1
|
McLaughlin NK, Rincon Pabon JP, Gies S, Dastvan R, Gross ML. Kingfisher: An open-sourced web-based platform for the analysis of hydrogen exchange mass spectrometry data. Protein Sci 2025; 34:e70096. [PMID: 40099873 PMCID: PMC11915630 DOI: 10.1002/pro.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is now a critical tool in molecular biology and structural proteomics. It is routinely used to probe protein and conformational dynamics through a well-established experiment where amide hydrogens exchange with deuterium atoms in a buffer containing D2O. Although there have been numerous advances in the field, data analysis still poses challenges mainly due to the need for manual curation of the data and the lack of standardized statistics and accessible software. In response, we developed Kingfisher, an open-source, user-friendly, web-based solution that facilitates downstream analysis using well-established statistics and provides advanced high-resolution representations of the HDX results. Kingfisher is able to read data directly as exported from common software packages and usually takes less than a minute to run the analysis, without the need to download the raw code or install any software. We foresee Kingfisher as a valuable tool for both newcomers and experts in the field of Hydrogen Exchange Mass Spectrometry. Kingfisher is available to all users as an interactive web application at https://kingfisher.wustl.edu/.
Collapse
Affiliation(s)
- Nolan K. McLaughlin
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| | - Juan P. Rincon Pabon
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Samantha Gies
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Reza Dastvan
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Michael L. Gross
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
2
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
3
|
Vance DJ, Basir S, Piazza CL, Willsey GG, Haque HME, Tremblay JM, Rudolph MJ, Muriuki B, Cavacini L, Weis DD, Shoemaker CB, Mantis NJ. Single-domain antibodies reveal unique borrelicidal epitopes on the Lyme disease vaccine antigen, outer surface protein A (OspA). Infect Immun 2024; 92:e0008424. [PMID: 38470113 PMCID: PMC11003225 DOI: 10.1128/iai.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Saiful Basir
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Carol Lyn Piazza
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Jacque M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Beatrice Muriuki
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Lisa Cavacini
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
4
|
Haynes CA, Keppel TR, Mekonnen B, Osman SH, Zhou Y, Woolfitt AR, Baudys J, Barr JR, Wang D. Inclusion of deuterated glycopeptides provides increased sequence coverage in hydrogen/deuterium exchange mass spectrometry analysis of SARS-CoV-2 spike glycoprotein. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9690. [PMID: 38355883 PMCID: PMC10871554 DOI: 10.1002/rcm.9690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured versus native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of peptides post-translationally modified by asparagine-bound glycans (glycopeptides) has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. METHODS We detected deuterated glycopeptides with a Tribrid Orbitrap Eclipse mass spectrometer performing data-dependent acquisition. An MS scan was used to identify precursor ions; if high-energy collision-induced dissociation MS/MS of the precursor indicated oxonium ions diagnostic for complex glycans, then electron transfer low-energy collision-induced dissociation MS/MS scans of the precursor identified the modified asparagine residue and the glycan's mass. As in traditional HDX-MS, the identified glycopeptides were then analyzed at the MS level in samples labeled with D2 O. RESULTS We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric prefusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their average isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural rearrangements. CONCLUSION Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.
Collapse
Affiliation(s)
- Christopher A Haynes
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theodore R Keppel
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Betlehem Mekonnen
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah H Osman
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yu Zhou
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adrian R Woolfitt
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jakub Baudys
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dongxia Wang
- Structure Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Zheng YY, Zhao L, Wei XF, Sun TZ, Xu FF, Wang GX, Zhu B. Vaccine Molecule Design Based on Phage Display and Computational Modeling against Rhabdovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:551-562. [PMID: 38197664 DOI: 10.4049/jimmunol.2300447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 μg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.
Collapse
Affiliation(s)
- Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Wrigley MS, Blockinger H, Haque HME, Karunaratne SP, Weis DD. Optimization of a Hydrogen Exchange-Mass Spectrometry Robotic Liquid Handler Using Tracers. Anal Chem 2024; 96:1522-1529. [PMID: 38237105 DOI: 10.1021/acs.analchem.3c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Hydrogen exchange-mass spectrometry (HX-MS) is a valuable analytical technique that can provide insight into protein interactions and structure. The deuterium labeling necessary to gain this insight is affected by many physical and chemical factors, making it challenging to achieve high reproducibility. Poor precision during dispensing, transfer, and mixing of solutions during the experiment contributes substantially to the overall variability. While the use of a robotic liquid handler can potentially improve precision, its operation must be optimized. We observed poor precision in data collected using a robotic liquid handler to perform HX-MS. In this work, we describe how we were able to improve that system's precision considerably based on tracking performance using caffeine, caffeine-d3, and caffeine-d9 as tracers for the sample, label, and quench to report on each operation of the liquid handling workflow. The insights gained about liquid handler performance and the three-tracer approach can aid in optimizing HX-MS workflow operations, whether performed manually or when using a liquid handling system. Additionally, these tracers can be incorporated as internal tracers during an experiment to report on the labeling and quench operations of each sample throughout the run and, if desired, be used to implement an uptake correction described previously.
Collapse
Affiliation(s)
- Michael S Wrigley
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Hayley Blockinger
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - H M Emranul Haque
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Sachini P Karunaratne
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - David D Weis
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Crook OM, Gittens N, Chung CW, Deane CM. A Functional Bayesian Model for Hydrogen-Deuterium Exchange Mass Spectrometry. J Proteome Res 2023; 22:2959-2972. [PMID: 37582225 PMCID: PMC10476270 DOI: 10.1021/acs.jproteome.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/17/2023]
Abstract
Proteins often undergo structural perturbations upon binding to other proteins or ligands or when they are subjected to environmental changes. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to explore conformational changes in proteins by examining differences in the rate of deuterium incorporation in different contexts. To determine deuterium incorporation rates, HDX-MS measurements are typically made over a time course. Recently introduced methods show that incorporating the temporal dimension into the statistical analysis improves power and interpretation. However, these approaches have technical assumptions that hinder their flexibility. Here, we propose a more flexible methodology by reframing these methods in a Bayesian framework. Our proposed framework has improved algorithmic stability, allows us to perform uncertainty quantification, and can calculate statistical quantities that are inaccessible to other approaches. We demonstrate the general applicability of the method by showing it can perform rigorous model selection on a spike-in HDX-MS experiment, improved interpretation in an epitope mapping experiment, and increased sensitivity in a small molecule case-study. Bayesian analysis of an HDX experiment with an antibody dimer bound to an E3 ubiquitin ligase identifies at least two interaction interfaces where previous methods obtained confounding results due to the complexities of conformational changes on binding. Our findings are consistent with the cocrystal structure of these proteins, demonstrating a bayesian approach can identify important binding epitopes from HDX data. We also generate HDX-MS data of the bromodomain-containing protein BRD4 in complex with GSK1210151A to demonstrate the increased sensitivity of adopting a Bayesian approach.
Collapse
Affiliation(s)
- Oliver M. Crook
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Nathan Gittens
- Structural
and Biophysical Sciences, GlaxoSmithKline
R&D, Stevenage SG1 2NY, United
Kingdom
| | - Chun-wa Chung
- Structural
and Biophysical Sciences, GlaxoSmithKline
R&D, Stevenage SG1 2NY, United
Kingdom
| | - Charlotte M. Deane
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
8
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|