1
|
Miller ZM, Narsineni L, Li YX, Gardner MR, Torpey JW, Williams ER. Single particle charge detection mass spectrometry enables molecular characterization of lipid nanoparticles and mRNA packaging. J Control Release 2025; 384:113856. [PMID: 40393530 DOI: 10.1016/j.jconrel.2025.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Lipid nanoparticles (LNPs) are effective delivery systems for RNA therapeutics, yet their intrinsic heterogeneity in size and composition make them challenging to characterize. Charge detection mass spectrometry (CDMS) was used to rapidly weigh thousands of individual LNPs. Diameter distributions of empty LNPs from CDMS and cryo-TEM measurements are in excellent agreement demonstrating that these particles are sufficiently stable in the high vacuum environment of the mass spectrometer for accurate mass analysis. A similarly prepared mRNA-packaged LNP sample has a peak mass at ∼70 MDa, 31 MDa higher than that of the empty LNP sample. Four freeze-thaw (FT) cycles of the mRNA-LNPs results in a peak mass at ∼26.5 MDa, indicating significantly degraded LNPs. The degraded LNPs are about 28 % of the population of the mRNA-LNP sample after the first FT cycle. A non-linear least squares fitting routine was developed to convolve the mass distribution of the LNP core with a function that describes the packaging distribution to fit the mRNA-LNP data. Two models of the lipid core mass distribution were used to obtain the distribution of mRNA in the packaged LNPs. These two models provide a lower and upper limit to the average mRNA packaging of 43 and 107 mRNA copies, consistent with a rough estimate of an average of 62 mRNA copies obtained from cryo-TEM images. These results demonstrate the potential for label-free, rapid characterization of mass, diameter, packaging, and stability of LNPs with CDMS.
Collapse
Affiliation(s)
- Zachary M Miller
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, United States
| | | | - Yue-Xuan Li
- Scribe Therapeutics, Alameda, CA 94501, United States
| | | | | | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, United States.
| |
Collapse
|
2
|
Stevenson BC, Raab SA, Clemmer DE, Armentrout PB. A Direct Measurement of the Absolute Energies of Protonated Gly-Pro-Gly-Gly Conformations Using Ion Mobility Spectrometry and Guided Ion Beam Tandem Mass Spectrometry. Chemphyschem 2025:e2500080. [PMID: 40138548 DOI: 10.1002/cphc.202500080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Threshold collision-induced dissociation of conformations selected by ion mobility spectrometry is described as a method to determine their absolute relative energies. Here, the method is demonstrated with the cis and trans conformers of the protonated tetrapeptide, Gly-Pro-Gly-Gly, which differ in the orientation of the peptide bond at the proline residue. The trans conformation was found to be more stable than the cis conformation by 4.5 ± 2.5 kJ mol-1 at 0 K. Heating the molecule anneals it to the cis conformer, indicating it has a lower Gibbs energy at higher temperatures. These results are compared to theoretical values calculated here and from the literature. This experimental analysis is the first quantitative measurement of the relative stability of the conformers of a protonated peptide in the gas phase, which has far-reaching impacts on the selection of theoretical methods to describe the energetics of these systems.
