1
|
Werle J, Dunovska K, Podhajsky J, Cerny M, Cepova J, Parikesit AA, Bjørklud G, Kotaska K, Klapkova E, Prusa R, Werle E, Kizek R. Characterization of Hemoglobin Variants by Capillary Electrophoresis, UV-Vis, and FTIR Spectroscopy. Electrophoresis 2025. [PMID: 39777680 DOI: 10.1002/elps.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Hemoglobinopathies, hereditary disorders affecting the structure or production of hemoglobin, were detected by routine HbA1c measurements by capillary electrophoresis (CE) at the University Hospital Motol, Prague. The potential of ultraviolet-visible (UV-Vis) and Fourier-transform infrared (FTIR) spectroscopy for the detection and characterization of hemoglobinopathies was investigated. FTIR spectra were recorded with a very high resolution (0.5 cm-1) with 128 scans. The broad amide I peak, located at 1700-1600 cm-1, can be formed by superimposition of the conformational structures of hemoglobin. These secondary protein structures were subjected to mathematical analysis. The application of band narrowing techniques, followed by curve fitting and integration processes, provided the basis for the quantitative estimation of protein secondary structure. As a result, unambiguous differences in UV-Vis spectra among patients with presumably normal hemoglobin, an HbC or a hemoglobin S/hemoglobin G (HbS/HbG)-Philadelphia variant could not be demonstrated. However, FTIR spectra indicated slight differences in α-helix, β-turns, β-sheet, or random coil secondary hemoglobin structures for these mutations. In the spectral wavenumber range of 950-850 cm-1, there were some obvious FTIR differences at specific wavenumbers between patients with normal hemoglobin and those with the HbC variant. Further investigations are needed with a sufficient number of hemoglobin variants to elucidate the potency of FTIR spectroscopy for the characterization of hemoglobinopathies.
Collapse
Affiliation(s)
- Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jakub Podhajsky
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Michal Cerny
- Sebia Czech Republic s.r.o., Praha, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Geir Bjørklud
- Council for Nutritional and Environmental Medicine, Mo I Rana, Norway
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Egon Werle
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Chen A, Aquino RM, Vidal HA, Wong CV, Luo RY. A liquid chromatography-high-resolution mass spectrometry method for separation and identification of hemoglobin variant subunits with mass shifts less than 1 Da. J Mass Spectrom Adv Clin Lab 2025; 35:1-7. [PMID: 39995439 PMCID: PMC11847268 DOI: 10.1016/j.jmsacl.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Background Identification of hemoglobin (Hb) variants is valuable in clinical testing. A common issue with conventional methods for identifying Hb variants is their subpar ability to provide structural breakdowns of the variants. Reports have surfaced of high-resolution mass spectrometry (HR-MS) methods that improve on traditional methods; however, ambiguities may arise without separation of Hb subunits prior to HR-MS analysis. Methods We report a liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) method to separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and successfully identify them in intact-protein and top-down analyses. LC separation was facilitated by a C4 reversed-phase column. Results Seven heterozygous Hb variant samples (Hb C with α-thalassemia trait, Hb E, Hb D-Punjab, Hb G-Accra, Hb G-Siriraj, Hb Tarrant, and Hb G-Waimanalo) were selected to demonstrate the LC separation of Hb variant and normal subunits with mass shifts of less than 1 Da. The analytes could be explicitly observed in the deconvoluted MS1 mass spectra. The top-down analysis matched the amino acid sequences of the correct Hb variant subunits. Conclusions The LC-HR-MS method described can effectively separate and identify Hb subunits, especially when the variant subunits have mass deviations of less than 1 Da from their corresponding normal subunits. With further evaluation to prove the clinical utility, the HR-MS methods including CE-HR-MS have the potential to complement or partially replace conventional methods of Hb variant identification in clinical laboratories.
Collapse
Affiliation(s)
- Ainslie Chen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan M. Aquino
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Hector A. Vidal
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Carolyn V. Wong
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Ruben Y. Luo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| |
Collapse
|
3
|
Sani A, Idrees Khan M, Shah S, Tian Y, Zha G, Fan L, Zhang Q, Cao C. Diagnosis and screening of abnormal hemoglobins. Clin Chim Acta 2024; 552:117685. [PMID: 38030031 DOI: 10.1016/j.cca.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Hemoglobin (Hb) abnormalities, such as thalassemia and structural Hb variants, are among the most prevalent inherited diseases and are associated with significant mortality and morbidity worldwide. However, there were not comprehensive reviews focusing on different clinical analytical techniques, research methods and artificial intelligence (AI) used in clinical screening and research on hemoglobinopathies. Hence the review offers a comprehensive summary of recent advancements and breakthroughs in the detection of aberrant Hbs, research methods and AI uses as well as the present restrictions anddifficulties in hemoglobinopathies. Recent advances in cation exchange high performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), isoelectric focusing (IEF), flow cytometry, mass spectrometry (MS) and polymerase chain reaction (PCR) etc have allowed for the definitive detection by using advanced AIand portable point of care tests (POCT) integrating with smartphone microscopic classification, machine learning (ML) model, complete blood counts (CBC), imaging-based method, speedy immunoassay, and electrochemical-, microfluidic- and sensing-related platforms. In addition, to confirm and validate unidentified and novel Hbs, highly specialized genetic based techniques like PCR, reverse transcribed (RT)-PCR, DNA microarray, sequencing of genomic DNA, and sequencing of RT-PCR amplified globin cDNA of the gene of interest have been used. Hence, adequate utilization and improvement of available diagnostic and screening technologies are important for the control and management of hemoglobinopathies.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Lin Y, Agarwal AM, Anderson LC, Marshall AG. Discovery of a biomarker for β-Thalassemia by HPLC-MS and improvement from Proton Transfer Reaction - Parallel Ion Parking. J Mass Spectrom Adv Clin Lab 2023; 28:20-26. [PMID: 36814695 PMCID: PMC9939715 DOI: 10.1016/j.jmsacl.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
β-thalassemia is a quantitative hemoglobin (Hb) disorder resulting in reduced production of Hb A and increased levels of Hb A2. Diagnosis of β-thalassemia can be problematic when combined with other structural Hb variants, so that the separation approaches in routine clinical centers are not sufficiently decisive to obtain accurate results. Here, we separate the intact Hb subunits by high-performance liquid chromatography, followed by top-down tandem mass spectrometry of intact subunits to distinguish Hb variants. Proton transfer reaction-parallel ion parking (PTR-PIP), in which a radical anion removes protons from multiply charged precursor ions and produces charge-reduced ions spanning a limited m/z range, was used to increase the signal-to-noise ratio of the subunits of interest. We demonstrate that the δ/β ratio can act as a biomarker to identify β-thalassemia in normal electrospray ionization MS1 and PTR-PIP MS1. The application of PTR-PIP significantly increases the sensitivity and specificity of the HPLC-MS method to identify δ/β ratio as a thalassemia biomarker.
