1
|
Thapa DK, Biswas S. Harnessing chirality in plasmonics: from synthesis to cutting-edge applications. NANOSCALE 2025; 17:10506-10530. [PMID: 40192442 DOI: 10.1039/d4nr05229c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Nanomaterials composed of noble metals such as gold and silver, commonly known as plasmonic materials, exhibit localized surface plasmon resonance (LSPR). LSPR significantly enhances the electric field strength, thereby influencing the optical properties, for instance in surface enhanced Raman spectroscopy (SERS). Recently, chiral nanostructures, nanostructures with broken symmetry, have demonstrated significant potential in various applications, including enantiomer detection and separation, chiral catalysis, and the development of metamaterials. Due to LSPR, these nanostructures can amplify signals such as circular dichroism (CD) and optical rotatory dispersion (ORD), making them valuable in chiroptical applications. This review provides an analysis of the synthesis, properties, and applications of chiral plasmonic nanostructures. The primary synthesis methods discussed include chemical approaches, glancing angle deposition, and focused ion beam deposition, each providing precise control over the chiral properties of the nanostructures. Furthermore, the review explores the applications of these nanostructures, particularly in the detection of biomolecules (chiral sensing), asymmetric catalysis, and the development of advanced optical devices. Lastly, the review explores future directions for the field and highlights potential areas for improvement.
Collapse
Affiliation(s)
- Dev Kumar Thapa
- Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra 411038, India.
| | - Soumava Biswas
- Department of Chemistry, Dr. Vishwanath Karad MIT World Peace University, Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra 411038, India.
| |
Collapse
|
2
|
Lee HK, Kim T, Jang YA, Jeong Y, Lee SW, Park CH. Near-Infrared Emissive CuInS 2/ZnS Quantum Dot-Embedded Polymer Scaffolds for Photon Upconversion Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502333. [PMID: 40237026 DOI: 10.1002/adma.202502333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Indexed: 04/17/2025]
Abstract
A facile synthesis and application of photon upconversion (UC) probes, CuInS₂/ZnS quantum dots (nCIS QDs) is presented, which exhibits near-infrared (NIR) spectral emission. The nCIS QDs are synthesized via a template-assisted cation-exchange reaction during a heating process, resulting in NIR-I emission with a large Stokes shift (≈650 meV) and a high photoluminescence quantum yield (PLQY, ≈0.95). This behavior is attributed to a template-assisted cation-exchange mechanism that produces a wurtzite crystal structure and deep defect states, leading to a relatively long fluorescence lifetime (≈5 µs). The quantum confinement effect allows for the emission of light at different wavelengths by adjusting the size of the nanocrystals. Moreover, their deep defect states facilitate photon UC via a self-trapping triplet-triplet annihilation mechanism. The promising potential of the nCIS QDs is explored in UC imaging, demonstrating high-contrast NIR imaging under IR vision modules, even in the presence of interference layers. It suggests potential applications in surgical guidance and future biomedical imaging.
