1
|
Golub N, Galić E, Špada V, Radić K, Čepo DV. Utilizing tomato pomace-based pectins in the fabrication of selenium nanoformulations - Functional characterization and gastrointestinal stability. Food Res Int 2025; 211:116434. [PMID: 40356183 DOI: 10.1016/j.foodres.2025.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Selenium nanoparticles (SeNP) offer improved bioavailability and reduced toxicity compared to traditional bulk forms. This study investigated the possibilities of green synthesis of polyphenol-functionalized SeNP by utilizing agricultural waste-derived pectin and polyphenol-rich extracts. SeNP were synthesized with raw or purified tomato pomace pectin as the coating agents, and polyphenolic extracts from olive pomace, mandarin peels or grape seeds as functionalizing agents. These innovative formulations were compared to bulk selenium forms (selenite) and/or standard polyvinylpyrrolidone-stabilized SeNP (PVPSeNP) based on their shape, size, polydispersity index, zeta potential, stability, biocompatibility and antioxidant activity. The study also included in vitro simulations of gastrointestinal digestion and stability testing in climate chambers under normal and accelerated storage conditions. The resulting SeNP were predominantly round, with average diameters ranging from 118.9 nm to 211.5 nm and negative zeta potentials between -33.12 mV and - 39.40 mV. Polyphenol surface modification enhanced the antiradical activity of SeNP, although the impact on hydrodynamic properties varied by polyphenol source. The nanosystems demonstrated stability throughout gastric and intestinal digestion, maintaining consistent characteristics. Remarkably, under intestinal conditions, we observed a size reduction of up to 40 % and an eightfold increase in antioxidant activity, indicating potential for sustained release of ionic selenium and polyphenols in the small intestine. All formulations showed good biocompatibility and protective effects against oxidative stress, highlighting an innovative approach to utilizing agricultural waste for synthesizing functional SeNP. Stability of SeNP was satisfactory but significantly influenced by the type of polyphenol-functionalization.
Collapse
Affiliation(s)
- Nikolina Golub
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Emerik Galić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Vedrana Špada
- Istrian University of Applied Sciences, Research Centre METRIS, Riva 6, 52100 Pula, Croatia
| | - Kristina Radić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
3
|
Ma X, Wang X, Xu L, Shi H, Yang H, Landrock KK, Sharma VK, Chapkin RS. Fate and distribution of orally-ingested CeO 2-nanoparticles based on a mouse model: Implication for human health. SOIL & ENVIRONMENTAL HEALTH 2023; 1:100017. [PMID: 37830053 PMCID: PMC10568217 DOI: 10.1016/j.seh.2023.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The use of nanoparticles in agrichemical formula and food products as additives has increased their chances of accumulation in humans via oral intake. Due to their potential toxicity, it is critical to understand their fate and distribution following oral intake. Cerium oxide nanoparticle (CeO2NP) is commonly used in agriculture and is highly stable in the environment. As such, it has been used as a model chemical to investigate nanoparticle's distribution and clearance. Based on their estimated human exposure levels, 0.15-0.75 mg/kg body weight/day of CeO2NPs with different sizes and surface charges (30-50 nm with negative charge and <25 nm with positive charge) were gavaged into C57BL/6 female mice daily. After 10-d, 50% of mice in each treatment were terminated, with the remaining being gavaged with 0.2 mL of deionized water daily for 7-d. Mouse organ tissues, blood, feces, and urine were collected at termination. At the tested levels, CeO2NPs displayed minimal overt toxicity to the mice, with their accumulation in various organs being negligible. Fecal discharge as the predominant clearance pathway took less than 7-d regardless of charges. Single particle inductively coupled plasma mass spectrometry analysis demonstrated minimal aggregation of CeO2NPs in the gastrointestinal tract. These findings suggest that nanoparticle additives >25 nm are unlikely to accumulate in mouse organ after oral intake, indicating limited impacts on human health.
Collapse
Affiliation(s)
- Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Lei Xu
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Honglan Shi
- Department of Chemistry and Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Kerstin K. Landrock
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
| | - Virender K. Sharma
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
4
|
Ferrante M, Grasso A, Giuberti G, Dall'Asta M, Puglisi E, Arena G, Nicosia A, Fiore M, Copat C. Behaviour and fate of Ag-NPs, TiO 2-NPs and ZnO-NPs in the human gastrointestinal tract: Biopersistence rate evaluation. Food Chem Toxicol 2023; 176:113779. [PMID: 37062331 DOI: 10.1016/j.fct.2023.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy.