Collapse
Affiliation(s)
- Brandon C Stevenson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Peter B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Jordan JS, Chen CJ, Lee KJ, Williams ER. Temperature Induced Unfolding and Compaction of Cytochrome c in the Same Aqueous Solutions. J Am Chem Soc 2025; 147:3412-3420. [PMID: 39772572 DOI: 10.1021/jacs.4c14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome c. Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein. However, one conformer that is more compact than the native state of the protein is also formed from this same solution upon heating. The abundance of this compact conformer increases with temperatures up to 90 °C. Rapid mixing and collision-induced gas-phase unfolding experiments demonstrate that formation of this compact conformer is not an artifact of rapid refolding during the ESI process or structural rearrangement in the gas-phase, and therefore the compact conformer must be formed in bulk solution at higher temperatures. The main folded conformer at 90 °C has a cross section that is ∼30 Å2 larger than that at 27 °C. Results from collision-induced unfolding experiments indicate that they have different gas-phase stabilities that are not directly related to differences in their initial internal energies upon transitioning into the gas phase and therefore have different structures. These results demonstrate the advantage of mass and ion mobility measurements for investigating protein conformational landscapes and provide the first evidence for formation of both unfolded and more compact conformations of a protein from the same solution upon heating.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Casey J Chen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
4
|
Li Y, Li W, Zheng Y, Wang T, Pu R, Zhang Z. Desalting strategies for native mass spectrometry. Talanta 2025; 281:126824. [PMID: 39250868 DOI: 10.1016/j.talanta.2024.126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Weijie Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ruijin Pu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| |
Collapse
|
5
|
Karimi K, Zöller J, Hofmann T, Zangl R, Schulte J, Langer JD, Schmidt C, Morgner N. MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:91-99. [PMID: 39689900 PMCID: PMC11698025 DOI: 10.1021/jasms.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Electrospray mass spectrometry has become indispensable in many disciplines including the classic "omics" techniques such as proteomics or lipidomics, as well as other life science applications in molecular, cellular, and structural biology. However, a limiting factor that often arises for the detection of biomolecular analytes is their poor ionization efficiency in the ion source. Here, we present an add-on device for the electrospray source, termed MS SIEVE (MS Spectral Impurity Eliminator & Value Enhancer), which is placed between the electrospray needle and the cone of the mass spectrometer. We probed the application of MS SIEVE for various biomolecules including proteins, peptides, lipids, glycans and DNA oligonucleotides and even synthetic polymers such as polyethylene glycol and found that MS SIEVE selectively improves the signal intensity, while suppressing the spectral contribution of contaminants such as NaCl. Importantly, MS SIEVE can, in principle, be adapted for any electrospray ion source and, therefore, represents a promising alternative for routine "omics" methods as well as special applications on challenging analytes.
Collapse
Affiliation(s)
- Kudratullah Karimi
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jonathan Zöller
- Proteomics, Max-Planck-Institute for Biophysics, 60438 Frankfurt am Main, Germany
| | - Tommy Hofmann
- HALOmem,
Institute of Biochemistry and Biotechnology, Charles Tanford Protein
Centre, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Rene Zangl
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jonathan Schulte
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, 60438 Frankfurt am Main, Germany
| | - Julian D. Langer
- Proteomics, Max-Planck-Institute
for Brain Research, 60438 Frankfurt
am Main, Germany
- Proteomics, Max-Planck-Institute for Biophysics, 60438 Frankfurt am Main, Germany
| | - Carla Schmidt
- HALOmem,
Institute of Biochemistry and Biotechnology, Charles Tanford Protein
Centre, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nina Morgner
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
7
|
Jordan JS, Harper CC, Williams ER. High-Throughput Single-Particle Characterization of Aggregation Pathways and the Effects of Inhibitors for Large (Megadalton) Protein Oligomers. Anal Chem 2024. [PMID: 39394988 DOI: 10.1021/acs.analchem.4c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Protein aggregation is involved in many human diseases, but characterizing the sizes and shapes of intermediate oligomers (∼10-100 nm) that are important to the formation of macroscale aggregates like amyloid fibrils is a significant analytical challenge. Here, charge detection mass spectrometry (CDMS) is used to characterize individual conformational states of bovine serum albumin oligomers with up to ∼225 molecules (15 MDa). Elongated, partially folded, and globular conformational families for each oligomer can be readily distinguished based on the extent of charging. The abundances of individual conformers vary with changes in the monomer concentration or by adding aggregation inhibitors, such as SDS, heparin, or MgCl2. These results show the potential of CDMS for investigating intermediate oligomers in protein aggregation processes that are important for understanding aggregate formation and inhibition mechanisms and could accelerate formulation buffer development to prevent the aggregation of biotherapeutics.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
8
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Drachman N, Lepoitevin M, Szapary H, Wiener B, Maulbetsch W, Stein D. Nanopore ion sources deliver individual ions of amino acids and peptides directly into high vacuum. Nat Commun 2024; 15:7709. [PMID: 39231934 PMCID: PMC11375035 DOI: 10.1038/s41467-024-51455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Electrospray ionization is widely used to generate vapor phase ions for analysis by mass spectrometry in proteomics research. However, only a small fraction of the analyte enters the mass spectrometer due to losses that are fundamentally linked to the use of a background gas to stimulate the generation of ions from electrosprayed droplets. Here we report a nanopore ion source that delivers ions directly into high vacuum from aqueous solutions. The ion source comprises a pulled quartz pipette with a sub-100 nm opening. Ions escape an electrified meniscus by ion evaporation and travel along collisionless trajectories to the ion detector. We measure mass spectra of 16 different amino acid ions, post-translationally modified variants of glutathione, and the peptide angiotensin II, showing that these analytes can be emitted as desolvated ions. The emitted current is composed of ions rather than charged droplets, and more than 90% of the current can be recovered in a distant collector.
