1
|
Naylor CN, Nagy G. Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry. MASS SPECTROMETRY REVIEWS 2025; 44:581-598. [PMID: 39087820 PMCID: PMC11785821 DOI: 10.1002/mas.21902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.
Collapse
Affiliation(s)
| | - Gabe Nagy
- Department of ChemistryUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Wolf JB, Zühlke M, Weh D, Dal Colle MCS, Thoben C, Beitz T, Bienert K, Cambié D, Sletten ET, Delbianco M, Zimmermann S, Seeberger PH. Rapid Stereochemical Analysis of Glycosylations in Flow by Ion Mobility Spectrometry. Chemistry 2025; 31:e202500311. [PMID: 40110949 PMCID: PMC12057612 DOI: 10.1002/chem.202500311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Glycans are biologically important molecules that are difficult to synthesize and analyze due to their structural diversity and conformational flexibility. Stereoselective glycosylation reactions are key to achieving high-yielding glycan syntheses. The stereochemical outcome of glycosylations is significantly influenced by factors such as the choice of activator and leaving group systems, solvent type, temperature, concentration, and stoichiometry. We introduce a flow chemistry approach to efficiently screen glycosylation conditions, using minimal material and time to enable a rapid design-make-test-analyze cycle with precise parameter control for reaction optimization. Ion mobility spectrometry provides rapid separation and analysis of crude glycosylation reaction mixtures that requires less method development than liquid chromatography thus making it a valuable tool for optimizing glycosylation reactions.
Collapse
Affiliation(s)
- Jakob B. Wolf
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Martin Zühlke
- Physical ChemistryUniversität PotsdamKarl‐Liebknecht‐Straße 24–25Potsdam14476Germany
| | - Dominik Weh
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Marlene C. S. Dal Colle
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| | - Christian Thoben
- Department of Sensors and Measurement TechnologyInstitute of Electrical Engineering and Measurement TechnologyLeibniz University HannoverHannover30167Germany
| | - Toralf Beitz
- Physical ChemistryUniversität PotsdamKarl‐Liebknecht‐Straße 24–25Potsdam14476Germany
| | - Klaus Bienert
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Dario Cambié
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Eric T. Sletten
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Martina Delbianco
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement TechnologyInstitute of Electrical Engineering and Measurement TechnologyLeibniz University HannoverHannover30167Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and InterfacesPotsdam Science Park, Am Mühlenberg 1Potsdam14476Germany
- Institut für Chemie, Biochemie und PharmazieFreie Universität BerlinArnimallee 22Berlin14195Germany
| |
Collapse
|
3
|
Nkyaagye E, Olivos HJ, Do TD. Ligand Conformational and Metal Coordination Isomers in Complexes of Metal Ions and Cyclic Depsipeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:873-882. [PMID: 40066759 DOI: 10.1021/jasms.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
A critical challenge in the structural characterization of metal complexes in apolar environments is distinguishing transient structural isomers within an ensemble of lower- and higher-order assemblies. These structural variations arise from subtle changes in ligand architecture and metal coordination chemistry, which are often difficult to deconvolute. Here, we utilize ion activation in both drift-tube and cyclic ion mobility spectrometry-mass spectrometry (IMS-MS) to resolve ligand conformational isomerism and metal coordination isomerism in metal sandwich complexes of cyclic depsipeptide ligands known for selective metal ion transport. Our approach reveals that isomerism driven by ligand structural rearrangements exhibits low energy barriers, allowing their interconversion to be captured on the IMS-MS time scale. In contrast, isomers involving distinct metal coordination states are characterized by higher energy barriers, precluding rapid interconversion. These findings establish a direct correlation between isomer distributions and selective metal binding and transport, providing mechanistic insights into the biological functions of cyclic depsipeptides. This work underscores the utility of IMS-MS for disentangling complex structural dynamics in biologically relevant metal-peptide ligand systems.
