1
|
Fiala J, Schuster D, Heck AJR. Antibody-Drug Conjugate Stability Probed by Variable-Temperature Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40408263 DOI: 10.1021/jasms.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Antibody-drug conjugates (ADCs) are effective anticancer biotherapeutics, often referred to as "magic bullets" due to their high specificity and cytotoxicity. This unique drug class consists of cytotoxic drugs coupled to monoclonal antibodies that target antigens on cancer cell surfaces. Different modes of drug conjugation are used to produce ADCs, whereby it has been shown that the employed linkage chemistries influence the drug load distribution as well as the stability of the product. While different methods to assess ADC stability are available, they mostly assess bulk properties and thus fail to assess stabilities at an individual stoichiometric drug-load level. Here, we demonstrate that variable-temperature electrospray ionization mass spectrometry can be used to study the heat stability of antibody-drug conjugates, resolving distinct stabilities for individual drug-loaded variants. As this stability is a key attribute of ADCs, we propose that variable-temperature electrospray ionization mass spectrometry may become an asset in the toolbox of analytical chemistry approaches to characterize ADCs in molecular fine detail.
Collapse
Affiliation(s)
- Jan Fiala
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dina Schuster
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
2
|
Raab SA, Pan H, Woodall DW, Hales DA, Sharon EM, Clemmer DE. Laser-Induced Denaturation of Cytochrome c in Electrospray Droplets. Anal Chem 2025; 97:9151-9158. [PMID: 40257962 DOI: 10.1021/acs.analchem.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Structural transitions of the model system cytochrome c (Cyt c) were monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) paired with two methods to heat proteins: a variable-temperature electrospray ionization (vT-ESI) source to heat the bulk protein solution and a 10.6 μm CO2 laser to rapidly heat ESI droplets containing the protein. Previous evidence from our group suggests that information about time-dependent protein structural transitions can be accessed by irradiating protein droplets of different sizes. In this paper, a new method to control droplet sizes is introduced where the distance between the ESI emitter and laser path is altered to produce larger or smaller droplets, yielding a simple and robust means of accessing different protein unfolding timescales. Herein, increasing the temperature of a solution of Cyt c in water at pH 4 via vT-ESI (from 27 to 80 °C) shifts the distribution of states from a relatively folded ensemble consisting of low charge states to a distribution of elongated structures that are observed as highly charged species. Rapid heating of ESI droplets (containing Cyt c) with a variable-power CO2 laser yields a similar shift in the mass spectra with increasing laser power. To investigate the conformational changes accessible within the lifetime of the heated droplets, four different tip sizes as well as several different distances between the ESI emitter and laser path are studied. Slight changes in droplet size can greatly alter the response of the protein to the laser field. The maximum observable charge state upon laser heating appears to be limited by the size of the ESI droplet prior to entering the laser field. The dependence of these distributions on droplets sizes leads us to propose that laser-induced denaturation in ESI droplets is stopped before an equilibrium distribution of conformers can be reached─providing a means of kinetically trapping ensembles of states. Therefore, we provide a simple correlation between droplet size, percent protein folded, and appropriate experimental distance to suggest a framework for robust studies of protein denaturation in ESI droplets.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hua Pan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Wang X, Norgate E, Dai J, Benoit F, Bristow T, England RM, Kalapothakis JMD, Barran PE. Conformational landscapes of rigid and flexible molecules explored with variable temperature ion mobility-mass spectrometry. Nat Commun 2025; 16:4183. [PMID: 40324998 PMCID: PMC12052783 DOI: 10.1038/s41467-025-59065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
Understanding the effect of temperature to the structural integrity of proteins is relevant to diverse areas such as biotechnology and climate change. Variable temperature ion mobility-mass spectrometry (VT-IM-MS) can measure the effect of temperature on conformational landscapes. To delineate collision effects from structural change we report measurements using molecules with different degrees of rigidity namely: poly (L-lysine) (PLL) dendrimer, ubiquitin, β-casein and α-synuclein from 190-350 K. The CCS of PLL dendrimer varies with temperature consistent with collision theory, by contrast, the structure of each protein alters with notable restructuring at 350 K and 250 K, following predicted in vitro stability curves. At 210 K and 190 K we kinetically trap unfolding intermediates. For alpha-synuclein, the 13+ ions present two distinct conformers and VT-IM-MS measurements allow us to calculate the transition rate and activation energies of their conversion. These data exemplify the capacity of VT-IM-MS to provide insights on the thermodynamics of conformational restructuring.