Collapse
Affiliation(s)
| | | | - Hannah Szapary
- Physics Department, Brown University, Providence, RI, USA
| | | | | | - Derek Stein
- Physics Department, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Jordan JS, Harper CC, Zhang F, Kofman E, Li M, Sathiyamoorthy K, Zaragoza JP, Fayadat-Dilman L, Williams ER. Charge Detection Mass Spectrometry Reveals Conformational Heterogeneity in Megadalton-Sized Monoclonal Antibody Aggregates. J Am Chem Soc 2024; 146:23297-23305. [PMID: 39110484 DOI: 10.1021/jacs.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Mandy Li
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Jan Paulo Zaragoza
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
11
|
Geue N. Modern Electrospray Ionization Mass Spectrometry Techniques for the Characterization of Supramolecules and Coordination Compounds. Anal Chem 2024; 96:7332-7341. [PMID: 38686955 PMCID: PMC11099892 DOI: 10.1021/acs.analchem.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Mass spectrometry is routinely used for myriad applications in clinical, industrial, and research laboratories worldwide. Developments in the areas of ionization sources, high-resolution mass analyzers, tandem mass spectrometry, and ion mobility have significantly extended the repertoire of mass spectrometrists; however, for coordination compounds and supramolecules, mass spectrometry remains underexplored and arguably underappreciated. Here, the reader is guided through different tools of modern electrospray ionization mass spectrometry that are suitable for larger inorganic complexes. All steps, from sample preparation and technical details to data analysis and interpretation are discussed. The main target audience of this tutorial is synthetic chemists as well as technicians/mass spectrometrists with little experience in characterizing labile inorganic compounds.
Collapse
Affiliation(s)
- Niklas Geue
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, Department
of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
12
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
13
|
Shepherd SO, Green AW, Resendiz ES, Newton KR, Kurulugama RT, Prell JS. Effects of Nano-Electrospray Ionization Emitter Position on Unintentional In-Source Activation of Peptide and Protein Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:498-507. [PMID: 38374644 PMCID: PMC11315166 DOI: 10.1021/jasms.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-electrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here, we show that relatively small variations in the nESI emitter position can shift the midpoint (commonly called the "CID50" or "CIU50") potential of CID breakdown curves and CIU transitions by as much as 8 V on commercial instruments. A spatial "map" of the shift in CID50 for the loss of heme from holomyoglobin onto the emitter position on a Waters Synapt G2-Si mass spectrometer shows that emitter positions closer to the instrument inlet can result in significantly greater in-source activation, whereas different effects are found on an Agilent 6545XT instrument for the ions studied. A similar effect is observed for CID of the singly protonated leucine enkephalin peptide and Shiga toxin 1 subunit B homopentamer on the Waters Synapt G2-Si instrument. In-source activation effects on a Waters Synapt G2-Si are also investigated by examining the RMSD between CIU fingerprints acquired at different emitter positions and the shifts in CIU50 for structural transitions of bovine serum albumin and NIST monoclonal antibody.
Collapse
Affiliation(s)
- Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Austin W. Green
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Elizabeth S. Resendiz
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Kenneth R. Newton
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- 5301 Stevens Creek Blvd, Agilent Technologies, Santa Clara, 95051, CA, USA
| | | | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA, 97403-1252
| |
Collapse
|
14
|
Harvey SR, Gadkari VV, Ruotolo BT, Russell DH, Wysocki VH, Zhou M. Expanding Native Mass Spectrometry to the Masses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:646-652. [PMID: 38303101 PMCID: PMC11821079 DOI: 10.1021/jasms.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
At the 33rd ASMS Sanibel Meeting, on Membrane Proteins and Their Complexes, a morning roundtable discussion was held discussing the current challenges facing the field of native mass spectrometry and approaches to expanding the field to nonexperts. This Commentary summarizes the discussion and current initiatives to address these challenges.