Collapse
Affiliation(s)
- Ho Kyung Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
- Division of Materials Analysis for Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Taewook Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yoon-A Jang
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yunseo Jeong
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Chan Ho Park
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
3
|
Zakharova OV, Gusev AA, Baranchikov PA, Chebotaryova SP, Razlivalova SS, Koiava EY, Kataranova AA, Grigoriev GV, Strekalova NS, Krutovsky KV. The Composition of the Dispersion Medium Determines the Antibacterial Properties of Copper (II) Oxide Nanoparticles Against Escherichia coli Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:469. [PMID: 40137642 PMCID: PMC11944915 DOI: 10.3390/nano15060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Copper (II) oxide nanoparticles (CuO NPs) attract much attention as a promising antimicrobial agent. We studied the antibacterial properties of three types of CuO NPs against Escherichia coli bacteria: flake-shaped particles with a diameter of 50-200 nm and a thickness of 10-20 nm (CuO-CD synthesized by chemical deposition), spherical particles with a size of 20-90 nm (CuO-EE obtained by electrical explosion), and rod-shaped particles with a length of 100-200 nm and a diameter of 30 × 70 nm (CuO-CS commercial sample). We tested how the shape, size, and concentration of the NPs, and composition of the dispersion medium affected the properties of the CuO NPs. We prepared dispersions based on distilled water, a 0.9% NaCl solution, and the LB broth by Lennox and used Triton X-100 and sodium dodecyl sulfate (SDS) as stabilizers. The concentration of NPs was 1-100 mg L-1. We showed that the dispersion medium composition and stabilizer type had the greatest influence on the antibacterial effects of CuO NPs. We observed the maximum antibacterial effect for all CuO NP types dispersed in water without a stabilizer, as well as in LB broth with the SDS stabilizer. The maximum inhibition of culture growth was observed under the influence of CuO-EE (by 30%) and in the LB broth with the SDS stabilizer (by 1.3-1.8 times depending on the type of particles). In the saline solution, the antibacterial effects were minimal; in some cases, the CuO NPs even promoted bacterial culture growth. SDS increased the antibacterial effects of NPs in broth and saline but decreased them in water. Finally, among the particle types, CuO-CS turned out to be the most bactericidal, which is probably due to their rod-shaped morphology and small diameter. At the same time, the concentration and aggregation effects of CuO NPs in the colloidal systems we studied did not have a linear action on their antibacterial properties. These results can be used in the development of antibacterial coatings and preparations based on CuO NPs to achieve their maximum efficiency, taking into account the expected conditions of their use.
Collapse
Affiliation(s)
- Olga V. Zakharova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Alexander A. Gusev
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Peter A. Baranchikov
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Svetlana P. Chebotaryova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Svetlana S. Razlivalova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Elina Y. Koiava
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Anna A. Kataranova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Gregory V. Grigoriev
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Nataliya S. Strekalova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia; (A.A.G.); (P.A.B.); (S.P.C.); (S.S.R.); (E.Y.K.); (A.A.K.); (G.V.G.); (N.S.S.)
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, 8 Timiryazeva Str., 394036 Voronezh, Russia
| |
Collapse
|
4
|
Jones MK, Willis BL, Campbell S, Kartopu G, Maiello P, Punathil P, Cheung WM, Woolley E, Jones LCR, Oklobia O, Holland A, Barrioz V, Zoppi G, Beattie NS, Qu Y. Ecodesign of Kesterite Nanoparticles for Thin Film Photovoltaics at Laboratory Scale. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11613-11627. [PMID: 39118644 PMCID: PMC11304380 DOI: 10.1021/acssuschemeng.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
This manuscript investigates the efficient synthesis of copper zinc tin sulfide (CZTS) nanoparticles for CZTS thin film solar cell applications with a primary focus on environmental sustainability. Underpinning the investigation is an initial life-cycle assessment (LCA) analysis. This LCA analysis is conducted to evaluate the environmental impact of different synthesis volumes, providing crucial insights into the sustainability of the synthesis process by considering the flows of material and energy associated with the process. Life-cycle assessment results demonstrate that significant reductions to the environmental impact can be made by increasing the synthesis volume of CZTS nanoparticle ink. Using a 5-fold increase in volume can reduce all 11 investigated environmental impacts by up to 35.6%, six of these impacts demonstrating reductions >10% and the amount of global warming potential is reduced by 21.4%. Motivated by the LCA results, COMSOL simulations are employed to understand the fluid flow patterns in large-scale fabrication. Various sizes and speeds of stirrer bars are investigated in these simulations, and it is determined that a 50 mm stir bar at 200 rpm represents the optimal configuration for the synthesis process in a 500 mL flask. Subsequently, large-batch CZTS nanoparticle inks are synthesized using these parameters and compared to small-batch samples. The light absorbers are characterized using Raman spectroscopy and X-ray diffraction, confirming favorable properties with close-to-ideal elemental ratios in large-batch synthesis. Finally, solar cell devices fabricated utilizing CZTSSe absorbers from the large volume synthesis process demonstrate comparable performance to those fabricated using small-batch synthesis, with uniform power conversion efficiencies of around 5% across the substrate. This study highlights the potential of large-volume CZTS nanoparticle synthesis for efficient and environmentally friendly CZTS solar cell fabrication, contributing to the advancement of sustainable renewable energy technologies.