Collapse
Affiliation(s)
- Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Tony Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK102NA, UK
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Jason M D Kalapothakis
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
4
|
Sharif D, Dewasurendra VK, Sultana MN, Mahmud S, Banerjee C, Rahman M, Li P, Clemmer DE, Johnson MB, Valentine SJ. Accessing Different Protein Conformer Ensembles with Tunable Capillary Vibrating Sharp-Edge Spray Ionization. J Phys Chem B 2025; 129:1626-1639. [PMID: 39878076 PMCID: PMC11808649 DOI: 10.1021/acs.jpcb.4c04842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra. For midvoltage conditions (+200 to +600 V, MV regime), higher charge states (7+ to 12+ ions) are observed. For high-voltage conditions (>+600 V, HV regime), the "nano-electrospray ionization (nESI)-type distribution" is achieved in which the 6+ and 5+ species are observed as the dominant ions. Analysis of these results suggests that different pathways to progeny nanodroplet production result in the observed ions. For the LV regime, aerodynamic breakup leads to low charge progeny droplets that are selective for the native solution conformation ensemble of ubiquitin (minus multimeric species). In the MV regime, the large droplets persist for longer periods of time, leading to droplet heating and a shift in the conformation ensemble to partially unfolded species. In the HV regime, droplets access progeny nanodroplets faster, leading to native conformation ensemble sampling as indicated by the observed nESI-type CSD. The notable observation of limited multimer formation and adduct ion formation in the LV regime is hypothesized to result from droplet aero breakup resulting in protein and charge carrier partitioning in sampled progeny droplets. The tunable droplet charging afforded by cVSSI presents opportunities to study the effects of the droplet charge, droplet size, and mass spectrometer inlet temperature on the conformer ensemble sampled by the mass spectrometer. Additionally, the approach may provide a tool for rapid comparison of protein stabilities.
Collapse
Affiliation(s)
- Daud Sharif
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Vikum K. Dewasurendra
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mst Nigar Sultana
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sultan Mahmud
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chandrima Banerjee
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mohammad Rahman
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Matthew B. Johnson
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
5
|
Jordan JS, Chen CJ, Lee KJ, Williams ER. Temperature Induced Unfolding and Compaction of Cytochrome c in the Same Aqueous Solutions. J Am Chem Soc 2025; 147:3412-3420. [PMID: 39772572 DOI: 10.1021/jacs.4c14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome c. Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein. However, one conformer that is more compact than the native state of the protein is also formed from this same solution upon heating. The abundance of this compact conformer increases with temperatures up to 90 °C. Rapid mixing and collision-induced gas-phase unfolding experiments demonstrate that formation of this compact conformer is not an artifact of rapid refolding during the ESI process or structural rearrangement in the gas-phase, and therefore the compact conformer must be formed in bulk solution at higher temperatures. The main folded conformer at 90 °C has a cross section that is ∼30 Å2 larger than that at 27 °C. Results from collision-induced unfolding experiments indicate that they have different gas-phase stabilities that are not directly related to differences in their initial internal energies upon transitioning into the gas phase and therefore have different structures. These results demonstrate the advantage of mass and ion mobility measurements for investigating protein conformational landscapes and provide the first evidence for formation of both unfolded and more compact conformations of a protein from the same solution upon heating.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Casey J Chen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
6
|
Pan H, Klein SM, Gunaratne A, Jarrold MF, Clemmer DE. Dissociation of Macromolecules in Laser-Heated Droplets Monitored by CD-MS. Anal Chem 2025; 97:1419-1425. [PMID: 39772511 PMCID: PMC11800163 DOI: 10.1021/acs.analchem.4c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO2 laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes. As the droplets travel from the ESI capillary tip to the entrance of the CD-MS instrument, they pass through a variable-power laser field, where they are rapidly heated and dissociate to produce fragments. The approach is illustrated for three model systems: glutamate dehydrogenase (GDH), a 334 kDa hexameric protein complex, which dissociates into protein monomers, dimers, and tetramers; the ∼3 MDa T = 3, and ∼4 MDa T = 4 hepatitis B virus VLPs (virus-like particles) that produce a distribution of protein dimer clusters; and the ∼20 MDa T = 7 human papillomavirus VLP, which dissociates primarily into small capsid protein clusters that are not well-resolved by CD-MS. The fragments produced by in-droplet activation provide information that is useful for characterizing the structures of the intact antecedent complexes. A discussion of the advantages and current limitations of this approach is presented.