Collapse
Key Words
- ACN, Acetonitrile
- AUC, Areas under the curve
- CID, Collision-induced dissociation
- ESI, Electrospray ionization
- ETD, Electron-transfer dissociation
- FA, Formic acid
- FN, False-negative
- FP, False-positive
- FT-ICR
- FT-ICR, MS Fourier transform ion cyclotron resonance mass spectrometer
- FTMS
- Fourier transform ion cyclotron resonance
- Hb A, Normal adult Hb
- Hb, Hemoglobin
- HbA1d, Hb β with glutathione
- IFCC, International Federation of Clinical Chemistry and Laboratory Medicine
- IQR, Interquartile range
- J, Youden Index
- MCW, Methanol/chloroform/water
- MS, Mass spectrometry
- PTM, Post-translational modification
- PTR-PIP, Proton transfer reaction-parallel ion parking
- ROC, Receiver operating characteristic
- S/N, Signal-to-noise ratios
- Se(c), Sensitivity, the probability of a true positive)
- Sp(c), Specificity, the probability of a true negative)
- TIC, Total ion chromatogram
- TN, True negative
- TP, True positive
- Top-down
- XIC, Extracted ion chromatograms
- m/z, Mass-to-charge ratios
- δ/β ratio
Collapse
Affiliation(s)
- Yuan Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States
| | - Archana M. Agarwal
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, United States
| | - Lissa C. Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States,Corresponding authors at: Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States (A.G. Marshall).
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States,Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States,Corresponding authors at: Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States (A.G. Marshall).
| |
Collapse
|
5
|
Golubova A, Lanekoff I. Surface sampling capillary electrophoresis-mass spectrometry for a direct chemical characterization of tissue and blood samples. Electrophoresis 2023; 44:387-394. [PMID: 36330562 PMCID: PMC10107203 DOI: 10.1002/elps.202200183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Capillary electrophoresis (CE) is a powerful separation tool for non-targeted analysis of chemically complex samples, such as blood, urine, and tissue. However, traditionally CE requires samples in solution for analysis, which limits information on analyte distribution and heterogeneity in tissue. The recent development of surface sampling CE-mass spectrometry (SS-CE-MS) brings these advantages of CE to solid samples and enables chemical mapping directly from the tissue surface without laborious sample preparation. Here, we describe developments of SS-CE-MS to increase reproducibility and stability for metabolite, lipid, and protein extraction from tissue sections and dried blood spots. Additionally, we report the first electrokinetic sequential sample injection for high throughput analysis. We foresee that the wide molecular coverage from a distinct tissue region in combination with higher throughput will provide novel information on biological function and dysfunction.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Luo RY, Wong C, Xia JQ, Glader BE, Shi RZ, Zehnder JL. Neutral-Coating Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Top-Down Identification of Hemoglobin Variants. Clin Chem 2023; 69:56-67. [PMID: 36308334 DOI: 10.1093/clinchem/hvac171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Identification of hemoglobin (Hb) variants is of significant value in the clinical diagnosis of hemoglobinopathy. However, conventional methods for identification of Hb variants in clinical laboratories can be inadequate due to the lack of structural characterization. We describe the use of neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry (CE-HR-MS) to achieve high-performance top-down identification of Hb variants. METHODS An Orbitrap Q-Exactive Plus mass spectrometer was coupled with an ECE-001 capillary electrophoresis (CE) unit through an EMASS-II ion source. A PS1 neutral-coating capillary was used for CE. Samples of red blood cells were lysed in water and diluted in 10 mM ammonium formate buffer for analysis. Deconvolution of raw mass spectrometry data was carried out to merge multiple charge states and isotopic peaks of an analyte to obtain its monoisotopic mass. RESULTS The neutral-coating CE could baseline separate individual Hb subunits dissociated from intact Hb forms, and the HR-MS could achieve both intact-protein analysis and top-down analysis of analytes. A number of patient samples that contain Hb subunit variants were analyzed, and the variants were successfully identified using the CE-HR-MS method. CONCLUSIONS The CE-HR-MS method has been demonstrated as a useful tool for top-down identification of Hb variants. With the ability to characterize the primary structures of Hb subunits, the CE-HR-MS method has significant advantages to complement or partially replace the conventional methods for the identification of Hb variants.
Collapse
Affiliation(s)
- Ruben Yiqi Luo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Carolyn Wong
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | | | - Bertil E Glader
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Run-Zhang Shi
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - James L Zehnder
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| |
Collapse
|