1
|
Bhawnani RR, Sartape R, Gande VV, Barsoum ML, Kallon EM, dos Reis R, Dravid VP, Singh MR. Non-Aqueous Electrochemical CO 2 Reduction to Multivariate C 2-Products Over Single Atom Catalyst at Current Density up to 100 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408010. [PMID: 39648565 PMCID: PMC12051823 DOI: 10.1002/smll.202408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO2 solubility and limits the formation of HCO3 - and CO3 2- anions. Metal-organic frameworks (MOFs) in non-aqueous CO2-RR makes an attractive system for CO2 capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition. In this work, electrically conductive and stable Zirconium (Zr)-based porphyrin MOF, specifically PCN-222, metalated with a single-atom Cu has been explored, which serves as an efficient single-atom catalyst (SAC) for CO2-RR. PCN- 222(Cu) demonstrates a substantial enhancement in redox activity due to the synergistic effect of the Zr matrix and the single-atom Cu site, facilitating complete reduction of C2 species under non-aqueous electrolytic conditions. The current densities achieved (≈100 mA cm- 2) are 4-5 times higher than previously reported values for MOFs, with a faradaic efficiency of up to 40% for acetate production, along with other multivariate C2 products, which have never been achieved previously in non-aqueous systems. Characterization using X-ray and various spectroscopic techniques, reveals critical insights into the role of the Zr matrix and Cu sites in CO2 reduction, benchmarking PCN-222(Cu) for MOF-based SAC electrocatalysis.
Collapse
Affiliation(s)
- Rajan R. Bhawnani
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Rohan Sartape
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Vamsi V Gande
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| | - Michael L. Barsoum
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Elias M. Kallon
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Roberto dos Reis
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
- International Institute of NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
| | - Vinayak P. Dravid
- Department of Materials Science & EngineeringNorthwestern UniversityEvanstonIL60208USA
- International Institute of NanotechnologyNorthwestern UniversityEvanstonIL60208USA
- The NUANCE CenterNorthwestern UniversityEvanstonIL60208USA
| | - Meenesh R. Singh
- Department of Chemical EngineeringUniversity of Illinois ChicagoChicagoIL60607USA
| |
Collapse
|
2
|
Song X, Huang R, Zhang X, Chang Q, Kim S, Jeong D, Hou Q, Kim J, Ang EH, Su X, Feng X, Xiang H. Unveiling the Dynamic Pathways of Metal-Organic Framework Crystallization and Nanoparticle Incorporation for Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407984. [PMID: 39316295 DOI: 10.1002/advs.202407984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xingyu Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Semi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Daeun Jeong
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Qian Hou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Xiaowei Su
- Anhui Honghai New Materials Co., Ltd, Anqing, Anhui, 246100, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
3
|
Verma P, Bannon MS, Kuenen MK, Raj S, Dhakal A, Stone K, Nichols AW, Machan CW, Colón YJ, Letteri RA, Giri G. Expanding the Design Space of Polymer-Metal Organic Framework (MOF) Gels by Understanding Polymer-MOF Interactions. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9356-9369. [PMID: 39398372 PMCID: PMC11467831 DOI: 10.1021/acs.chemmater.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024]
Abstract
The fabrication of polymer-MOF composite gels holds great potential to provide emergent properties for drug delivery, environmental remediation, and catalysis. To leverage the full potential of these composites, we investigated how the presence and chemistry of polymers impact MOF formation within the composites and, in turn, how MOFs impact polymer gelation. We show that polymers with a high density of strongly metal-binding carboxylic acids inhibit MOF formation; however, reducing the density of carboxylic acids or substituting them with weaker metal-binding hydroxyl groups permits both MOF formation and gelation within composites. Preparing composites with poly(ethylene glycol) (PEG), which does not bind MOF zirconium (Zr)-oxo clusters, and observing gelation suggests that MOFs can entrap polymer chains to create cross-links in addition to cross-linking them through polymer-Zr-oxo interactions. Both simulations and experiments show composite hydrogels formed with poly(vinyl alcohol) (PVA) to be more stable than those made with PEG, which can reptate through MOF pores upon heating. We demonstrate the generalizability of this composite formation process across different Zr-based MOFs (UiO-66, NU-901, UiO-67, and MOF-525) and by spin-coating gels into conformable films. PVA-UiO-66 composite hydrogels demonstrated high sorption and sustained release of methylene blue relative to the polymer alone (3× loading, 28× slower release), and PVA-MOF-525 composite hydrogels capably sorb the therapeutic peptide Angiotensin 1-7. By understanding the influence of polymer-MOF interactions on the structure and properties of composite gels, this work informs and expands the design space of this emerging class of materials.
Collapse
Affiliation(s)
- Prince Verma
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark S. Bannon
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mara K. Kuenen
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Sanoj Raj
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame ,Indiana46556, United States
| | - Ankit Dhakal
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kevin Stone
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Asa W. Nichols
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W. Machan
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yamil J. Colón
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame ,Indiana46556, United States
| | - Rachel A. Letteri
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Gaurav Giri
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
4
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
5
|
Xiong M, Lu Y, Zhong M, Chen L, Liu G, Ju W. Superlong Metal-Organic Framework Micro-/Nanofibers for Selective Vitamin Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012911 DOI: 10.1021/acs.langmuir.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Superlong MOF-74-type micro/nanofibers, which have aspect ratios much higher than 200, are synthesized via nanoparticulate MOF-mediated recrystallization. Co-MOF-74 microfibers have high crystallinity, whereas Co-MOF-74-II nanofibers are composed of nanocrystals and amorphous phases, even though they have nanofibrous morphology. Both MOFs consist of plenty of micropores with diameters in the range of 1.0 to 2.0 nm, and they exhibit high thermal stability with a decomposition temperature higher than 260.0 °C. The MOFs are demonstrated for selective absorption of some vitamins including riboflavin, folic acid, and 5-methyltetrahydrofolate. Co-MOF-74-II nanofibers can efficiently absorb riboflavin and folic acid from their aqueous solution with absorption percentages approaching 90.0%, and they have enhanced capability for absorbing tocopherol in methanol. The micro/nanofibrous morphology, together with the capability for selective vitamin absorption, makes the novel MOFs highly promising for applications in micro-solid-phase extraction.