Collapse
Affiliation(s)
- Hua Pan
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shelby M Klein
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Akalanka Gunaratne
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
7
|
Butalewicz JP, Escobar EE, Wootton CA, Theisen A, Park MA, Seeley EH, Brodbelt JS. Conformational Characterization of Peptides and Proteins by 193 nm Ultraviolet Photodissociation in the Collision Cell of a Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:16154-16161. [PMID: 39365147 DOI: 10.1021/acs.analchem.4c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin. The resultant data displayed differences in fragmentation that could be correlated with changes in protein conformation. Additionally, this mobility-resolved UVPD strategy was applied to collision-induced unfolded ions of ubiquitin to follow changes in fragmentation patterns relating to the extent of protein unfolding. This platform and methodology offer new opportunities for exploring how conformational variations are manifested in the fragmentation patterns of gas-phase ions.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Alina Theisen
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Erin H Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Butalewicz JP, Sipe SN, Juetten KJ, James VK, Kim K, Zhang YJ, Meek TD, Brodbelt JS. Insights into the Main Protease of SARS-CoV-2: Thermodynamic Analysis, Structural Characterization, and the Impact of Inhibitors. Anal Chem 2024; 96:15898-15906. [PMID: 39319663 PMCID: PMC11499983 DOI: 10.1021/acs.analchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for coronaviral maturation and is the target of Paxlovid, which is currently the standard-of-care treatment for COVID-19. There remains a need to identify new inhibitors of Mpro as viral resistance to Paxlovid emerges. Here, we report the use of native mass spectrometry coupled with 193 nm ultraviolet photodissociation (UVPD) and integrated with other biophysical tools to structurally characterize Mpro and its interactions with potential covalent inhibitors. The overall energy landscape was obtained using variable temperature nanoelectrospray ionization (vT-nESI), thus providing quantitative evaluation of inhibitor binding on the stability of Mpro. Thermodynamic parameters extracted from van't Hoff plots revealed that the dimeric complexes containing each inhibitor showed enhanced stability through increased melting temperatures as well as overall lower average charge states, giving insight into the basis for inhibition mechanisms.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kangsan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
10
|
Wu R, Xie Y, Zhao L, Fu C, He W, Guo D, Xu W, Yi Y, Wang H. Effect mechanism of capsaicin and dihydrocapsaicin in chili on the oxidative stability of myoglobin in duck meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6799-6808. [PMID: 38568724 DOI: 10.1002/jsfa.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Myoglobin (Mb) in duck meat is commonly over-oxidized when heated at high temperatures, which may worsen the color of the meat. Enhancing the oxidative stability of Mb is essential for improving the color of duck meat. Capsaicin and dihydrocapsaicin (CA-DI) in chili exhibit antioxidant properties. This study investigated the effects of CA-DI on the structure and oxidative damage of Mb by fluorescence spectroscopy, differential scanning calorimetry analysis and particle size in duck meat during heat treatment. RESULTS When the ratio of CA-DI to Mb was 10:1 g kg-1 and heat-treated for 36 min, oxymyoglobin significantly increased, and metmyoglobin significantly decreased compared with the control group (P < 0.05). In parallel, the carbonyl content of Mb in the CA-DI group decreased by 43.40 ± 0.10%, the sulfhydryl content increased by 188 ± 0.21%, and the free radical scavenging activity of Mb was significantly enhanced (P < 0.05). Moreover, the addition of CA-DI resulted in a significant decrease in the particle size of the Mb surface (P < 0.05). When the ratio of CA-DI to Mb was 10:1 g kg-1, CA-DI enhanced the thermal stability and significantly increased the thermal denaturation temperature of Mb. The molecular docking results indicated that hydrophobic interactions and hydrogen bonds were involved in the binding of CA-DI to Mb. CONCLUSION CA-DI could combine with Mb and improve the oxidation stability of Mb in duck meat. This suggested that CA-DI could be a potential natural antioxidant that improves the color of meat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruifang Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yuqing Xie
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Lingling Zhao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Caiqi Fu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Wenjie He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Danjun Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Wei Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Hongxun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| |