Collapse
Affiliation(s)
- Michael
D. K. Jones
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Bethany L. Willis
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Stephen Campbell
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Giray Kartopu
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Pietro Maiello
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Prabeesh Punathil
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Wai Ming Cheung
- Department
of Mechanical and Construction Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Elliot Woolley
- Wolfson
School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Lewis C. R. Jones
- Wolfson
School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Ochai Oklobia
- Centre
for Solar Energy Research (CSER), in the Centre for Integrative Semiconductor
Materials (CISM), Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1
8EN, U.K.
| | - Adam Holland
- HORIBA
UK Limited, Kyoto Close,
Moulton Park, Northampton, NN3 6FL, U.K.
| | - Vincent Barrioz
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Guillaume Zoppi
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Neil S. Beattie
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| | - Yongtao Qu
- Department
of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle
upon Tyne, NE1 8ST, U.K.
| |
Collapse
|
5
|
Harper CC, Jordan JS, Papanu S, Williams ER. Characterization of Mass, Diameter, Density, and Surface Properties of Colloidal Nanoparticles Enabled by Charge Detection Mass Spectrometry. ACS NANO 2024; 18:17806-17814. [PMID: 38913932 DOI: 10.1021/acsnano.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A variety of scattering-based, microscopy-based, and mobility-based methods are frequently used to probe the size distributions of colloidal nanoparticles with transmission electron microscopy (TEM) often considered to be the "gold standard". Charge detection mass spectrometry (CDMS) is an alternative method for nanoparticle characterization that can rapidly measure the mass and charge of individual nanoparticle ions with high accuracy. Two low polydispersity, ∼100 nm diameter nanoparticle size standards with different compositions (polymethyl methacrylate/polystyrene copolymer and 100% polystyrene) were characterized using both TEM and CDMS to explore the merits and complementary aspects of both methods. Mass and diameter distributions are rapidly obtained from CDMS measurements of thousands of individual ions of known spherical shape, requiring less time than TEM sample preparation and image analysis. TEM image-to-image variations resulted in a ∼1-2 nm range in the determined mean diameters whereas the CDMS mass precision of ∼1% in these experiments leads to a diameter uncertainty of just 0.3 nm. For the 100% polystyrene nanoparticles with known density, the CDMS and TEM particle diameter distributions were in excellent agreement. For the copolymer nanoparticles with unknown density, the diameter from TEM measurements combined with the mass from CDMS measurements enabled an accurate measurement of nanoparticle density. Differing extents of charging for the two nanoparticle standards measured by CDMS show that charging is sensitive to nanoparticle surface properties. A mixture of the two samples was separated based on their different extents of charging despite having overlapping mass distributions centered at 341.5 and 331.0 MDa.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Steven Papanu
- Colloidal Metrics Corporation, 2520 Wyandotte Street Suite F, Mountain View, California 94083-2381, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
6
|
Ren W, Li J, Zu B, Lei D, Dou X. Design of Highly Efficient Electronic Energy Transfer in Functionalized Quantum Dots Driven Specifically by Ethylenediamine. JACS AU 2024; 4:545-556. [PMID: 38425925 PMCID: PMC10900220 DOI: 10.1021/jacsau.3c00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
The exploration of emerging functionalized quantum dots (QDs) through modulating the effective interaction between the sensing element and target analyte is of great significance for high-performance trace sensing. Here, the chromone-based ligand grafted QDs (QDs-Chromone) were initiated to realize the electronic energy transfer (EET) driven specifically by ethylenediamine (EDA) in the absence of spectral overlap. The fluorescent and colorimetric dual-mode responses (from red to blue and from colorless to yellow, respectively) resulting from the expanded conjugated ligands reinforced the analytical selectivity, endowing an ultrasensitive and specific response to submicromolar-liquid of EDA. In addition, a QDs-Chromone-based sensing chip was constructed to achieve the ultrasensitive recognition of EDA vapor with a naked-eye observed response at a concentration as low as 10 ppm, as well as a robust anti-interfering ability in complicated scenarios monitoring. We expect the proposed EET strategy in shaping functionalized QDs for high-performance sensing will shine light on both rational probe design methodology and deep sensing mechanism exploration.