| | - Gianluca Giuberti
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Angelo Nicosia
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125, Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| |
Collapse
|
5
|
Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Magogotya M, Vetten M, Roux-van der Merwe MP, Badenhorst J, Gulumian M. In vitro toxicity and internalization of gold nanoparticles (AuNPs) in human epithelial colorectal adenocarcinoma (Caco-2) cells and the human skin keratinocyte (HaCaT) cells. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503556. [DOI: 10.1016/j.mrgentox.2022.503556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022]
|
7
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
8
|
Food Additive Zinc Oxide Nanoparticles: Dissolution, Interaction, Fate, Cytotoxicity, and Oral Toxicity. Int J Mol Sci 2022; 23:ijms23116074. [PMID: 35682753 PMCID: PMC9181433 DOI: 10.3390/ijms23116074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Food additive zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement in the food and agriculture industries. However, ZnO NPs are directly added to complex food-matrices and orally taken through the gastrointestinal (GI) tract where diverse matrices are present. Hence, the dissolution properties, interactions with bio- or food-matrices, and the ionic/particle fates of ZnO NPs in foods and under physiological conditions can be critical factors to understand and predict the biological responses and oral toxicity of ZnO NPs. In this review, the solubility of ZnO NPs associated with their fate in foods and the GI fluids, the qualitative and quantitative determination on the interactions between ZnO NPs and bio- or food-matrices, the approaches for the fate determination of ZnO NPs, and the interaction effects on the cytotoxicity and oral toxicity of ZnO NPs are discussed. This information will be useful for a wide range of ZnO applications in the food industry at safe levels.
Collapse
|
9
|
Alp O, Engin AB, Ertas N. Size Dependent Dissolution of Silver Nanoparticles in Human Monocytic/Macrophage-Like U937 Cells and Speciation by Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2078344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Orkun Alp
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | - Nusret Ertas
- Faculty of Pharmacy, Analytical Chemistry Department, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Laycock A, Clark NJ, Clough R, Smith R, Handy RD. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: a systematic review from sample collection to analysis. ENVIRONMENTAL SCIENCE. NANO 2022; 9:420-453. [PMID: 35309016 PMCID: PMC8852815 DOI: 10.1039/d1en00680k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
A systematic review of the use of single particle ICP-MS to analyse engineered nanomaterials (ENMs) in biological samples (plants, animals, body fluids) has highlighted that efforts have focused on a select few types of ENMs (e.g., Ag and TiO2) and there is a lack of information for some important tissues (e.g., reproductive organs, skin and fatty endocrine organs). The importance of sample storage is often overlooked but plays a critical role. Careful consideration of the ENM and matrix composition is required to select an appropriate protocol to liberate ENMs from a tissue whilst not promoting the transformation of them, or genesis of new particulates. A 'one size fits all' protocol, applicable to all possible types of ENM and biological matrices, does not seem practical. However, alkaline-based extractions would appear to show greater promise for wide applicability to animal tissues, although enzymatic approaches have a role, especially for plant tissues. There is a lack of consistency in metrics reported and how they are determined (e.g. size limit of detection, and proportions of recovery), making comparison between some studies more difficult. In order to establish standardised protocols for regulatory use, effort is needed to: develop certified reference materials, achieve international agree on nomenclature and the use of control samples, and to create a decision tree to help select the best sample preparation for the type of tissue matrix.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
| | - Robert Clough
- Analytical Research Facility, School of Geography, Earth and Environmental Sciences, University of Plymouth Plymouth PL4 8AA UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
- Visiting Professor, Department of Nutrition, Cihan University-Erbil Kurdistan Region Iraq
| |
Collapse
|
11
|
Grasso A, Ferrante M, Moreda-Piñeiro A, Arena G, Magarini R, Oliveri Conti G, Cristaldi A, Copat C. Dietary exposure of zinc oxide nanoparticles (ZnO-NPs) from canned seafood by single particle ICP-MS: Balancing of risks and benefits for human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113217. [PMID: 35077994 DOI: 10.1016/j.ecoenv.2022.113217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The present study aims to give information regarding the quantification of ZnO-NPs in canned seafood, which may be intentionally or unintentionally added, and to provide a first esteem of dietary exposure. Samples were subjected to an alkaline digestion and assessment of ZnO-NPs was performed by the single particle ICP-MS technique. ZnO-NPs were found with concentrations range from 0.003 to 0.010 mg/kg and a size mean range from 61.3 and 78.6 nm. It was not observed a clear bioaccumulation trend according to trophic level and size of seafood species, although the mollusk species has slightly higher concentrations and larger size. The number of ZnO-NPs/g does not differ significantly among food samples, observing an average range of 5.51 × 106 - 9.97 × 106. Dissolved Zn determined with spICP-MS revealed comparable concentration to total Zn determined with ICP-MS in standard mode, confirming the efficiency of alkaline digestion on the extraction of the Zn. The same accumulation trend found for ZnO-NPs was observed more clearly for dissolved Zn. The ZnO-NPs intake derived from a meal does not differ significantly among seafood products and it ranges from 0.010 to 0.031 µg/kg b.w. in adult, and from 0.022 to 0.067 µg/kg b.w. in child. Conversely, the intake of dissolved Zn is significantly higher if it is assumed a meal of mollusks versus the fish products, with values of 109.3 µg/kg b.w. for adult and 240.1 µg/kg b.w. for child. Our findings revealed that ZnO-NPs have the potential to bioaccumulate in marine organisms, and seafood could be an important uptake route of ZnO-NPs. These results could be a first important step to understand the ZnO-NPs human dietary exposure, but the characterization and quantification of ZnO-NPs is necessary for a large number of food items.