Collapse
|
11
|
Wagner WJ, Moyle AB, Wagner ND, Rempel DL, Gross ML. Evaluating Chemical Footprinting-Induced Perturbation of Protein Higher Order Structure. Anal Chem 2024; 96:9693-9703. [PMID: 38815160 PMCID: PMC11238718 DOI: 10.1021/acs.analchem.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Specific amino acid footprinting mass spectrometry (MS) is an increasingly utilized method for elucidating protein higher order structure (HOS). It does this by adding to certain amino acid residues a mass tag, whose reaction extent depends on solvent accessibility and microenvironment of the protein. Unlike reactive free radicals and carbenes, these specific footprinters react slower than protein unfolding. Thus, their footprinting, under certain conditions, provokes structural changes to the protein, leading to labeling on non-native structures. It is critical to establish conditions (i.e., reagent concentrations, time of reaction) to ensure that the structure of the protein following footprinting remains native. Here, we compare the efficacy of five methods in assessing protein HOS following footprinting at the intact protein level and then further localize the perturbation at the peptide level. Three are MS-based methods that provide dose-response plot analysis, evaluation of Poisson distributions of precursor and products, and determination of the average number of modifications. These MS-based methods reliably and effectively indicate HOS perturbation at the intact protein level, whereas spectroscopic methods (circular dichroism (CD) and dynamic light scattering (DLS)) are less sensitive in monitoring subtle HOS perturbation caused by footprinting. Evaluation of HOS at the peptide level indicates regions that are sensitive to localized perturbations. Peptide-level analysis also provides higher resolution of the HOS perturbation, and we recommend using it for future footprinting studies. Overall, this work shows conclusive evidence for HOS perturbation caused by footprinting. Implementation of quality control workflows can identify conditions to avoid the perturbation, for footprinting, allowing accurate and reliable identification of protein structural changes that accompany, for example, ligand interactions, mutations, and changes in solution environment.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| |
Collapse
|
12
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
13
|
Pan H, Raab SA, El-Baba TJ, Schrecke SR, Laganowsky A, Russell DH, Clemmer DE. Variation of CI-2 Conformers upon Addition of Methanol to Water: An IMS-MS-Based Thermodynamic Analysis. J Phys Chem A 2023; 127:9399-9408. [PMID: 37934510 PMCID: PMC11212803 DOI: 10.1021/acs.jpca.3c03651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.
Collapse
Affiliation(s)
- Hua Pan
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Samantha R Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
14
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
15
|
Sharon EM, Henderson LW, Clemmer DE. Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1559-1568. [PMID: 37418419 PMCID: PMC10916761 DOI: 10.1021/jasms.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Collapse
Affiliation(s)
- Edie M Sharon
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Parise RJ, Dassanayake DR, Levis RJ. Pulse Duration Effects on Solution-Phase Protein Desorption in Laser Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:701-709. [PMID: 36947866 DOI: 10.1021/jasms.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effect of laser pulse duration on the ablation of aqueous myoglobin is investigated using laser electrospray mass spectrometry (LEMS). Pulse durations of 55 femtoseconds (fs), 56 piscoseconds (ps), and 10 nanoseconds (ns) were used to ablate aqueous myoglobin from stainless-steel and quartz substrates. The integrated signal intensity of myoglobin increases with decreasing pulse duration for both substrates. Laser-induced thermal effects are assessed by the relative amount of solvent adduction and number of phosphate moieties adducted to myoglobin by each laser pulse duration. The mass spectra for 55 fs vaporization shows myoglobin with appreciable solvent and phosphate adduction and baseline elevation. The mass spectra for 10 ns ablation have minimal adduction and limited baseline elevation. Heat-induced conformation changes in myoglobin were used to measure the amount of thermal energy deposited by each laser pulse duration. Ablation using the 55 fs pulse revealed the highest ratio of unfolded to folded myoglobin in comparison to the 56 ps and 10 ns measurements due to increased droplet lifetime and consequent interaction with the acid in the electrospray solvent. Collisional activation and heated capillary temperature were employed to reduce the droplet lifetime and demonstrate that fs ablation preserves approximately 2 times more myoglobin folded conformation in comparison to ps and ns pulses.
