1
|
Sanhueza C, Dias NB, Vergara D, Silva L, Chávez-Ángel E, Castro-Alvarez A. Improving Sensitivity and Resolution of Dendrimer Identification in MALDI-TOF Mass Spectrometry Using Varied Matrix Combinations. Polymers (Basel) 2025; 17:219. [PMID: 39861291 PMCID: PMC11769133 DOI: 10.3390/polym17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.0, and G5.0). Our results demonstrated that the combination of HCCA-THAP significantly enhanced spectral resolution and peak intensity compared to individual matrices, particularly for higher-generation dendrimers. This improvement is attributed to the better ionization efficiency achieved with the combined matrices. These findings provide critical insights into optimizing MALDI-TOF MS for the accurate characterization of complex polymers, with potential applications in drug delivery and nanotechnology.
Collapse
Affiliation(s)
- Claudia Sanhueza
- Center for Resilience, Adaptation and Mitigation (CReAM), Faculty of Sciences, Universidad Mayor, Temuco 4780000, Chile
- Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
| | - Nathalia Baptista Dias
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Daniela Vergara
- Centro de Excelencia en Medicina Traslacional (CEMT), Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Lisette Silva
- Carrera de Química y Farmacia, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Emigdio Chávez-Ángel
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Wang J, Li S, Yang L, Kwan C, Xie C, Cheung KY, Sun RW, Chan ASC, Huang Z, Cai Z, Zeng T, Leung KC. Janus and Amphiphilic MoS 2 2D Sheets for Surface-Directed Orientational Assemblies toward Ex Vivo Dual Substrate Release. SMALL METHODS 2024; 8:e2400533. [PMID: 38874104 PMCID: PMC11671850 DOI: 10.1002/smtd.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The two-dimensional (2-D) Janus and amphiphilic molybdenum disulfide (MoS2) nanosheet with opposite optical activities on each side (amphichiral) is synthesized by modifying sandwich-like bulk MoS2 with tannic acid and cholesterol through biphasic emulsion method. This new type of amphichiral Janus MoS2 nanosheet consists of a hydrophilic and positive optical activity tannic acid side as well as a hydrophobic and negative optical activity cholesterol side thereby characterized by circular dichroism. Surface-directed orientational differentiation assemblies are performed for the as-synthesized 2D material and are characterized by contact angle, infrared spectroscopy, X-ray photoelectron, and circular dichroism spectroscopies. The amphiphilic nature of the materials is demonstrated by the pre-organization of the nanosheets on either hydrophobic or hydrophilic surfaces, providing unprecedented properties of circular dichroism signal enhancement and wettability. Selective detachment of the surface organic groups (cholesterol and tannic acid fragments) is realized by matrix-assisted laser desorption/ionisation - time-of-flight (MALDI-TOF) mass spectrometry, and the dual substrate release in tissue is detected by ex vivo mass spectrometry imaging.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Shuqi Li
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Lin Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Chak‐Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- Department of ChemistryGreat Bay University and Great Bay Institute for Advanced StudyDongguan523000P. R. China
| | - Chengyi Xie
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Kwan Yin Cheung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Albert S. C. Chan
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Tao Zeng
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Ken Cham‐Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| |
Collapse
|
3
|
Chen Y, Xie C, Wang X, Cao G, Ru Y, Song Y, Iyaswamy A, Li M, Wang J, Cai Z. 3-Acetylpyridine On-Tissue Paternò–Büchi Derivatization Enabling High Coverage Lipid C═C Location-Resolved MS Imaging in Biological Tissues. Anal Chem 2022; 94:15367-15376. [DOI: 10.1021/acs.analchem.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Yi Ru
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| |
Collapse
|
4
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Kwan CS, Ho WKW, Chen Y, Cai Z, Leung KCF. Synthesis of Functional Building Blocks for Type III-B Rotaxane Dendrimer. Polymers (Basel) 2021; 13:polym13223909. [PMID: 34833208 PMCID: PMC8622516 DOI: 10.3390/polym13223909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Second-generation type III-B rotaxane dendrons, equipped with succinimide and acetylene functional groups, were synthesized successfully and characterized by NMR spectroscopy and mass spectrometry. A cell viability study of a dendron with a normal cell line of L929 fibroblast cells revealed no obvious cytotoxicity at a range of 5 to 100 μM. The nontoxic properties of the sophisticated rotaxane dendron building blocks provided a choice of bio-compatible macromolecular machines that could be potentially developed into polymeric materials.