Collapse
Affiliation(s)
- Wenfei Ren
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Da Lei
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| |
Collapse
|
7
|
Nedylakova M, Medinger J, Mirabello G, Lattuada M. Iron oxide magnetic aggregates: Aspects of synthesis, computational approaches and applications. Adv Colloid Interface Sci 2024; 323:103056. [PMID: 38056225 DOI: 10.1016/j.cis.2023.103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Superparamagnetic magnetite nanoparticles have been central to numerous investigations in the past few decades for their use in many applications, such as drug delivery, medical diagnostics, magnetic separation, and material science. However, the properties of single magnetic nanoparticles are sometimes not sufficient to accomplish tasks where a strong magnetic response is required. In light of this, aggregated magnetite nanoparticles have been proposed as an alternative advanced material, which may expand and combine some of the advantages of single magnetic nanoparticles, including superparamagnetism, with an enhanced magnetic moment and increased colloidal stability. This review comprehensively discusses the current literature on aggregates made of magnetic iron oxide nanoparticles. This review is divided into three sections. First, the current synthetic strategies for magnetite nanoparticle aggregates are discussed, together with the influence of different stabilizers on the primary crystals and the final aggregate size and morphology. The second section is dedicated to computational approaches, such as density functional methods (which permit accurate predictions of electronic and magnetic properties and shed light on the behavior of surfactant molecules on iron oxide surfaces) and molecular dynamics simulations (which provide additional insight into the influence of ligands on the surface chemistry of iron oxide nanocrystals). The last section discusses current and possible future applications of iron oxide magnetic aggregates, including wastewater treatment, water purification, medical applications, and magnetic aggregates for materials displaying structural colors.
Collapse
Affiliation(s)
- Miroslava Nedylakova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Joelle Medinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Giulia Mirabello
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland.
| |
Collapse
|
8
|
Lambora S, Bhardwaj A. Morphology Transition with Temperature and its Effect on Optical Properties of Colloidal MoS 2 Nanostructures. ACS OMEGA 2023; 8:27725-27731. [PMID: 37546589 PMCID: PMC10398838 DOI: 10.1021/acsomega.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Morphology plays a crucial role in determining the chemical and optical properties of nanomaterials due to confinement effects. We report the morphology transition of colloidal molybdenum disulfide (MoS2) nanostructures, synthesized by a one-pot heat-up method, from a mix of quantum dots (QDs) and nanosheets to predominantly nanorods by varying the synthesis reaction temperature from 90 to 160 °C. The stoichiometry and composition of the synthesized QDs, nanosheets, and nanorods were quantified to be MoS2 using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. A nanostructure morphology transition due to variation in the reaction temperature resulted in a photoluminescence quantum yield enhancement from 0 to 4.4% on increasing the temperature from 90 to 120 °C. On further increase in the temperature to 160 °C, a decrease in the quantum yield to 3.06% is observed. Red-shifts of ≈18 and ≈140 nm in the emission maxima and absorption edge, respectively, are observed for the synthesized nanostructures with an increase in the reaction temperature from 90 to 160 °C. The change in the quantum yield is attributed to the change in shape and hence confinement of charge carriers. To the best of our knowledge, microscopic analysis of variation in shape and optical properties of colloidal MoS2 nanostructures with temperature, explained by a nonclassical growth mechanism is presented here for the first time.
Collapse
|
9
|
Dou FY, Harvey SM, Mason KG, Homer MK, Gamelin DR, Cossairt BM. Effect of a redox-mediating ligand shell on photocatalysis by CdS quantum dots. J Chem Phys 2023; 158:2889496. [PMID: 37158330 DOI: 10.1063/5.0144896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Semiconductor quantum dots (QDs) are efficient organic photoredox catalysts due to their high extinction coefficients and easily tunable band edge potentials. Despite the majority of the surface being covered by ligands, our understanding of the effect of the ligand shell on organic photocatalysis is limited to steric effects. We hypothesize that we can increase the activity of QD photocatalysts by designing a ligand shell with targeted electronic properties, namely, redox-mediating ligands. Herein, we functionalize our QDs with hole-mediating ferrocene (Fc) derivative ligands and perform a reaction where the slow step is hole transfer from QD to substrate. Surprisingly, we find that a hole-shuttling Fc inhibits catalysis, but confers much greater stability to the catalyst by preventing a build-up of destructive holes. We also find that dynamically bound Fc ligands can promote catalysis by surface exchange and creation of a more permeable ligand shell. Finally, we find that trapping the electron on a ligand dramatically increases the rate of reaction. These results have major implications for understanding the rate-limiting processes for charge transfer from QDs and the role of the ligand shell in modulating it.
