1
|
Filipowska W, Jaskula‐Goiris B, Ditrych M, Bustillo Trueba P, De Rouck G, Aerts G, Powell C, Cook D, De Cooman L. On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: a review. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weronika Filipowska
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - Barbara Jaskula‐Goiris
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Maciej Ditrych
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Paula Bustillo Trueba
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Gert De Rouck
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Guido Aerts
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Chris Powell
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - David Cook
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - Luc De Cooman
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| |
Collapse
|
2
|
Garbe LA, Hübke H, Tressl R. Enantioselective Formation Pathway of a Trihydroxy Fatty Acid during Mashing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-63-0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Leif-Alexander Garbe
- Technische Universität Berlin (TUB), Institute of Biotechnology, Molecular Analysis; Research and Teaching Institute for Brewing in Berlin/Germany (VLB), Seestrasse 13, D-13353 Berlin
| | - Holger Hübke
- Technische Universität Berlin (TUB), Institute of Biotechnology, Molecular Analysis; Research and Teaching Institute for Brewing in Berlin/Germany (VLB), Seestrasse 13, D-13353 Berlin
| | - Roland Tressl
- Technische Universität Berlin (TUB), Institute of Biotechnology, Molecular Analysis; Research and Teaching Institute for Brewing in Berlin/Germany (VLB), Seestrasse 13, D-13353 Berlin
| |
Collapse
|
3
|
Duval J, Colas C, Pecher V, Poujol M, Tranchant JF, Lesellier E. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds. J Chromatogr A 2017; 1509:132-140. [DOI: 10.1016/j.chroma.2017.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/24/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022]
|
4
|
Cozzolino D, Roumeliotis S, Eglinton J. Relationships Between Fatty Acid Contents of Barley Grain, Malt, and Wort with Malt Quality Measurements. Cereal Chem 2015. [DOI: 10.1094/cchem-04-14-0071-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Sophie Roumeliotis
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB 1 Glen Osmond SA 5064, Adelaide, Australia
| | - Jason Eglinton
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB 1 Glen Osmond SA 5064, Adelaide, Australia
| |
Collapse
|
5
|
De Almeida RB, Garbe LA, Nagel R, Wackerbauer K, Tressl R. Regio- and Stereoselectivity of Malt Lipoxygenases LOX1 and LOX2. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2005.tb00682.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Bravi E, Marconi O, Perretti G, Fantozzi P. Influence of barley variety and malting process on lipid content of malt. Food Chem 2012; 135:1112-7. [PMID: 22953832 DOI: 10.1016/j.foodchem.2012.06.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. The concentration and the quality of lipids in beer depend on their composition in the raw materials and on the brewing process and they may exert considerable influence on beer quality. This paper presents an investigation of the influence of barley variety and malting process on the lipid content of finished malt. Five barley samples, grown in Italy, representing 4 spring barley and 1 winter barley were used. The samples were micro-malted and analysed. The aim of this research was to verify the influence of different barley varieties on the lipid content of malt and also on the changes in fatty acid (FA) profile during the malting process. Lipid content and FA profile were evaluated. Principal component analysis (PCA) was used to establish relationships between the different samples. An evaluation of the correlation between lipid content of barleys and the quality of the resulting malts was also conducted. The data showed that the total lipid content during the malting process decreased significantly as barley was converted into malt. Different barley varieties present different FA contents and different FA patterns. The correlation between the lipid content of barley and the quality of the resulting malt confirmed the negative influence of lipids.
Collapse
Affiliation(s)
- Elisabetta Bravi
- Department of Economic and Food Sciences, Section of Food Technology and Biotechnology, University of Perugia, Via S. Costanzo n.c.n., 06126 Perugia, Italy.