Collapse
Affiliation(s)
- Rachel J Parise
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Dilini R Dassanayake
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J Levis
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
17
|
Jordan JS, Williams ER. Laser Heating Nanoelectrospray Emitters for Fast Protein Melting Measurements with Mass Spectrometry. Anal Chem 2022; 94:16894-16900. [DOI: 10.1021/acs.analchem.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jacob S. Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Carboxyl group-modified myoglobin shows membrane-permeabilizing activity. Arch Biochem Biophys 2022; 728:109371. [DOI: 10.1016/j.abb.2022.109371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
|
19
|
Sipe SN, Lancaster EB, Butalewicz JP, Whitman CP, Brodbelt JS. Symmetry of 4-Oxalocrotonate Tautomerase Trimers Influences Unfolding and Fragmentation in the Gas Phase. J Am Chem Soc 2022; 144:12299-12309. [PMID: 35767842 DOI: 10.1021/jacs.2c03564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent discovery of asymmetric arrangements of trimers in the tautomerase superfamily (TSF) adds structural diversity to this already mechanistically diverse superfamily. Classification of asymmetric trimers has previously been determined using X-ray crystallography. Here, native mass spectrometry (MS) and ultraviolet photodissociation (UVPD) are employed as an integrated strategy for more rapid and sensitive differentiation of symmetric and asymmetric trimers. Specifically, the unfolding of symmetric and asymmetric trimers initiated by collisional heating was probed using UVPD, which revealed unique gas-phase unfolding pathways. Variations in UVPD patterns from native-like, compact trimeric structures to unfolded, extended conformations indicate a rearrangement of higher-order structure in the asymmetric trimers that are believed to be stabilized by salt-bridge triads, which are absent from the symmetric trimers. Consequently, the symmetric trimers were found to be less stable in the gas phase, resulting in enhanced UVPD fragmentation overall and a notable difference in higher-order re-structuring based on the extent of hydrogen migration of protein fragments. The increased stability of the asymmetric trimers may justify their evolution and concomitant diversification of the TSF. Facilitating the classification of TSF members as symmetric or asymmetric trimers assists in delineating the evolutionary history of the TSF.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Emily B Lancaster
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Alexander Harrison J, Pruška A, Oganesyan I, Bittner P, Zenobi R. Temperature-Controlled Electrospray Ionization: Recent Progress and Applications. Chemistry 2021; 27:18015-18028. [PMID: 34632657 PMCID: PMC9298390 DOI: 10.1002/chem.202102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/11/2022]
Abstract
Native electrospray ionization (ESI) and nanoelectrospray ionization (nESI) allow researchers to analyze intact biomolecules and their complexes by mass spectrometry (MS). The data acquired using these soft ionization techniques provide a snapshot of a given biomolecules structure in solution. Over the last thirty years, several nESI and ESI sources capable of controlling spray solution temperature have been developed. These sources can be used to elucidate the thermodynamics of a given analyte, as well as provide structural information that cannot be readily obtained by other, more commonly used techniques. This review highlights how the field of temperature-controlled mass spectrometry has developed.
Collapse
Affiliation(s)
| | - Adam Pruška
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Irina Oganesyan
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Philipp Bittner
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|
21
|
Laganowsky A, Clemmer DE, Russell DH. Variable-Temperature Native Mass Spectrometry for Studies of Protein Folding, Stabilities, Assembly, and Molecular Interactions. Annu Rev Biophys 2021; 51:63-77. [PMID: 34932911 PMCID: PMC9086101 DOI: 10.1146/annurev-biophys-102221-101121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structures and conformational dynamics of proteins, protein complexes, and their noncovalent interactions with other molecules are controlled specifically by the Gibbs free energy (entropy and enthalpy) of the system. For some organisms, temperature is highly regulated, but the majority of biophysical studies are carried out at room, nonphysiological temperature. In this review, we describe variable-temperature electrospray ionization (vT-ESI) mass spectrometry (MS)-based studies with unparalleled sensitivity, dynamic range, and selectivity for studies of both cold- and heat-induced chemical processes. Such studies provide direct determinations of stabilities, reactivities, and thermodynamic measurements for native and non-native structures of proteins and protein complexes and for protein-ligand interactions. Highlighted in this review are vT-ESI-MS studies that reveal 40 different conformers of chymotrypsin inhibitor 2, a classic two-state (native → unfolded) unfolder, and thermochemistry for a model membrane protein system binding lipid and its regulatory protein. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; ,
| |
Collapse
|
22
|