Collapse
Affiliation(s)
- Sophie R. Harvey
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH, USA, 43210
| | - Varun V. Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA, 48109
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, USA, 77844
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, OH, USA, 43210
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China, 310058
| |
Collapse
|
15
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Vallejo DD, Popowich A, Arslanoglu J, Tokarski C, Fernández FM. Native triboelectric nanogenerator ion mobility-mass spectrometry of egg proteins relevant to objects of cultural heritage at picoliter and nanomolar quantities. Anal Chim Acta 2023; 1269:341374. [PMID: 37290850 DOI: 10.1016/j.aca.2023.341374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Daniel D Vallejo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aleksandra Popowich
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, USA
| | - Julie Arslanoglu
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, USA
| | - Caroline Tokarski
- Institute of Chemistry & Biology of Membranes & Nano-Objects, UMR CNRS 5248, University of Bordeaux, Bordeaux, France
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
17
|
Mostafa ME, Hayes MM, Grinias JP, Bythell BJ, Edwards JL. Supercritical Fluid Nanospray Mass Spectrometry: II. Effects on Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37097105 DOI: 10.1021/jasms.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanospraying supercritical fluids coupled to a mass spectrometer (nSF-MS) using a 90% supercritical fluid CO2 carrier (sCO2) has shown an enhanced desolvation compared to traditional liquid eluents. Capillaries of 25, 50, and 75 μm internal diameter (i.d.) with pulled emitter tips provided high MS detection sensitivity. Presented here is an evaluation of the effect of proton affinity, hydrophobicity, and nanoemitter tip size on the nSF-MS signal. This was done using a set of primary, secondary, tertiary, and quaternary amines with butyl, hexyl, octyl, and decyl chains as analytes. Each amine class was analyzed individually to evaluate hydrophobicity and proton affinity effects on signal intensity. The system has shown a mass sensitive detection on a linear dynamic range of 0.1-100 μM. Results indicate that hydrophobicity has a larger effect on the signal response than proton affinity. Nanospraying a mixture of all amine classes using the 75 μm emitter has shown a quaternary amine signal not suppressed by competing analytes. Competing ionization was observed for primary, secondary, and tertiary amines. The 75 and 50 μm emitters demonstrated increased signal with increasing hydrophobicity. Surprisingly, the 25 μm i.d. emitter yielded a signal decrease as the alkyl chain length increased, contrary to conventional understanding. Nanospraying the evaporative fluid in a sub-500 nm emitter likely resulted in differences in the ionization mechanism. Results suggest that 90% sCO2 with 9.99% methanol and 0.01% formic acid yielded fast desolvation, high ionization efficiency, and low matrix effect, which could benefit complex biological matrix analysis.
Collapse
Affiliation(s)
- Mahmoud Elhusseiny Mostafa
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Madisyn M Hayes
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, New Jersey 08028, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| |
Collapse
|
18
|
Harper CC, Miller ZM, McPartlan MS, Jordan JS, Pedder RE, Williams ER. Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection. ACS NANO 2023; 17:7765-7774. [PMID: 37027782 PMCID: PMC10389270 DOI: 10.1021/acsnano.3c00539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sizes and shapes of nanoparticles play a critical role in their chemical and material properties. Common sizing methods based on light scattering or mobility lack individual particle specificity, and microscopy-based methods often require cumbersome sample preparation and image analysis. A promising alternative method for the rapid and accurate characterization of nanoparticle size is charge detection mass spectrometry (CDMS), an emerging technique that measures the masses of individual ions. A recently constructed CDMS instrument designed specifically for high acquisition speed, efficiency, and accuracy is described. This instrument does not rely on an ion energy filter or estimates of ion energy that have been previously required for mass determination, but instead uses direct, in situ measurements. A standardized sample of ∼100 nm diameter polystyrene nanoparticles and ∼50 nm polystyrene nanoparticles with amine-functionalized surfaces are characterized using CDMS and transmission electron microscopy (TEM). Individual nanoparticle masses measured by CDMS are transformed to diameters, and these size distributions are in close agreement with distributions measured by TEM. CDMS analysis also reveals dimerization of ∼100 nm nanoparticles in solution that cannot be determined by TEM due to the tendency of nanoparticles to agglomerate when dried onto a surface. Comparing the acquisition and analysis times of CDMS and TEM shows particle sizing rates up to ∼80× faster are possible using CDMS, even when samples ∼50× more dilute were used. The combination of both high-accuracy individual nanoparticle measurements and fast acquisition rates by CDMS represents an important advance in nanoparticle analysis capabilities.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zachary M Miller