Collapse
Affiliation(s)
- Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy.
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Health Research Institute of Santiago de Compostela (IDIS). Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry. Universidad de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| | | | | | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| |
Collapse
|
12
|
Wei WJ, Yang Y, Li XY, Huang P, Wang Q, Yang PJ. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 2021; 239:123117. [PMID: 34890942 DOI: 10.1016/j.talanta.2021.123117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Silver Nanoparticles (Ag-NPs), an emerging type of pollutant, might occur various physical and chemical transformations, which would affect its environmental fate, transformation and biological effects. Sulfurization is the most common conversion of Ag-NPs, accompanied by the formation of nano-silver sulfide (Ag2S-NPs). The method of Ag2S-NPs analysis and characterization is of great significance for assessing the environmental risks of Ag. In this study, cloud point extraction (CPE) and Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) were used in combination to establish a simple and reliable analysis method to quantify Ag2S-NPs in water, with the morphology unchanged. Non-Ag2S-NPs were dissociated into Ag+ firstly, and Ag2S-NPs and Ag+ were separated by CPE, followed by SP-ICP-MS analysis. The extraction rate based on particle number concentration was between (76.19 ± 0.56) % to (106.35 ± 0.00) % in environmental waters. Compared with the (76.96 ± 2.18) nm Ag2S-NPs spiked, the particle size extracted increased slightly with (94.19 ± 2.72) nm- (97.25 ± 0.22) nm as the large-size Ag2S-NPs originally presented in waters, instead of agglomeration. This method could be generally applicable to the analysis of Ag2S-NPs in waters, and provide ideas for other metal sulfide nanoparticles (MS-NPs), which has certain significance.
Collapse
Affiliation(s)
- Wen-Jing Wei
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Yuan Yang
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China
| | - Xin-Yuan Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Peng Huang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China.
| | - Ping-Jian Yang
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai, Chaoyang District, Beijing, 100012, PR China.
| |
Collapse
|
13
|
Liu W, Shi H, Liu K, Liu X, Sahle-Demessie E, Stephan C. A Sensitive Single Particle-ICP-MS Method for CeO 2 Nanoparticles Analysis in Soil during Aging Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1115-1122. [PMID: 33450153 PMCID: PMC7931143 DOI: 10.1021/acs.jafc.0c06343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The increasing prevalence of products that incorporate engineered nanoparticles (ENPs) has prompted efforts to investigate the potential release, environmental fate, and exposure of the ENPs. However, the investigation of cerium dioxide nanoparticles (CeO2 NPs) in soil has remained limited, owing to the analytical challenge from the soil's complex nature. In this study, this challenge was overcome by applying a novel single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) methodology to detect CeO2 NPs extracted from soil, utilizing tetrasodium pyrophosphate (TSPP) aqueous solution as an extractant. This method is highly sensitive for determining CeO2 NPs in soil, with detection limits of size and concentration of 15 nm and 194 NPs mL-1, respectively. Extraction efficiency was sufficient in the tested TSPP concentration range from 1 mM to 10 mM at a soil-to-extractant ratio 1:100 (g mL-1) for the extraction of CeO2 NPs from the soil spiked with CeO2 NPs. The aging study demonstrated that particle size, size distribution, and particle concentration underwent no significant change in the aged soils for a short period of one month. This study showed an efficient method capable of extracting and accurately determining CeO2 NPs in soil matrices. The method can serve as a useful tool for nanoparticle analysis in routine soil tests and soil research.
Collapse
Affiliation(s)
- Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Kun Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Xuesong Liu
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati Ohio 45220, United States
| | - Chady Stephan
- PerkinElmer, Inc., Woodbridge, Ontario L4L 8H1, Canada
| |
Collapse
|
14
|
Laughton S, Laycock A, Bland G, von der Kammer F, Hofmann T, Casman EA, Lowry GV. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Anal Bioanal Chem 2020; 413:299-314. [PMID: 33123761 DOI: 10.1007/s00216-020-03014-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022]
Abstract
The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.
Collapse
Affiliation(s)
- Stephanie Laughton
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam Laycock
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Garret Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Elizabeth A Casman
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|