Ng YK, Tajoddin NN, Scrosati PM, Konermann L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J Phys Chem B 2021; 125:13099-13110. [PMID: 34808050 DOI: 10.1021/acs.jpcb.1c07210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins that encounter unfavorable solvent conditions are prone to aggregation, a phenomenon that remains poorly understood. This work focuses on myoglobin (Mb) as a model protein. Upon heating, Mb produces amorphous aggregates. Thermal unfolding experiments at low concentration (where aggregation is negligible), along with centrifugation assays, imply that Mb aggregation proceeds via globally unfolded conformers. This contrasts studies on other proteins that emphasized the role of partially folded structures as aggregate precursors. Molecular dynamics (MD) simulations were performed to gain insights into the mechanism by which heat-unfolded Mb molecules associate with one another. A prerequisite for these simulations was the development of a method for generating monomeric starting structures. Periodic boundary condition artifacts necessitated the implementation of a partially immobilized water layer lining the walls of the simulation box. Aggregation simulations were performed at 370 K to track the assembly of monomeric Mb into pentameric species. Binding events were preceded by multiple unsuccessful encounters. Even after association, protein-protein contacts remained in flux. Binding was mediated by hydrophobic contacts, along with salt bridges that involved hydrophobically embedded Lys residues. Overall, this work illustrates that atomistic MD simulations are well suited for garnering insights into protein aggregation mechanisms.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nastaran N Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
23
|
Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Valentine SJ, Clemmer DE. Protons Are Fast and Smart; Proteins Are Slow and Dumb: On the Relationship of Electrospray Ionization Charge States and Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1553-1561. [PMID: 34151568 PMCID: PMC9003666 DOI: 10.1021/jasms.1c00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present simple considerations of how differences in time scales of motions of protons, the lightest and fastest chemical moiety, and the much longer time scales associated with the dynamics of proteins, among the heaviest and slowest analytes, may allow many protein conformations from solution to be kinetically trapped during the process of electrospraying protein solutions into the gas phase. In solution, the quantum nature of protons leads them to change locations by tunneling, an instantaneous process; moreover, the Grotthuss mechanism suggests that these small particles can respond nearly instantaneously to the dynamic motions of proteins that occur on much longer time scales. A conformational change is accompanied by favorable or unfavorable variations in the free energy of the system, providing the impetus for solvent ↔ protein proton exchange. Thus, as thermal distributions of protein conformations interconvert, protonation states rapidly respond, as specific acidic and basic sites are exposed or protected. In the vacuum of the mass spectrometer, protons become immobilized in locations that are specific to the protein conformations from which they were incorporated. In this way, conformational states from solution are preserved upon electrospraying them into the gas phase. These ideas are consistent with the exquisite sensitivity of electrospray mass spectra to small changes of the local environment that alter protein structure in solution. We might remember this approximation for the protonation of proteins in solution with the colloquial expression-protons are fast and smart; proteins are slow and dumb.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Stephen J Valentine
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
McCabe JW, Shirzadeh M, Walker TE, Lin CW, Jones BJ, Wysocki VH, Barondeau DP, Clemmer DE, Laganowsky A, Russell DH. Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding. Anal Chem 2021; 93:6924-6931. [PMID: 33904705 DOI: 10.1021/acs.analchem.1c00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin J Jones
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Yan B, Bunch J. Probing Folded Proteins and Intact Protein Complexes by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:690-699. [PMID: 33605725 DOI: 10.1021/jasms.0c00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Native mass spectrometry (MS) enables the study of intact proteins as well as noncovalent protein-protein and protein-ligand complexes in their biological state. In this work, we present the application of a Waters desorption electrospray ionization (DESI) source with a prototype spray emitter for rapid surface measurements of folded and native protein structures. A comparison of DESI spray solvent shows that adding 50% methanol to 200 mM ammonium acetate solution does not reduce its performance in preserving folded protein structures. Instead, improved signal-to-noise (S/N) ratio is obtained, and less adducted peaks are detected by using this uncommon native MS solvent system. The standard DESI design with an inlet tube allows optimization of sampling temperature conditions to improve desolvation and therefore S/N ratio. Furthermore, tuning the inlet temperature enables the control and study of unfolding behavior of proteins from surface samples. The optimized condition for native DESI has been applied to several selected proteins and protein complexes with the molecular weight ranging from 8.6 to 66.4 kDa. Ions of folded proteins with narrow charge state distribution (CSD), or peaks showing noncovalent-bond-assembled intact protein complexes, are observed in the spectra. Evidence for the structural refolding of denatured proteins and protein complexes sampled with native solvent highlights the need for care when interpreting DESI native MS data, particularly for proteins with stable native structures.
Collapse
Affiliation(s)
- Bin Yan
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K
| |
Collapse
|