1
|
Chen J, Li M, Wang X, Liu H, Jiang W, Zhao B, Song W. Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202424986. [PMID: 39878324 DOI: 10.1002/anie.202424986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions. A copper ion doping strategy was employed to simultaneously enhance the SERS effect and catalytic activity of zinc oxide (ZnO) derived from metal-organic framework (MOF). By analyzing molecular fingerprint SERS spectra, we calculated the degree of CT (ρCT), revealing that SERS enhancement is attributed to the CT mechanism. In situ SERS spectra confirmed a high correlation between the catalytic activity and ρCT of ZnO with varying copper ion doping levels. A range of photoelectric and spectroscopic tests validated the effectiveness of SERS in linking CT to photocatalytic performance, consistent with first-principles density functional theory (DFT) simulations. This finding is also validated in other semiconductor materials and catalytic reactions, demonstrating the broad applicability of ρCT for predicting and evaluating SERS and catalytic activity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
- State Grid Sichuan Electric Power Research Institute, Chengdu, 610041, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Xinmeng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wenji Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Yuan Q, Wang Y. SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping. BIOSENSORS 2025; 15:52. [PMID: 39852103 PMCID: PMC11763657 DOI: 10.3390/bios15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots. The proposed method shows general applicability for detecting hydrophobic molecules, exemplified as Nile blue, Nile red, fluconazole, carbendazim, benz[a]anthracene, and bisphenol A. The detection limits range from 10-6to 10-9 M, and the relative standard deviations (RSDs) of signal intensity are less than 10%. Moreover, this method was used to investigate the release behaviors of a hydrophobic pollutant (Nile blue) adsorbed on the nanoplastic surface in the water environment. The results suggest that elevated temperatures, increased salinities, and the coexistence of fulvic acid promote the release of Nile blue. This simple and fast protocol overcomes the difficulties related to hotspot accessibility and detection repeatability for hydrophobic analytes, holding out extensive application prospects in environmental monitoring and chemical analysis.
Collapse
Affiliation(s)
- Qi Yuan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
3
|
Hao Q, Chen Y, Wei Y, Li G, Tang X, Chen D, Zhu X, Yao L, Zhao X, Li M, Wang J, Fan X, Qiu T. Mechanism Switch in Surface-Enhanced Raman Scattering: The Role of Nanoparticle Dimensions. J Phys Chem Lett 2024; 15:7183-7190. [PMID: 38968427 DOI: 10.1021/acs.jpclett.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is renowned for amplifying Raman signals, with electromagnetic mechanism (EM) enhancement arising from localized surface plasmon resonances and chemical mechanism (CM) enhancement as a result of charge transfer interactions. Despite the conventional emphasis on EM as a result of plasmonic effects, recent findings highlight the significance of CM when noble metals appear as smaller entities. However, the threshold size of the noble metal clusters/particles corresponding to the switch in SERS mechanisms is not clear at present. In this work, the VSe2-xOx/Au composites with different Au sizes are employed, in which a clear view of the SERS mechanism switch is observed at the Au size range of 16-21 nm. Our findings not only provide insight into the impact of noble metal size on SERS efficiency but also offer quantitative data to assist researchers in making informed judgments when analyzing SERS mechanisms.
Collapse
Affiliation(s)
- Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Yijing Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Yunjia Wei
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Dexiang Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Xiangnan Zhu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, People's Republic of China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| |
Collapse
|
4
|
Tang X, Hao Q, Hou X, Lan L, Li M, Yao L, Zhao X, Ni Z, Fan X, Qiu T. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312348. [PMID: 38302855 DOI: 10.1002/adma.202312348] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive surface analysis technique that is widely used in chemical sensing, bioanalysis, and environmental monitoring. The design of the SERS substrates is crucial for obtaining high-quality SERS signals. Recently, 2D transition metal dichalcogenides (2D TMDs) have emerged as high-performance SERS substrates due to their superior stability, ease of fabrication, biocompatibility, controllable doping, and tunable bandgaps and excitons. In this review, a systematic overview of the latest advancements in 2D TMDs SERS substrates is provided. This review comprehensively summarizes the candidate 2D TMDs SERS materials, elucidates their working principles for SERS, explores the strategies to optimize their SERS performance, and highlights their practical applications. Particularly delved into are the material engineering strategies, including defect engineering, alloy engineering, thickness engineering, and heterojunction engineering. Additionally, the challenges and future prospects associated with the development of 2D TMDs SERS substrates are discussed, outlining potential directions that may lead to significant breakthroughs in practical applications.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Leilei Lan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, 232001, China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| |
Collapse
|
5
|
Peng Y, Yang L, Li Y, Zhang W, Xu M, Lin C, Liu J, Huang Z, Yang Y. Design of MXene-Based Multiporous Nanosheet Stacking Structures Integrating Multiple Synergistic SERS Enhancements for Ultrasensitive Detection of Chloramphenicol. JACS AU 2024; 4:730-743. [PMID: 38425902 PMCID: PMC10900199 DOI: 10.1021/jacsau.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Motivated by the desire for more sensitivity and stable surface-enhanced Raman scattering (SERS) substrates to trace detect chloramphenicol due to its high toxicity and ubiquity, MXene has attracted increasing attention and is encountering the high-priority task of further observably improving detection sensitivity. Herein, a universal SERS optimization strategy that incorporates NH4VO3 to induce few-layer MXenes assembling into multiporous nanosheet stacking structures was innovatively proposed. The synthesized Nb2C-based multiporous nanosheet stacking structure can achieve a low limit of detection of 10-10 M and a high enhancement factor of 2.6 × 109 for MeB molecules, whose detection sensitivity is improved by 3 orders of magnitude relative to few-layer Nb2C MXenes. Such remarkably enhanced SERS sensitivity mainly originates from the multiple synergistic contributions of the developed physical adsorption, the chemical enhancement, and the conspicuously improved electromagnetic enhancement arising from the intersecting MXenes. Furthermore, the improved SERS sensitivity endows Nb2C-based multiporous structures with the capability to achieve ultrasensitive detection of chloramphenicol with a wide linear range from 100 μg/mL to 1 ng/mL. We believe it is of great significance in conspicuously developing the SERS sensitivity of other MXenes with surficial negative charges and has a great promising perspective for the trace detection of other antibiotics in microsystems.
Collapse
Affiliation(s)
- Yusi Peng
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lili Yang
- College
of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
| | - Yanyan Li
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University
of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People’s Republic
of China
| | - Weida Zhang
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University
of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People’s Republic
of China
| | - Meimei Xu
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University
of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People’s Republic
of China
| | - Chenglong Lin
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University
of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People’s Republic
of China
| | - Jianjun Liu
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
| | - Zhengren Huang
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
| | - Yong Yang
- State
Key Laboratory of High-Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People’s Republic
of China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|