1
|
Sharif D, Dewasurendra VK, Sultana MN, Mahmud S, Banerjee C, Rahman M, Li P, Clemmer DE, Johnson MB, Valentine SJ. Accessing Different Protein Conformer Ensembles with Tunable Capillary Vibrating Sharp-Edge Spray Ionization. J Phys Chem B 2025; 129:1626-1639. [PMID: 39878076 PMCID: PMC11808649 DOI: 10.1021/acs.jpcb.4c04842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra. For midvoltage conditions (+200 to +600 V, MV regime), higher charge states (7+ to 12+ ions) are observed. For high-voltage conditions (>+600 V, HV regime), the "nano-electrospray ionization (nESI)-type distribution" is achieved in which the 6+ and 5+ species are observed as the dominant ions. Analysis of these results suggests that different pathways to progeny nanodroplet production result in the observed ions. For the LV regime, aerodynamic breakup leads to low charge progeny droplets that are selective for the native solution conformation ensemble of ubiquitin (minus multimeric species). In the MV regime, the large droplets persist for longer periods of time, leading to droplet heating and a shift in the conformation ensemble to partially unfolded species. In the HV regime, droplets access progeny nanodroplets faster, leading to native conformation ensemble sampling as indicated by the observed nESI-type CSD. The notable observation of limited multimer formation and adduct ion formation in the LV regime is hypothesized to result from droplet aero breakup resulting in protein and charge carrier partitioning in sampled progeny droplets. The tunable droplet charging afforded by cVSSI presents opportunities to study the effects of the droplet charge, droplet size, and mass spectrometer inlet temperature on the conformer ensemble sampled by the mass spectrometer. Additionally, the approach may provide a tool for rapid comparison of protein stabilities.
Collapse
Affiliation(s)
- Daud Sharif
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Vikum K. Dewasurendra
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mst Nigar Sultana
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sultan Mahmud
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chandrima Banerjee
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mohammad Rahman
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Matthew B. Johnson
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
2
|
Liu FC, Lee J, Pedrete T, Panczyk EM, Pengelley S, Bleiholder C. Differential glycosylation does not modulate the conformational heterogeneity of a humanised IgGk NIST monoclonal antibody. Chem Commun (Camb) 2024; 60:10740-10743. [PMID: 39246094 PMCID: PMC11381966 DOI: 10.1039/d4cc02125h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Investigating the structural heterogeneity of monoclonal antibodies is crucial to achieving optimal therapeutic outcomes. We show that tandem-trapped ion mobility spectrometry enables collision-induced unfolding measurements of subpopulations of a humanised IgGk NIST monoclonal antibody (NISTmAb). Our results indicate that differential glycosylation of NISTmAb does not modulate its conformational heterogeneity.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida, 32306, USA.
| | - Jusung Lee
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida, 32306, USA.
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida, 32306, USA.
| | - Erin M Panczyk
- Bruker Daltonics, 40 Manning Road, Billerica, MA 01821, USA
| | - Stuart Pengelley
- Bruker Daltonics GmbH&Co, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, Florida, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida, 32306, USA
| |
Collapse
|
3
|
Cropley TC, Liu FC, Chai M, Bush MF, Bleiholder C. Metastability of Protein Solution Structures in the Absence of a Solvent: Rugged Energy Landscape and Glass-like Behavior. J Am Chem Soc 2024:10.1021/jacs.3c12892. [PMID: 38598661 PMCID: PMC11464637 DOI: 10.1021/jacs.3c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact β-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal β-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.
Collapse
Affiliation(s)
- Tyler. C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Fanny. C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|