Collapse
Affiliation(s)
- Emmanuel Nkyaagye
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | | | - Thanh D Do
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Gonsalves J, Bauzá-Martinez J, Stahl B, Dingess KA, Mank M. Robust and High-Resolution All-Ion Fragmentation LC-ESI-IM-MS Analysis for In-Depth Characterization or Profiling of Up to 200 Human Milk Oligosaccharides. Anal Chem 2025; 97:5563-5574. [PMID: 40047520 PMCID: PMC11923967 DOI: 10.1021/acs.analchem.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Human milk oligosaccharides (HMOs) represent the third most abundant fraction of biomolecules in human milk (HM) and play a crucial role in infant health and development. The unique contributions of HMOs to healthy development of breast-fed infants are assumed to rely on the extraordinary complexity and diversity of HMO isomeric structures, which in turn still cause a huge analytical challenge. Many contemporary analytical methods aiming for more detailed HMO characterization combine ion mobility (IM) with LC-MS for enhanced structural resolution but are typically lacking the robustness necessary for application to HM cohorts with hundreds of samples. To overcome these challenges, we introduce a novel, robust all-ion fragmentation (AIF) LC-ESI-IM-MS method integrating four analytical dimensions: high-resolution LC separation, IM drift time, accurate mass precursor, and fragment ion measurements. This four-dimensional (4D) analytical characterization is sufficient for resolving various HMO structural isomers in an efficient way. Thereby, up to 200 HMO compounds with a maximum degree of polymerization of 13 could be simultaneously identified and relatively quantified. We devised two methods using this 4D analytical approach. One intended for in-depth characterization of multiple known but also novel HMO structures and the second is designed for robust, increased-throughput analyses. With the first approach, five trifucosyl-lacto-N-tetraose isomers (TF-LNTs), four of which were never detected before in HM, as well as additional difucosyl-lacto-N-heaose isomers (DF-LNHs), were revealed and structures fully elucidated by AIF and IM. This exemplifies the potential of our method for in-depth characterization of novel complex HMO structures. Furthermore, the increased-throughput method featuring a shorter LC gradient was applied to real-world HM samples. Here, we could differentiate the HM types I-IV based on a broader range of partly new marker HMOs. We could also derive valuable new insights into variations of multiple and rare HMOs up to DP 11 across lactational stages. Overall, our AIF LC-ESI-IM-MS approach facilitates in-depth monitoring and confident identification of a broad array of distinct and simple to very complex HMOs. We envision this robust AIF LC-ESI-IM-MS approach to advance HMO research by facilitating the characterization of a broad range of HMOs in high numbers of HM samples. This may help to further extend our understanding about HMOs structure-function relationships relevant for infants' healthy development.
Collapse
Affiliation(s)
- John Gonsalves
- Danone Research
& Innovation, Uppsalalaan
12, 3584 CT Utrecht, The Netherlands
| | | | - Bernd Stahl
- Danone Research
& Innovation, Uppsalalaan
12, 3584 CT Utrecht, The Netherlands
- Utrecht Institute
for Pharmaceutical Sciences, Department of Chemical Biology &
Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelly A. Dingess
- Danone Research
& Innovation, Uppsalalaan
12, 3584 CT Utrecht, The Netherlands
| | - Marko Mank
- Danone Research
& Innovation, Uppsalalaan
12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
5
|
Harrilal CP, Garimella SVB, Norheim RV, Ibrahim YM. Development of a Platform for High-Resolution Ion Mobility Separations Coupled with Messenger Tagging Infrared Spectroscopy for High-Precision Structural Characterizations. Anal Chem 2025; 97:2103-2110. [PMID: 39607321 DOI: 10.1021/acs.analchem.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The ability to uniquely identify a compound requires highly precise and orthogonal measurements. Here we describe a newly developed analytical platform that integrates high resolution ion mobility and cryogenic vibrational ion spectroscopy for high-precision structural characterizations. This platform allows for the temporal separation of isomeric/isobaric ions and provides a highly sensitive description of the ion's adopted geometry in the gas phase. The combination of these orthogonal structural measurements yields precise descriptors that can be used to resolve between and confidently identify highly similar ions. The unique benefits of our instrument, which integrates a structures for lossless ion manipulations ion mobility (SLIM IM) device with messenger tagging infrared spectroscopy, include the ability to perform high-resolution ion mobility separations and to record the IR spectra of all ions simultaneously. The SLIM IM device, with its 13 m separation path length, allows for multipass experiments to be performed for increased resolution as needed. It is integrated with an Agilent qTOF MS where the collision cell was replaced with a cryogenically held (30 K) TW-SLIM module. The cryo-SLIM is operated in a novel manner that allows ions to be streamed through the device and collisionally cooled to a temperature where they can form noncovalently bound N2 complexes that are maintained as they exit the device and are detected by the TOF mass analyzer. The instrument can be operated in two modes: IMS+IR where the IR spectra for mobility-selected ions can be recorded and IR-only mode where the IR spectra for all mass-resolved ions can be recorded. In IR-only mode, IR spectra (400 cm-1 spectral range) can be recorded in as short as 2 s for high throughput measurements. This work details the construction of the instrument and modes of operation. It provides initial benchmarking of CCS and IR measurements to demonstrate the utility of this instrument for targeted and untargeted approaches.
