1
|
Pena G, Albalad J, Maspoch D, Imaz I. Synthesis of organic molecules via spray-drying. Chem Sci 2025; 16:5770-5775. [PMID: 40051650 PMCID: PMC11880836 DOI: 10.1039/d5sc00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Confining chemical reactions within microdroplets has attracted significant attention from chemists due to the accelerated reaction rates resulting from the drastically smaller reaction volumes than in standard solutions. Herein we report that, beyond its widespread use for producing dry-powder formulations for industries (e.g. pharmaceuticals and food) via the atomization of microdroplets followed by drying in a hot gas stream, spray-drying can also be employed in organic synthesis. Specifically, we used spray-drying to run three model reactions: a Schiff-base condensation, a Claisen-Schmidt reaction, and acylation of amines, for synthesizing small organic molecules. Our results showcase that, compared to traditional methods, spray-drying can reduce reaction times without compromising (high) yields, paving the way for its use as a scalable method for industrial-scale organic synthesis.
Collapse
Affiliation(s)
- Gerard Pena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08913 Barcelona Spain
| | - Jorge Albalad
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08913 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08913 Barcelona Spain
- ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08913 Barcelona Spain
| |
Collapse
|
2
|
Cosentino F, Michenzi C, Di Noi A, Salvitti C, Pepi F, de Petris G, Chiarotto I, Troiani A. Photo-activated Carbon dots (CDs) as Catalysts in the Knoevenagel Condensation: A Mechanistic Study by Dual-Mode Monitoring via ESI-MS. Chempluschem 2024; 89:e202400174. [PMID: 38771069 DOI: 10.1002/cplu.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Carbon dots (CDs) obtained from 5-(hydroxymethyl)furfural (5-HMF) were activated by a 365 nm-UV irradiation source and employed in the Knoevenagel condensation to investigate their photocatalytic mechanism. To this end, electrospray ionization mass spectrometry (ESI-MS) was used to monitor the time progress of the condensation and follow the formation of the final product in positive and negative ion modes at once. The intervention of the superoxide radical anion in the photocatalytic mechanism of CDs was highlighted.
Collapse
Affiliation(s)
- Francesca Cosentino
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Alessia Di Noi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Chiara Salvitti
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Federico Pepi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Giulia de Petris
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Anna Troiani
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
Paulson AE, Larson EA, Lee YJ. Mobilized Electrospray Device for On-Tissue Chemical Derivatization in MALDI-MS Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:205-213. [PMID: 38147682 DOI: 10.1021/jasms.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Applying solutions of a matrix or derivatization agent via microdroplets is a common sample preparation technique for matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) experiments. Mobilized nebulizer sprayers are commonly used to create a homogeneous matrix or reagent layer across large surfaces. Electrospray devices have also been used to produce microdroplets for the same purpose but are rarely used for large tissues due to their immobility. Herein, we present a movable electrospray device that can be used for large tissue sample preparation through a simple modification to an automatic commercial nebulizer device. As demonstrated for on-tissue chemical derivatization (OTCD) with Girard's reagent T using a mimetic tissue model, the sprayer has the additional benefit of being able to investigate reaction acceleration in OTCD when comparing electrostatically charged spray to electrostatically neutral spray. Finally, MALDI-MSI of fatty aldehydes is successfully demonstrated in rat brain tissues using this device for both OTCD and matrix application.
Collapse
Affiliation(s)
- Andrew E Paulson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Evan A Larson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
De Angelis M, Managò M, Pepi F, Salvitti C, Troiani A, Villani C, Ciogli A. Stereoselectivity in electrosprayed confined volumes: asymmetric synthesis of warfarin by diamine organocatalysts in microdroplets and thin films. RSC Adv 2024; 14:1576-1580. [PMID: 38179090 PMCID: PMC10765477 DOI: 10.1039/d3ra07975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The asymmetric synthesis of warfarin in microdroplets and thin films generated by an electrospray ionization (ESI) source is reported. This is one of the first examples of an enantioselective organocatalyzed reaction in electrosprayed confined volumes. The optimal conditions in terms of system setting were established for this reaction.
Collapse
Affiliation(s)
- Martina De Angelis
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Chiara Salvitti
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| |
Collapse
|
5
|
Salvitti C, de Petris G, Troiani A, Managò M, Di Noi A, Ricci A, Pepi F. Sulfuric Acid Catalyzed Esterification of Amino Acids in Thin Film. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2748-2754. [PMID: 37904271 DOI: 10.1021/jasms.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The esterification reaction of different amino acids with methanol catalyzed by H2SO4 was first studied in the small volume of thin films generated by ESI microdroplet deposition. The reaction is promoted by the pneumatic spray of the ESI source and reaches its maximum efficiency at a thin film temperature of 70 °C. Selective esterification of the COOH moiety was demonstrated. Microdroplet size and thin film volume and lifetime are critical parameters that influenced the reaction outcome. As expected, l-tyrosine and l-phenylalanine having aromatic side chain substituents were the most reactive amino acids, reaching absolute yields of around 40-50%. The amino acid esterification catalyzed by H2SO4 in a thin film occurs under synthetic conditions in which the same reaction in the bulk is not observed.
Collapse
Affiliation(s)
- Chiara Salvitti
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alessia Di Noi
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Viale Lincoln 5, 81100, Caserta, Italy
| | - Federico Pepi
- "Sapienza" University of Rome, Department of Chemistry and Drug Technologies P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Salvitti C, de Petris G, Troiani A, Managò M, Ricci A, Pepi F. Kinetic Study of the Maillard Reaction in Thin Film Generated by Microdroplets Deposition. Molecules 2022; 27:5747. [PMID: 36144482 PMCID: PMC9504576 DOI: 10.3390/molecules27185747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction kinetics in the confined volume of the thin film produced by ESI microdroplet deposition was studied by mass spectrometry. The almost exclusive formation of the Amadori product from the reaction of D-xylose and D-glucose toward L-glycine and L-lysine was demonstrated. The thin film Maillard reaction occurred at a mild synthetic condition under which the same process in solution was not observed. The comparison of the thin film kinetics with that of the reaction performed in solution showed strong thin film rate acceleration factors.
Collapse
Affiliation(s)
- Chiara Salvitti
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania, L. Vanvitelli, Viale Lincoln 5, 81100 Caserta, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|