Collapse
Affiliation(s)
- Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Samantha M Harvey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Konstantina G Mason
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Halford GC, Personick ML. Bridging Colloidal and Electrochemical Nanoparticle Growth with In Situ Electrochemical Measurements. Acc Chem Res 2023; 56:1228-1238. [PMID: 37140656 DOI: 10.1021/acs.accounts.3c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ConspectusProspective applications involving the electrification of industrial chemical processes and electrical energy to chemical fuels interconversion as part of the energy transition to renewable energy sources have led to an increasing need for highly tailored nanostructures immobilized on electrode surfaces. Control of surface facet structure across material compositions is of particular importance for ensuring performance in such applications. Colloidal methods for producing shaped nanoparticles in solution are abundant, particularly for noble metals. However, significant technical challenges remain with respect to rationally designing syntheses for the novel compositions and morphologies required to sustainably enable the above technological advances as well as in developing methods for uniformly and reproducibly dispersing colloidally synthesized nanostructures on electrode surfaces. The direct synthesis of nanoparticles on electrodes using chemical reduction approaches remains challenging, though recent advances have been made for certain materials and structures. Electrochemical nanoparticle synthesis─where an applied current or potential instead of a chemical reducing agent drives the redox chemistry of nanoparticle growth─is poised to play an important role in advancing the fabrication of nanostructured electrodes. Specifically, this Account focuses on the colloidal-inspired design of electrochemical syntheses and the interplay between colloidal and electrochemical approaches in terms of understanding the fundamental chemical reaction mechanisms of nanoparticle growth. An initial discussion of the development of electrochemical particle syntheses that incorporate colloidal synthetic tools highlights the promising emergent capabilities that result from blending these two approaches. Furthermore, it demonstrates how existing colloidal syntheses can be directly translated to electrochemical growth on a conductive surface using real-time electrochemical measurements of the chemistry of the growth solution. Measuring the open circuit potential of a colloidal synthesis over time and then replicating that measured potential during electrochemical deposition leads to the formation of the same nanoparticle shape. These in situ open circuit and chronopotentiometric measurements also give fundamental insight about the changing chemical environment during particle growth. We highlight how these time-resolved electrochemical measurements, as well as correlated spectroelectrochemical monitoring of particle formation kinetics, enable the extraction of information regarding mechanisms of particle formation that is difficult to obtain using other approaches. This information can be translated back into colloidal synthesis design via a directed, intentional approach to synthetic development. We additionally explore the added flexibility of synthetic design for methods involving electrochemically driven reduction as compared to the use of chemical reducing agents. The Account concludes with a brief perspective on potential future directions in both fundamental studies and synthetic development enabled by this emerging integrated electrochemical approach.
Collapse
Affiliation(s)
- Gabriel C Halford
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michelle L Personick
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
11
|
Pokratath R, Lermusiaux L, Checchia S, Mathew JP, Cooper SR, Mathiesen JK, Landaburu G, Banerjee S, Tao S, Reichholf N, Billinge SJL, Abécassis B, Jensen KMØ, De Roo J. An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. ACS NANO 2023; 17:8796-8806. [PMID: 37093055 PMCID: PMC10173684 DOI: 10.1021/acsnano.3c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.