Collapse
Affiliation(s)
- Mingxuan Xiong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Youli Lu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Mingzhu Zhong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gangyi Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
6
|
Semivrazhskaya OO, Salionov D, Clark AH, Casati NPM, Nachtegaal M, Ranocchiari M, Bjelić S, Verel R, van Bokhoven JA, Sushkevich VL. Deciphering the Mechanism of Crystallization of UiO-66 Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305771. [PMID: 37635107 DOI: 10.1002/smll.202305771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.
Collapse
Affiliation(s)
- Olesya O Semivrazhskaya
- Laboratory for Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Daniil Salionov
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Adam H Clark
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Nicola P M Casati
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maarten Nachtegaal
- Operando Spectroscopy Group, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
7
|
Verma PK, Koellner CA, Hall H, Phister MR, Stone KH, Nichols AW, Dhakal A, Ashcraft E, Machan CW, Giri G. Solution Shearing of Zirconium (Zr)-Based Metal-Organic Frameworks NU-901 and MOF-525 Thin Films for Electrocatalytic Reduction Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53913-53923. [PMID: 37955400 DOI: 10.1021/acsami.3c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.
Collapse
Affiliation(s)
- Prince K Verma
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Connor A Koellner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hailey Hall
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Meagan R Phister
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Asa W Nichols
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ankit Dhakal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Earl Ashcraft
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
8
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
9
|
Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101675. [PMID: 37242091 DOI: 10.3390/nano13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging μ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the μ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.
Collapse
Affiliation(s)
- Vera V Butova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Videlina R Zdravkova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Olga A Burachevskaia
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Pavletta S Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Dighe AV, Bhawnani RR, Podupu PKR, Dandu NK, Ngo AT, Chaudhuri S, Singh MR. Microkinetic insights into the role of catalyst and water activity on the nucleation, growth, and dissolution during COF-5 synthesis. NANOSCALE 2023. [PMID: 37082906 DOI: 10.1039/d2nr06685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The chemical pathway for synthesizing covalent organic frameworks (COFs) involves a complex medley of reaction sequences over a rippling energy landscape that cannot be adequately described using existing theories. Even with the development of state-of-the-art experimental and computational tools, identifying primary mechanisms of nucleation and growth of COFs remains elusive. Other than empirically, little is known about how the catalyst composition and water activity affect the kinetics of the reaction pathway. Here, for the first time, we employ time-resolved in situ Fourier transform infrared spectroscopy (FT-IR) coupled with a six-parameter microkinetic model consisting of ∼10 million reactions and over 20 000 species. The integrated approach elucidates previously unrecognized roles of catalyst pKa on COF yield and water on growth rate and size distribution. COF crystalline yield increases with decreasing pKa of the catalysts, whereas the effect of water is to reduce the growth rate of COF and broaden the size distribution. The microkinetic model reproduces the experimental data and quantitatively predicts the role of synthesis conditions such as temperature, catalyst, and precursor concentration on the nucleation and growth rates. Furthermore, the model also validates the second-order reaction mechanism of COF-5 and predicts the activation barriers for classical and non-classical growth of COF-5 crystals. The microkinetic model developed here is generalizable to different COFs and other multicomponent systems.
Collapse
Affiliation(s)
- Anish V Dighe
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Rajan R Bhawnani
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Prem K R Podupu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Naveen K Dandu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anh T Ngo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Argonne National Laboratory, Lemont, IL 60439, USA
| | - Santanu Chaudhuri
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Argonne National Laboratory, Lemont, IL 60439, USA
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
11
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
12
|
Van den Eynden D, Pokratath R, Mathew JP, Goossens E, De Buysser K, De Roo J. Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chem Sci 2023; 14:573-585. [PMID: 36741516 PMCID: PMC9847641 DOI: 10.1039/d2sc05037d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | - Rohan Pokratath
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| | | | - Eline Goossens
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
13
|
Hurst PJ, Graham AA, Patterson JP. Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly. ACS POLYMERS AU 2022; 2:501-509. [PMID: 36536891 PMCID: PMC9756957 DOI: 10.1021/acspolymersau.2c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
Polymerization-induced self-assembly (PISA) has become an important one pot method for the preparation of well-defined block copolymer nanoparticles. In PISA, morphology is typically controlled by changing molecular architecture and polymer concentration. However, several computational and experimental studies have suggested that changes in polymerization rate can lead to morphological differences. Here, we demonstrate that catalyst selection can be used to control morphology independent of polymer structure and concentration in ring-opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA). Slower rates of polymerization give rise to slower rates of self-assembly, resulting in denser lamellae and more 3D structures when compared to faster rates of polymerization. Our explanation for this is that the fast samples transiently exist in a nonequilibrium state as self-assembly starts at a higher solvophobic block length when compared to the slow polymerization. We expect that subsequent examples of rate variation in PISA will allow for greater control over morphological outcome.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Annissa A. Graham
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
14
|
Bhawnani RR, Sartape R, Prajapati A, Podupu P, Coliaie P, Nere AN, Singh MR. Percolation-assisted coating of metal-organic frameworks on porous substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|