| | | | | | | |
Collapse
|
7
|
Isolation of 9-Hydroxy-10 E,12 Z-octadecadienoic Acid, an Inhibitor of Fat Accumulation from Valeriana fauriei. Biosci Biotechnol Biochem 2012; 76:1233-5. [DOI: 10.1271/bbb.110994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie AR. Toward the storage metabolome: profiling the barley vacuole. PLANT PHYSIOLOGY 2011; 157:1469-82. [PMID: 21949213 PMCID: PMC3252150 DOI: 10.1104/pp.111.185710] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 05/18/2023]
Abstract
While recent years have witnessed dramatic advances in our capacity to identify and quantify an ever-increasing number of plant metabolites, our understanding of how metabolism is spatially regulated is still far from complete. In an attempt to partially address this question, we studied the storage metabolome of the barley (Hordeum vulgare) vacuole. For this purpose, we used highly purified vacuoles isolated by silicon oil centrifugation and compared their metabolome with that found in the mesophyll protoplast from which they were derived. Using a combination of gas chromatography-mass spectrometry and Fourier transform-mass spectrometry, we were able to detect 59 (primary) metabolites for which we know the exact chemical structure and a further 200 (secondary) metabolites for which we have strong predicted chemical formulae. Taken together, these metabolites comprise amino acids, organic acids, sugars, sugar alcohols, shikimate pathway intermediates, vitamins, phenylpropanoids, and flavonoids. Of the 259 putative metabolites, some 12 were found exclusively in the vacuole and 34 were found exclusively in the protoplast, while 213 were common in both samples. When analyzed on a quantitative basis, however, there is even more variance, with more than 60 of these compounds being present above the detection limit of our protocols. The combined data were also analyzed with respect to the tonoplast proteome in an attempt to infer specificities of the transporter proteins embedded in this membrane. Following comparison with recent observations made using nonaqueous fractionation of Arabidopsis (Arabidopsis thaliana), we discuss these data in the context of current models of metabolic compartmentation in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (T.T., A.N.-N., M.M., P.G., D.S., L.W., S.P., A.R.F.); Institute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (M.S.R., M.S., E.M.); Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France (M.S.R.); King Abdulaziz University, Jeddah 21589, Saudi Arabia (L.W.)
| |
Collapse
|
9
|
Doehlert DC, Angelikousis S, Vick B. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage. Cereal Chem 2010. [DOI: 10.1094/cchem-05-10-0074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Douglas C. Doehlert
- USDA/ARS Wheat Quality Laboratory, Harris Hall, North Dakota State University, Dept 7650, P.O. 6050, Fargo, ND 58108-6050. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
- Corresponding author. E-mail:
| | - Steven Angelikousis
- Department of Cereal Science, Harris Hall, North Dakota State University, Dept 7650, P.O. 6050, Fargo, ND 58108-6050
| | - Brady Vick
- USDA/ARS Northern Crops Science Laboratory, Fargo, ND 58105
| |
Collapse
|
10
|
Shibata N, Toi S, Shibata T, Uchida K, Itabe H, Sawada T, Kawamata T, Okada Y, Uchiyama S, Kobayashi M. Immunohistochemical detection of 13(R)-hydroxyoctadecadienoic acid in atherosclerotic plaques of human carotid arteries using a novel specific antibody. Acta Histochem Cytochem 2009; 42:197-203. [PMID: 20126573 PMCID: PMC2808503 DOI: 10.1267/ahc.09022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/25/2009] [Indexed: 12/04/2022] Open
Abstract
13-Hydroxyoctadecadienoic acid (13-HODE) is a major component of oxidized low density lipoprotein (OxLDL), which has been shown to have a crucial role in atherogenesis. Of the 13-HODE stereoisomers, 13(S)-HODE and 13(R)-HODE, little is known about the latter in contrast to the former. To detect 13(R)-HODE in atherosclerotic lesions, we prepared a mouse monoclonal antibody against 13(R)-HODE. Competitive enzyme-linked immunosorbent assay clarified the selective reaction of a clone mAb 13H1 with both free and bovine serum albumin-conjugated forms of 13(R)-HODE but not other oxidized lipids including 13(S)-HODE. Immunohistochemical analysis revealed the colocalization of 13(R)-HODE immunoreactivity with the OxLDL marker oxidized phophatidylcholine immunoreactivity in vascular endothelial cells, macrophages and migrating vascular smooth muscle cells in atherosclerotic plaques of human carotid arteries. The present results provide in vivo evidence for the formation of 13(R)-HODE in atherosclerotic lesions of carotid arteries.
Collapse
Affiliation(s)
| | - Sono Toi
- Department of Neurology, Tokyo Women’s Medical University
| | - Takahiro Shibata
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences
| | - Koji Uchida
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University School of Pharmaceutical Sciences
| | - Tatsuo Sawada
- Department of Pathology, Tokyo Women’s Medical University
| | | | - Yoshikazu Okada
- Department of Neurosurgery, Tokyo Women’s Medical University
| | | | | |
Collapse
|
11
|
Foulks JM, Weyrich AS, Zimmerman GA, McIntyre TM. A yeast PAF acetylhydrolase ortholog suppresses oxidative death. Free Radic Biol Med 2008; 45:434-42. [PMID: 18489912 PMCID: PMC2603548 DOI: 10.1016/j.freeradbiomed.2008.04.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 11/26/2022]
Abstract
Phospholipids containing sn-2 polyunsaturated fatty acyl residues are primary targets of oxidizing radicals, producing proapoptotic and membrane perturbing fragmented phospholipids. The only known phospholipases that specifically select these oxidized and/or short-chained phospholipids as substrates are mammalian group VII phospholipases A2s that were purified and cloned as PAF acetylhydrolases. Platelet-activating factor (PAF) is a short-chained phospholipid, and whether these enzymes actually are PAF hydrolases or evolved as oxidized phospholipid phospholipases is unknown. The fission yeast Schizosaccharomyces pombe, which does not form or use PAF as a signaling molecule, contains an open-reading frame potentially homologous to mammalian group VII phospholipase A2s. We cloned this SPBC106.11c locus and expressed it in distantly related Saccharomyces cerevisiae that lack homologous sequences. The S. pombe locus encoded a functional phospholipase A2, now renamed plg7+, that hydrolyzed PAF and a synthetic oxidized phospholipid. Expression of human type II PAF acetylhydrolase or S. pombe Plg7p enhanced the viability of S. cerevisiae subjected to oxidative stress. We conclude that a single-celled organism with an exceedingly spare genome still expresses an unusually discriminating phospholipase A2, and that selective hydrolysis of phospholipid oxidation products is an early, and critical, way to overcome oxidative membrane damage and oxidant-induced cell death.