Collapse
Affiliation(s)
- Christopher P Harrilal
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Greer C, Kinlein ZR, Clowers BH. Ion confinement and separation using asymmetric electrodynamic fields in structures for lossless ion manipulations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9900. [PMID: 39185572 PMCID: PMC11753825 DOI: 10.1002/rcm.9900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE TW-SLIM ion mobility separations have demonstrated exceptional resolution by leveraging long paths with minimal loss. All previously reported experiments have used electrode surfaces which are mirrored to generate symmetrically opposing electric fields for ion confinement. However, work with other planar ion optics indicates this may be unnecessary. This study explores conditions under which separations may be obtained using a SLIM with asymmetric electric fields. METHODS The asymmetric field configuration was defined by applying a uniform DC potential to all electrodes of the top PCB of a standard TW-SLIM board pair, with no electrode placement modifications. This configuration was simulated in SIMION to assess transmission through the SLIM. A benchtop TW-SLIM instrument outfitted with a Faraday plate detector was modified likewise, so the top PCB had a uniform DC potential applied to all electrodes, while the bottom board was operated normally. RESULTS Simulations show full ion transmission for four different m/z ion populations over a range of DC biases applied to the "pusher" board. Likewise, the modified benchtop instrument is capable of transmitting, separating, and cycling ions with minimal losses. The effect of pusher strength on separation quality is explored, and comparisons between the standard and modified SLIM are made with respect to resolving the +2 and +3 charge states of neurotensin ions. CONCLUSIONS A functional IMS instrument using asymmetric confining fields demonstrates additional field modifications may be a means to achieve additional functionality with limited interruption of the analysis. A TW-SLIM PCB specifically designed as a pusher board would benefit from minimized manufacturing cost, simplifying assembly, reducing drive electronics, and improved field consistency.
Collapse
Affiliation(s)
- Cullen Greer
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Zackary R. Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
7
|
Williamson DL, Naylor CN, Nagy G. Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies. Anal Chem 2024. [PMID: 39137259 DOI: 10.1021/acs.analchem.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gangliosides, a diverse class of glycosphingolipids, are highly abundant in neural tissue and have been implicated in numerous aging-related diseases. Their characterization with methods such as liquid chromatography-tandem mass spectrometry is often precluded by their structural complexity, isomeric heterogeneity, and lack of commercially available authentic standards. In this work, we coupled high-resolution cyclic ion mobility spectrometry with multiple collision-induced dissociation-based tandem mass spectrometry strategies to sequence the sialic acid positions in various ganglioside isomers. Initially, as a proof-of-concept demonstration, we were able to characterize the sialic acid positions in several GD1 and GT1 species. From there, we extended our approach to identify the location of N-glycolylneuraminic acid (NeuGc) residues in previously uncharacterized GD1 and GQ1 isomers. Our results highlight the potential of this presented methodology for the de novo characterization of gangliosides within complex biological matrices without the need for authentic standards.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Nagy G. High-resolution ion mobility separations coupled to mass spectrometry: What's next? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5014. [PMID: 38605463 DOI: 10.1002/jms.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Herein, I provide a personal perspective on high-resolution multipass ion mobility spectrometry-mass spectrometry (IMS-MS), with a specific emphasis on cyclic (cIMS) and structures for lossless ion manipulations (SLIM IMS)-based separations. My overarching goal for this perspective was to detail what I believe will be the key important areas in which IMS-MS will help shape the bioanalytical community and especially omics-based research.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Meyer KAE, Garand E. The impact of solvation on the structure and electric field strength in Li +GlyGly complexes. Phys Chem Chem Phys 2024; 26:12406-12421. [PMID: 38623633 DOI: 10.1039/d3cp06264c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
To scrutinise the impact of electric fields on the structure and vibrations of biomolecules in the presence of water, we study the sequential solvation of lithium diglycine up to three water molecules with cryogenic infrared action spectroscopy. Conformer-specific IR-IR spectroscopy and H2O/D2O isotopic substitution experiments provide most of the information required to decipher the structure of the observed conformers. Additional confirmation is provided by scaled harmonic vibrational frequency calculations using MP2 and DFT. The first water molecule is shown to bind to the Li+ ion, which weakens the electric field experienced by the peptide and as a consequence, also the strength of an internal NH⋯NH2 hydrogen bond in the diglycine backbone. The strength of this hydrogen bond decreases approximately linearly with the number of water molecules as a result of the decreasing electric field strength and coincides with an increase in the number of conformers observed in our spectra. The addition of two water molecules is already sufficient to change the preferred conformation of the peptide backbone, allowing for Li+ coordination to the lone pair of the terminal amine group.