Collapse
Affiliation(s)
- Chak-Shing Kwan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (C.-S.K.); (Y.C.); (Z.C.)
| | - Watson K.-W. Ho
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China;
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (C.-S.K.); (Y.C.); (Z.C.)
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (C.-S.K.); (Y.C.); (Z.C.)
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (C.-S.K.); (Y.C.); (Z.C.)
- Correspondence:
| |
Collapse
|
6
|
Chen Y, Wang T, Xie P, Song Y, Wang J, Cai Z. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. Anal Chim Acta 2021; 1184:339011. [PMID: 34625248 DOI: 10.1016/j.aca.2021.339011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) multicellular tumor spheroids (MCTS) that mimic the complex tumor microenvironment provide a good platform for in vitro study of drug and endogenous metabolites. Hydroxychloroquine (HCQ) has shown anti-tumor activity in a variety of tumor models. However, the effect of the drug on the alteration of lipid metabolism spatial composition and distribution in the MCTS model is not clear. Herein, we utilized matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in the analysis of A549 lung cancer multicellular spheroids to investigate the in situ spatial distribution of HCQ and its effect on lipid metabolism. We have successfully observed the spatial variations of HCQ in the inner region of the spheroid at different drug-treated time points. The MSI results also demonstrated that HCQ treatment altered the spatial composition of lipids in the inner and outer regions of treated spheroids. Furthermore, the lipidomic results showed that the identified phosphatidylcholines (PC), lysophosphatidylcholines (LPC), phosphatidylethanolamines (PE), lysophosphatidylethanolamines (LPE), phosphatidylinositols (PI), ceramides (Cer), glucosylceramides (CerG), and diglycerides (DG) were significantly up-regulated, and phosphatidylglycerol (PG) and triglycerides (TG) were remarkable down-regulated. MSI method combined with LC-MS/MS profiling of endogenous metabolites can obtain more detailed information about how spheroids respond to drug and spatial distribution information, thus fostering a better understanding of the relationship between drug-altered lipid metabolism and cancer microenvironment.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Analysis Center, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Chen CY, Xu HC, Ho TH, Hsu CJ, Lai CC, Liu YH, Peng SM, Chiu SH. Complementarity of 2,6-Dimethanolpyridine and Di(ethylene glycol) in the Complexation of Na + Ions: Attaching Multiple Copies of [2]Catenane Branches to Isophthalaldehyde-Containing Cores. J Org Chem 2021; 86:13491-13502. [PMID: 34514788 DOI: 10.1021/acs.joc.1c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study we found that 2,6-dimethanolpyridine displays good complementarity toward di(ethylene glycol) for the complexation of Na+ ions, allowing us to use this recognition system for the efficient synthesis of hetero[2]catenanes; indeed, it allowed us to attach multiple copies of [2]catenanes to branched systems presenting multiple isophthalaldehyde units. When we attempted to form a catenane from a preformed macrocycle featuring only a single di(ethylene glycol) unit, reacting it with a di(ethylene glycol) derivative presenting two amino termini, isophthalaldehyde, and templating Na+ ions [i.e., with the aim of using di(ethylene glycol)·Na+·di(ethylene glycol) recognition to template the formation of the interlocked imino macrocycle], the yields of the hetero[2]catenane and homo[2]catenane, comprising two imino macrocyclic units, were both poor (14% and 7%, respectively). In contrast, when one or two 2,6-dimethanolpyridine units were present in the preformed macrocycles, their reactions with the same diamine, dialdehyde, and Na+ ions provided the hetero[2]catenanes with high selectivity and efficiency (44% and 64% yields, respectively), with minimal formation of the competing homo[2]catenane. The high complementary of the 2,6-dimethanolpyridine·Na+·di(ethylene glycol) ligand pair allowed us to synthesize [2]catenane dimers and trimers directly from corresponding isophthalaldehyde-presenting cores, with yields, after subsequent reduction and methylation, of 42% and 31%, respectively.
