC9088759 DOI: 10.1021/jacsau.2c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/11/2023]
Abstract
Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.
Collapse
Affiliation(s)
- Anastasia
Yu. Molokova
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Cesare Atzori
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Olivier Mathon
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Fei Wen
- Umicore
AG & Co, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | | | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
24
|
Hu W, Gramigni F, Nasello ND, Usberti N, Iacobone U, Liu S, Nova I, Gao X, Tronconi E. Dynamic Binuclear Cu II Sites in the Reduction Half-Cycle of Low-Temperature NH 3–SCR over Cu-CHA Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|