Collapse
Affiliation(s)
- Katharina A E Meyer
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| | - Etienne Garand
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Abikhodr AH, Warnke S, Ben Faleh A, Rizzo TR. Combining Liquid Chromatography and Cryogenic IR Spectroscopy in Real Time for the Analysis of Oligosaccharides. Anal Chem 2024; 96:1462-1467. [PMID: 38211954 PMCID: PMC10831784 DOI: 10.1021/acs.analchem.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
While the combination of liquid chromatography (LC) and mass spectrometry (MS) serves as a robust approach for oligosaccharide analysis, it has difficulty distinguishing the smallest differences between isomers. The integration of infrared (IR) spectroscopy within a mass spectrometer as an additional analytical dimension can effectively address this limitation by providing a molecular fingerprint that is unique to each isomer. However, the direct interfacing of LC-MS with IR spectroscopy presents a technical challenge arising from the mismatch in the operational time scale of each method. In previous studies, this temporal incompatibility was mitigated by employing strategies designed to slow down or broaden the LC elution peaks of interest, but this workaround is applicable only for a few species at a time, necessitating multiple LC runs for comprehensive analysis. In the current work, we directly couple LC with cryogenic IR spectroscopy by acquiring a spectrum in as little as 10 s. This allows us to generate an orthogonal data dimension for molecular identification in the same amount of time that it normally takes for LC analysis. We successfully demonstrate this approach on a commercially available human milk oligosaccharide product, acquiring spectral information on the eluting peaks in real time and using it to identify both the specified constituents and nonspecified product impurities.
Collapse
Affiliation(s)
- Ali H Abikhodr
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Williamson DL, Nagy G. Coupling Isotopic Shifts with Collision Cross-Section Measurements for Carbohydrate Characterization in High-Resolution Ion Mobility Separations. Anal Chem 2023; 95:13992-14000. [PMID: 37683280 PMCID: PMC10538943 DOI: 10.1021/acs.analchem.3c02619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Herein, we introduce a two-dimensional strategy to better characterize carbohydrate isomers. In a single experiment, we can derive cyclic ion mobility-mass spectrometry (cIMS-MS)-based collision cross-section (CCS) values in conjunction with measuring isotopic shifts through the relative arrival times of light and heavy isotopologues. These isotopic shifts were introduced by permethylating carbohydrates with either light, CH3, or heavy, CD3, labels at every available hydroxyl group to generate a light/heavy pair of isotopologues for every individual species analyzed. We observed that our calculated CCS values, which were exclusively measured for the light isotopologues, were orthogonal to our measured isotopic shifts (i.e., relative arrival time values between heavy and light permethylated isotopologues). Our permethylation-induced isotopic shifts scaled well with increasing molecular weight, up to ∼m/z 1300, expanding the analysis of isotopic shifts to molecules 3-4 times as large as those previously studied. Our presented use of coupling CCS values with the measurement of isotopic shifts in a single cIMS-MS experiment is a proof-of-concept demonstration that our two-dimensional approach can improve the characterization of challenging isomeric carbohydrates. We envision that our presented 2D approach will have broad utility for varying molecular classes as well as being amenable to many forms of derivatization.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Zhanserkeev AA, Yang EL, Steele RP. Accelerating Anharmonic Spectroscopy Simulations via Local-Mode, Multilevel Methods. J Chem Theory Comput 2023; 19:5572-5585. [PMID: 37555634 DOI: 10.1021/acs.jctc.3c00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ab initio computer simulations of anharmonic vibrational spectra provide nuanced insight into the vibrational behavior of molecules and complexes. The computational bottleneck in such simulations, particularly for ab initio potentials, is often the generation of mode-coupling potentials. Focusing specifically on two-mode couplings in this analysis, the combination of a local-mode representation and multilevel methods is demonstrated to be particularly symbiotic. In this approach, a low-level quantum chemistry method is employed to predict the pairwise couplings that should be included at the target level of theory in vibrational self-consistent field (and similar) calculations. Pairs that are excluded by this approach are "recycled" at the low level of theory. Furthermore, because this low-level pre-screening will eventually become the computational bottleneck for sufficiently large chemical systems, distance-based truncation is applied to these low-level predictions without substantive loss of accuracy. This combination is demonstrated to yield sub-wavenumber fidelity with reference vibrational transitions when including only a small fraction of target-level couplings; the overhead of predicting these couplings, particularly when employing distance-based, local-mode cutoffs, is a trivial added cost. This combined approach is assessed on a series of test cases, including ethylene, hexatriene, and the alanine dipeptide. Vibrational self-consistent field (VSCF) spectra were obtained with an RI-MP2/cc-pVTZ potential for the dipeptide, at approximately a 5-fold reduction in computational cost. Considerable optimism for increased accelerations for larger systems and higher-order couplings is also justified, based on this investigation.