Collapse
Affiliation(s)
- Ching-Yu Chen
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Han-Chen Xu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Tsung-Hsien Ho
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chun-Ju Hsu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, 40225 Taichung, Taiwan.,Department of Medical Genetics, China Medical University Hospital, 40447 Taichung, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
8
|
Citrate-Coated Magnetic Polyethyleneimine Composites for Plasmid DNA Delivery into Glioblastoma. Polymers (Basel) 2021; 13:polym13142228. [PMID: 34300986 PMCID: PMC8309231 DOI: 10.3390/polym13142228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Several ternary composites that are based on branched polyethyleneimine (bPEI 25 kDa, polydispersity 2.5, 0.1 or 0.2 ng), citrate-coated ultrasmall superparamagnetic iron oxide nanoparticles (citrate-NPs, 8-10 nm, 0.1, 1.0, or 2.5 µg), and reporter circular plasmid DNA pEGFP-C1 or pRL-CMV (pDNA 0.5 µg) were studied for optimization of the best composite for transfection into glioblastoma U87MG or U138MG cells. The efficiency in terms of citrate-NP and plasmid DNA gene delivery with the ternary composites could be altered by tuning the bPEI/citrate-NP ratios in the polymer composites, which were characterized by Prussian blue staining, in vitro magnetic resonance imaging as well as green fluorescence protein and luciferase expression. Among the composites prepared, 0.2 ng bPEI/0.5 μg pDNA/1.0 µg citrate-NP ternary composite possessed the best cellular uptake efficiency. Composite comprising 0.1 ng bPEI/0.5 μg pDNA/0.1 μg citrate-NP gave the optimal efficiency for the cellular uptake of the two plasmid DNAs to the nucleus. The best working bPEI concentration range should not exceed 0.2 ng/well to achieve a relatively low cytotoxicity.
Collapse
|
9
|
Chung ACK, Li X, Li WC, Wang T, Lee HK, Jin L, Cai Z, Leung KCF. Mass spectrometry imaging and monitoring of in vivo glutathione-triggered cisplatin release from nanoparticles in the kidneys. NANOSCALE ADVANCES 2020; 2:5857-5865. [PMID: 36133892 PMCID: PMC9416930 DOI: 10.1039/d0na00708k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 06/16/2023]
Abstract
An increasing number of studies have reported the use of various nanoparticles to encapsulate cisplatin, a frontline chemotherapeutic drug against a broad-spectrum of cancers, for overcoming its inherent drawbacks in clinical applications. Nevertheless, few analytical methods or instruments could provide the precise distribution information on this platinum drug in biological tissues. Herein, we provide the first evidence of applying matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to assess the spatial distribution of cisplatin released from the cell-penetrating poly(disulfide) (CPD)-modified hollow iron oxide nanoparticles (hFe3O4-MPS-CPD) at the kidneys via an in situ glutathione (GSH) responsive mode. The cisplatin released from the nanoparticles triggered by GSH was successfully examined as [Pt(DDTC)2]+ (m/z 491.01) and [Pt(DDTC)3]+ (m/z 639.04) by MALDI-MS after derivatization using diethyldithiocarbamate. The in situ spatial distribution of [Pt(DDTC)2]+ and [Pt(DDTC)3]+ in the kidneys was then mapped using MALDI-MSI. This study presents an optimized analytical approach to evaluate and map the metallodrug in biological tissue samples in an efficient and convenient manner, offering great assistance in investigating the biodistribution of cisplatin delivered by nanoparticles, and sheds light on facilitating the studies of the pharmacokinetics of cisplatin in biomedical research.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| | - Wai-Chung Li
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Tao Wang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Hin-Kiu Lee
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| |
Collapse
|