Collapse
Affiliation(s)
- Jason M. Foulks
- Department of Experimental Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112
- Department of Internal Medicine and Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112
| | - Andrew S. Weyrich
- Department of Internal Medicine and Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112
| | - Guy A. Zimmerman
- Department of Internal Medicine and Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112
| | - Thomas M. McIntyre
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of CWRU, 9500 Euclid Ave, Cleveland, OH 44195
| |
Collapse
|
12
|
Arts MJTJ, Grun C, de Jong RL, Voss HP, Bast A, Mueller MJ, Haenen GRMM. Oxidative degradation of lipids during mashing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7010-4. [PMID: 17637059 DOI: 10.1021/jf070505+] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although hardly any polyunsaturated fatty acids (PUFAs) are present in the endproduct, the ingredients used for the production of beer contain a high concentration of PUFAs, such as linolic and linolenic acid. These compounds are readily oxidized, resulting in the formation of lipid-derived products that reduce the taste and quality of beer enormously. During mashing relatively high amounts of PUFAs are exposed to atmospheric oxygen at a relatively high temperature. This makes mashing a critical step in the brewing process with regard to the formation of lipid-derived off-taste products. F1 phytoprostane (PPF1) changes in antioxidant capacity and monohydroxy fatty acids (OH-FAs) were used as markers for the detection of oxidative damage to fatty acids during mashing. The pattern of OH-FA formation indicates that enzymatic oxidation of PUFAs is more important than nonenzymatic oxidation during the mashing process. Nevertheless, substantial nonenzymatic radical formation is evident from the increase of specific OH-FAs and PPF1s. It was found that a low oxygen tension reduces oxidative damage and gives a high antioxidant capacity of the mashing mixture. This indicates that mashing should be done under low oxygen pressure.
Collapse
Affiliation(s)
- Mariken J T J Arts
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Garbe LA, Barbosa de Almeida R, Nagel R, Wackerbauer K, Tressl R. Dual positional and stereospecificity of lipoxygenase isoenzymes from germinating barley (green malt): biotransformation of free and esterified linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:946-55. [PMID: 16448207 DOI: 10.1021/jf051993t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The lipoxygenase isoenzymes LOX1 and LOX2 from green malt were separated by isoelectric focusing, and their catalytic properties regarding complex lipids as substrates were characterized. The regio- and stereoisomers of hydroperoxy octadecadienoates (HPODE) resulting from LOX1 and LOX2 enzymatic transformations of linoleic acid, methyl linoleate, linoleic acid glycerol esters monolinolein, dilinolein, and trilinolein, and 1-palmitoyl-2-linoleoyl-glycero-3-phosphocholine (PamLinGroPCho) were determined. In addition, biotransformations of polar and nonpolar lipids extracted from malt were performed with LOX1 and LOX2. The results show that LOX2 catalyzes the oxidation of esterified fatty acids at a higher rate and is more regioselective than LOX1. The dual position specificity of LOX2 (9-HPODE:13-HPODE) with trilinolein as the substrate (6:94) was higher than the resultant ratio (13:87) when free linoleic acid was transformed. A high (S)-enantiomeric excess of 13-HPODE was analyzed with all esterified substrates confirming the formation of 13-HPODE through the LOX2 enzyme; however, 9-HPODE detected after LOX2 biotransformations showed (R)-enantiomeric excesses. PamLinGroPCho was oxygenated by LOX1 with the highest regio- and stereoselectivities among the applied substrates.
Collapse
Affiliation(s)
- Leif-Alexander Garbe
- Institut für Biotechnologie, Molekularanalytik, Technische Universität Berlin, Seestrasse 13, D-13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|