Collapse
Affiliation(s)
- Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Greer C, Kinlein Z, Clowers BH. SLIM Tricks: Tools, Concepts, and Strategies for the Development of Planar Ion Guides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1715-1723. [PMID: 37470389 PMCID: PMC10693990 DOI: 10.1021/jasms.3c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Traveling wave ion mobility experiments using planar electrode structures (e.g., structures for lossless ion manipulation, TW-SLIM) leverage the mature manufacturing capabilities of printed circuit boards (PCBs). With routine levels of mechanical precision below 150 μm, the conceptual flexibility afforded by PCBs for use as planar ion guides is expansive. To date, the design and construction of TW-SLIM platforms require considerable legacy expertise, especially with respect to simulation and circuit layout strategies. To lower the barrier of TW-SLIM implementation, we introduce Python-based interactive tools that assist in graphical layout of the core electrode footprints for planar ion guides with minimal user inputs. These scripts also export the exact component locations and assignments for direct integration into KiCad and SIMION for PCB finalization and ion flight simulations. The design concepts embodied in the set of scripts comprising SLIM Pickins (PCB CAD generation) and pigsim (SIMION workspace generation) build upon the lessons learned in the independent development of the research-grade TW-SLIM platforms in operation at WSU. Due to the inherent flexibility of the PCB manufacturing process and the time devoted to board layouts prior to manufacturing, both scripts serve to enable rapid, iterative design considerations. Because only a few predefined parameters are necessary (i.e., the TW-SLIM monomer width, x position following a TW Turn, and y position following a TW Turn) it is possible to design the exact component layouts and accompanying simulation space in a manner of minutes. There is no known limitation to the board layout capacities of the scripts, and the size of a designed layout is ultimately constrained by the abilities of the final PCB design and simulation tools, KiCad and SIMION, to accommodate the thousands of electrodes comprising the final design (i.e., RAM and software overhead). Toward removing the barriers to exploring new SLIM tracks and the likelihood of layout errors that require considerable revision and engineering time, the SLIM Pickins and pigsim tools (included as Supporting Information) allow the user to quickly design a length of planar ion guide, simulate its abilities to confine and transmit ions, compare hypothetical board outlines to given vacuum chamber dimensions, and generate a near-production ready PCB CAD file. In addition to these tools, this report outlines a series of cost-saving strategies with respect to vacuum feedthroughs and vacuum chamber design for TW ion mobility experiments using planar ion guides.
Collapse
Affiliation(s)
- Cullen Greer
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
14
|
Eaton RM, Zercher BP, Wageman A, Bush MF. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1175-1185. [PMID: 37171243 PMCID: PMC10548348 DOI: 10.1021/jasms.3c00112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Native ion mobility (IM) mass spectrometry (MS) is used to probe the size, shape, and assembly of biomolecular complexes. IM-IM-MS can increase the amount of information available in structural studies by isolating subpopulations of structures for further analysis. Previously, IM-IM-MS has been implemented using the Structures for Lossless Ion Manipulations (SLIM) architecture to probe the structural stability of gas-phase protein ions. Here, a new multidimensional IM instrument constructed from SLIM devices is characterized using multiple operational modes. In this new design, modular devices are used to perform all ion manipulations, including initial accumulation, injection, separation, selection, and trapping. Using single-dimension IM, collision cross section (Ω) values are determined for a set of native-like ions. These Ω values are within 3% of those reported previously based on measurements using RF-confining drift cells. Tandem IM experiments are performed on a sample of ubiquitin ions that contains both compact and partially unfolded structures, demonstrating that this platform can isolate subpopulations of structures. Finally, additional modes of analysis, including multiplexed IM and inverse IM, are demonstrated using this platform. The ability of this platform to quickly switch between different modes of IM analysis makes it a highly flexible tool for studying protein structures and dynamics.
Collapse
Affiliation(s)
- Rachel M. Eaton
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Benjamin P. Zercher
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - AnneClaire Wageman
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|