Collapse
Affiliation(s)
- Rohan Pokratath
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Laurent Lermusiaux
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Stefano Checchia
- ESRF Synchrotron, ID15A Beamline, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, France
| | | | - Susan Rudd Cooper
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Jette Katja Mathiesen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
- Department of Physics, Technical University of Denmark, Fysikvej Bldg. 312, 2800 Kgs. Lyngby, Denmark
| | - Guillaume Landaburu
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Soham Banerjee
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Songsheng Tao
- Applied Physics and Applied Mathematics Department, Columbia University, New York, New York 10027, United States
| | - Nico Reichholf
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Simon J L Billinge
- Applied Physics and Applied Mathematics Department, Columbia University, New York, New York 10027, United States
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Wang L, Man Z, Liu Y, Yu Y, Dong C, Bian J, Lu YQ, Lu Z, Zhang W. Smart Magnetic Optical Antenna for Automatic Nanoalignment and Photon Beaming from Prepatterned Single Quantum Dot Nanospot. NANO LETTERS 2023; 23:1539-1545. [PMID: 36749037 DOI: 10.1021/acs.nanolett.2c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present a unidirectional dielectric optical antenna, which can be chemically synthesized and controlled by magnetic fields. By applying magnetic fields, we successfully aligned an optical antenna on a prepatterned quantum dot nanospot with accuracy better than 40 nm. It confined the fluorescence emission into a 16-degree wide beam and enhanced the signal by 11.8 times. Moreover, the position of the antenna, and consequently the beam direction, can be controlled by simply adjusting the direction of the magnetic fields. Theoretical analyses show that this magnetic alignment technique is stable and accurate, providing a new strategy for building high-performance tunable nanophotonic devices.
Collapse
Affiliation(s)
- Luping Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yang Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Ying Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| |
Collapse
|
13
|
Schwartz G, Hananel U, Markovich G. Circularly polarized and total luminescence as probes of nucleation and growth in chiral nanocrystals. Chirality 2023; 35:104-109. [PMID: 36477935 PMCID: PMC10108007 DOI: 10.1002/chir.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Nucleation of crystals as well as their growth is difficult to study experimentally. We have recently demonstrated that chiral Eu3+ -doped terbium phosphate nanocrystals are an interesting system for studying nanocrystal formation mechanisms and chiral symmetry breaking, occurring during their formation, directed by chiral ligands, such as tartaric acid. In this paper, we show how simultaneous, in situ monitoring of both total emission intensity and circularly polarized luminescence magnitude and sign versus time during nanocrystal formation provides considerable information on the mechanisms of nanocrystal nucleation and growth. Specifically, we show that the presence of tartaric acid leads to the formation of chiral prenucleation clusters, which deterministically transform into nanocrystals of a specific handedness. Additionally, we demonstrate that both unseeded and seeded nanocrystal syntheses behave differently mechanistically and that the addition of seed nanocrystals catalyses both enantio-specific (also called secondary nucleation) as well as nonspecific nucleation.
Collapse
Affiliation(s)
- Gal Schwartz
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| | - Uri Hananel
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| | - Gil Markovich
- School of ChemistryTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
14
|
Van den Eynden D, Pokratath R, Mathew JP, Goossens E, De Buysser K, De Roo J. Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chem Sci 2023; 14:573-585. [PMID: 36741516 PMCID: PMC9847641 DOI: 10.1039/d2sc05037d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | - Rohan Pokratath
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| | | | - Eline Goossens
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
15
|
Zhang B, Altamura D, Caliandro R, Giannini C, Peng L, De Trizio L, Manna L. Stable CsPbBr 3 Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure. J Am Chem Soc 2022; 144:5059-5066. [PMID: 35258285 PMCID: PMC8949727 DOI: 10.1021/jacs.1c13544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
CsPbBr3 nanoclusters have been synthesized by several
groups and mostly employed as single-source precursors for the synthesis
of anisotropic perovskite nanostructures or perovskite-based heterostructures.
Yet, a detailed characterization of such clusters is still lacking
due to their high instability. In this work, we were able to stabilize
CsPbBr3 nanoclusters by carefully selecting ad hoc ligands
(benzoic acid together with oleylamine) to passivate their surface.
The clusters have a narrow absorption peak at 400 nm, a band-edge
emission peaked at 410 nm at room temperature, and their composition
is identified as CsPbBr2.3. Synchrotron X-ray pair distribution
function measurements indicate that the clusters exhibit a disk-like
shape with a thickness smaller than 2 nm and a diameter of 13 nm,
and their crystal structure is a highly distorted orthorhombic CsPbBr3. Based on small- and wide-angle X-ray scattering analyses,
the clusters tend to form a two-dimensional (2D) hexagonal packing
with a short-range order and a lamellar packing with a long-range
order.
Collapse
Affiliation(s)
- Baowei Zhang
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.,Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Rocco Caliandro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Lucheng Peng
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| |
Collapse
|