1
|
Varadwaj PR, Marques HM, Grabowski I. Ammonia Synthesis over Transition Metal Catalysts: Reaction Mechanisms, Rate-Determining Steps, and Challenges. Int J Mol Sci 2025; 26:4670. [PMID: 40429813 PMCID: PMC12112505 DOI: 10.3390/ijms26104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Ammonia synthesis remains a cornerstone of global chemical manufacturing, essential for fertilizer production, energy storage, and emerging carbon capture technologies. This overview examines recent developments in the understanding of elementary reaction mechanisms in heterogeneous catalysis, with emphasis on transition metal thermocatalysts operating under the Haber-Bosch process. Traditionally, the dissociative adsorption of nitrogen (N2) has been considered the rate-determining step. However, recent studies challenge this view, revealing possible shifts in rate-determining steps and suggesting that alternative mechanistic pathways may be operative. The discussion critiques studies that adhere strictly to the classic dissociative mechanism-often inferred from the reaction order of N2-while overlooking alternative pathways that could offer more efficient catalytic routes and deeper mechanistic insight into ammonia synthesis. These insights offer a pathway toward more rational catalyst design and improved process efficiency in ammonia synthesis.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ireneusz Grabowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Wang J, Wang GC. Mechanisms of CH 4 activation over oxygen-preadsorbed transition metals by ReaxFF and AIMD simulations. J Comput Chem 2024; 45:238-246. [PMID: 37746925 DOI: 10.1002/jcc.27233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The chemisorbed oxygen usually promotes the CH bond activation over less active metals like IB group metals but has no effect or even an inhibition effect over more active metals like Pd based on the static electronic structure study. However, the understanding in terms of dynamics knowledge is far from complete. In the present work, methane dissociation on the oxygen-preadsorbed transition metals including Au, Cu, Ni, Pt, and Pd is systemically studied by reactive force field (ReaxFF). The ReaxFF simulation results indicate that CH4 molecules mainly undergo the direct dissociation on Ni, Pt, and Pd surfaces, while undergo the oxygen-assisted dissociation on Au and Cu surfaces. Additionally, the ab initio molecular dynamics (AIMD) simulations with the umbrella sampling are employed to study the free-energy changes of CH4 dissociation, and the results further support the CH4 dissociation pathway during the ReaxFF simulations. The present results based on ReaxFF and AIMD will provide a deeper dynamic understanding of the effects of pre-adsorbed oxygen species on the CH bond activation compared to that of static DFT.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Wang Z, Kang Y, Hu J, Ji Q, Lu Z, Xu G, Qi Y, Zhang M, Zhang W, Huang R, Yu L, Tian ZQ, Deng D. Boosting CO 2 Hydrogenation to Formate over Edge-Sulfur Vacancies of Molybdenum Disulfide. Angew Chem Int Ed Engl 2023; 62:e202307086. [PMID: 37475578 DOI: 10.1002/anie.202307086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Synthesis of formate from hydrogenation of carbon dioxide (CO2 ) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2 ) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h-1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.
Collapse
Affiliation(s)
- Zifeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yiran Kang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingting Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Qinqin Ji
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhixuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guilan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yutai Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Mo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Wangwang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dehui Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
7
|
Xie W, Xu J, Chen J, Wang H, Hu P. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling. Acc Chem Res 2022; 55:1237-1248. [PMID: 35442027 PMCID: PMC9069691 DOI: 10.1021/acs.accounts.2c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Microkinetic modeling based on density functional
theory (DFT)
energies plays an essential role in heterogeneous catalysis because
it reveals the fundamental chemistry for catalytic reactions and bridges
the microscopic understanding from theoretical calculations and experimental
observations. Microkinetic modeling requires building a set of ordinary
differential equations (ODEs) based on the calculation results of
thermodynamic properties of adsorbates and kinetic parameters for
the reaction elementary steps. Solving a microkinetic model can extract
information on catalytic chemistry, including critical reaction intermediates,
reaction pathways, the surface species distribution, activity, and
selectivity, thus providing vital guidelines for altering catalysts. However, the quantitative reliability of traditional microkinetic
models is often insufficient to conclusively extrapolate the mechanistic
details of complex reaction systems. This can be attributed to several
factors, the most important of which is the limitation of obtaining
an accurate estimation of the energy inputs via traditional calculation
methods. These limitations include the difficulty of using static
DFT methods to calculate reaction energies of adsorption/desorption
processes, often rate-controlling or selectivity-determining steps,
and the inadequate consideration of surface coverage effects. In addition,
the robust microkinetic software is rare, which also complicates the
resolution of complex catalytic systems. In this Account, we
review our recent works toward refining the
predictions of microkinetic modeling in heterogeneous catalysis and
achieving theory–experiment parity for activity and selectivity.
First, we introduce CATKINAS, a microkinetic software developed in
our group, and show how it disentangles the problem that traditional
microkinetic software has and how it can now be applied to obtain
kinetic results for more sophisticated reaction systems. Second, we
describe a molecular dynamics method developed recently to obtain
the free-energy changes for the adsorption/desorption process to fill
in the missing energy inputs. Third, we show that a rigorous consideration
of surface coverage effects is pivotal for building more realistic
models and obtaining accurate kinetic results. Following a series
of studies on acetylene hydrogenation reactions on Pd catalysts, we
demonstrate how this new approach can provide an improved quantitative
understanding of the mechanism, active site, and intrinsic structural
sensitivity. Finally, we conclude with a brief outlook and the remaining
challenges in this field.
Collapse
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|