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew S McPartlan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Randall E Pedder
- Ardara Technologies LP, Ardara, Pennsylvania 15615, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
19
|
Aerts JT, Andrén PE, Jansson ET. Electrochemically Etched Tapered-Tip Stainless-Steel Electrospray-Ionization Emitters for Capillary Electrophoresis-Mass Spectrometry. J Proteome Res 2023; 22:1377-1380. [PMID: 36866861 PMCID: PMC10088039 DOI: 10.1021/acs.jproteome.3c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We have used household consumables to facilitate electrochemical etching of stainless-steel hypodermic tubing to produce tapered-tip emitters suitable for electrospray ionization for use in mass spectrometry. The process involves the use of 1% oxalic acid and a 5 W USB power adapter, commonly known as a phone charger. Further, our method avoids the otherwise commonly used strong acids that entail chemical hazards: concentrated HNO3 for etching stainless steel, or concentrated HF for etching fused silica. Hence, we here provide a convenient and self-inhibiting procedure with minimal chemical hazards to manufacture tapered-tip stainless-steel emitters. We show its performance in metabolomic analysis with CE-MS of a tissue homogenate where the metabolites acetylcarnitine, arginine, carnitine, creatine, homocarnosine, and valerylcarnitine were identified, all with basepeak separated electropherograms, within <6 min of separation. The mass spectrometry data are freely available through the MetaboLight public data repository via access number MTBLS7230.
Collapse
Affiliation(s)
- Jordan T Aerts
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Erik T Jansson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
20
|
Bischoff AJ, Harper CC, Williams ER, Francis MB. Characterizing Heterogeneous Mixtures of Assembled States of the Tobacco Mosaic Virus Using Charge Detection Mass Spectrometry. J Am Chem Soc 2022; 144:23368-23378. [PMID: 36525679 PMCID: PMC10395586 DOI: 10.1021/jacs.2c09160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tobacco mosaic viral capsid protein (TMV) is a frequent target for derivatization for myriad applications, including drug delivery, biosensing, and light harvesting. However, solutions of the stacked disk assembly state of TMV are difficult to characterize quantitatively due to their large size and multiple assembled states. Charge detection mass spectrometry (CDMS) addresses the need to characterize heterogeneous populations of large protein complexes in solution quickly and accurately. Using CDMS, previously unobserved assembly states of TMV, including 16-monomer disks and odd-numbered disk stacks, have been characterized. We additionally employed a peptide-protein conjugation reaction in conjunction with CDMS to demonstrate that modified TMV proteins do not redistribute between disks. Finally, this technique was used to discriminate between protein complexes of near-identical mass but different configurations. We have gained a greater understanding of the behavior of TMV, a protein used across a broad variety of fields and applications, in the solution state.
Collapse
Affiliation(s)
- Amanda J. Bischoff
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| | - Conner C. Harper
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Evan R. Williams
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Matthew B. Francis
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| |
Collapse
|
21
|
Jordan JS, Williams ER. Laser Heating Nanoelectrospray Emitters for Fast Protein Melting Measurements with Mass Spectrometry. Anal Chem 2022; 94:16894-16900. [DOI: 10.1021/acs.analchem.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jacob S. Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Kostelic MM, Hsieh CC, Sanders HM, Zak CK, Ryan JP, Baker ES, Aspinwall CA, Marty MT. Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1031-1037. [PMID: 35588532 DOI: 10.1021/jasms.2c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Native mass spectrometry (MS) and charge detection-mass spectrometry (CD-MS) have become versatile tools for characterizing a wide range of proteins and macromolecular complexes. Both commonly use nanoelectrospray ionization (nESI) from pulled borosilicate needles, but some analytes are known to nonspecifically adsorb to the glass, which may lower sensitivity and limit the quality of the data. To improve the sensitivity of native MS and CD-MS, we modified the surface of nESI needles with inert surface modifiers, including polyethylene-glycol. We found that the surface modification improved the signal intensity for native MS of proteins and for CD-MS of adeno-associated viral capsids. Based on mechanistic comparisons, we hypothesize that the improvement is more likely due to an increased flow rate with coated ESI needles rather than less nonspecific adsorption. In any case, these surface-modified needles provide a simple and inexpensive method for improving the sensitivity of challenging analytes.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chih-Chieh Hsieh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Henry M Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jack P Ryan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27659, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27659, United States
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|