1
|
Myoglobin from Atlantic and Tinker mackerels: Purification, characterization and its possible use as a molecular marker. Int J Biol Macromol 2022; 214:459-469. [PMID: 35753513 DOI: 10.1016/j.ijbiomac.2022.06.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/20/2022]
Abstract
Here, we report the characterization (purification, autoxidation rate, pseudoperoxidase activity) and amino acid sequence determination of S. scombrus (Atlantic mackerel) and S. colias (Tinker mackerel) mioglobins (Mbs), considering the increasing consumption of fresh and canned mackerel meat and Mb implication in meat storage (e.g.: browning and lipid oxidation). We found that Atlantic mackerel Mb has major autoxidation rate (0.204 ± 0.013 h-1) compared to Tinker mackerel Mb (0.140 ± 0.009 h-1), while the pseudoperoxidase activity is major for Tinker mackerel (Km: 87.71 ± 7.19 μM; kcat: 0.32 s-1) Mb with respect to Atlantic mackerel (Km: 96.08 ± 6.91 μM; kcat: 0.50 s-1). These functional differences are confirmed by primary structure determination, in which six amino acid substitutions are found, with the first N-terminal amino acid residue acetylated. Furthermore, we predicted by AphaFold 3D model both fish Mbs and used them to investigate the possible structural differences. In addition, phylogenetic analysis using Mb sequences from Scombridae family confirms that Atlantic and Tinker mackerels are two distinct species. Finally, an analytic qualitative RP-HPLC method to distinguish S. scombrus and S. colias specimens was developed considering the different retention times of the two mackerel apoMbs.
Collapse
|
2
|
Hasan MM, Ushio H, Ochiai Y. Expression and characterization of rainbow trout Oncorhynchus mykiss recombinant myoglobin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1477-1488. [PMID: 34327612 DOI: 10.1007/s10695-021-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recombinant expression system was established for rainbow trout myoglobin (Mb) considering its unique primary structure of having one unusual deletion and two cysteine residues in contrast to the other fish Mbs. The obtained recombinant Mb without His-tag showed non-cooperative thermal denaturation profile. The presence of free cysteine residue(s) in rainbow trout Mb was demonstrated by reacting with a sulfhydryl agent, 4, 4´-dithiodipyridine, which ultimately resulted in the oxidation of Mb with characteristic changes in visible absorption spectra. Besides, the recombinant Mb displayed steady peroxidase reactivity indicating in vivo roles of Mb as a reactive oxygen species scavenger. The findings of the present study indicate that the solitary rainbow trout Mb, which ultimately manifest typical secondary structure pattern and corroborate characteristic functionality, can be over expressed in recombinant system devoid of fusion tag.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agriculture, Tohoku University, Aramaki, Aoba, Sendai, 980-8572, Japan
| |
Collapse
|
3
|
Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins play critical roles in biological processes. PTM of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) PTM and their impact on fresh beef color stability have not been characterized yet. Therefore, our objectives were to identify Mb PTM in beef longissimus lumborum muscle during postmortem aging and to characterize their influence on color stability. The longissimus lumborum muscles from 9 (n = 9) beef carcasses (24 h postmortem) were subjected to wet aging for 0, 7, 14, and 21 d. At the end of each wet-aging period, steaks were fabricated. One steak for analyses of PTM was immediately frozen at −80°C, whereas other steaks were assigned to refrigerated storage in the darkness under aerobic packaging. Instrumental color and biochemical attributes were evaluated on day 0, 3, or 6 of storage. Mb PTM were analyzed using two-dimensional electrophoresis and tandem mass spectrometry. Surface redness (a* value), color stability, and Mb concentration decreased (P < 0.05) upon aging. Gel image analyses identified 6 Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass spectrometry identified multiple PTM (phosphorylation, methylation, carboxymethylation, acetylation, and 4-hydroxynonenal alkylation) in these 6 isoforms. The amino acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas other PTM were detected in lysine (K), arginine (R), and histidine residues. Additionally, distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, Mb PTM increased with aging. The aging-induced PTM, especially those occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise oxygen binding capacity, leading to decreased color stability of fresh beef. Furthermore, PTM at K45, K47, and K87 were unique to Mb from non-aged beef, whereas PTM at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged counterparts, indicating that these Mb PTM could be used as novel biomarkers for fresh beef color stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | | |
Collapse
|
4
|
Hasan MM, Arafah P, Ozawa H, Ushio H, Ochiai Y. Thermal denaturation and autoxidation profiles of carangid fish myoglobins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:487-498. [PMID: 33515395 DOI: 10.1007/s10695-021-00928-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Although myoglobin (Mb) has been considered to be one of the well-characterized proteins, screening of post-genomic era databases revealed the lack of adequate information on teleost Mbs. The present study was aimed to investigate stability and functional features of Mbs from three teleosts of the same family. To unfold how primary structure influences the stability and function of proteins, Mbs were purified from the dark muscles of three carangids, namely, yellowtail, greater amberjack, and silver trevally. Thermostabilities measured by circular dichroism (CD) spectrometry revealed species-specific thermal denaturation pattern, i.e., silver trevally > yellowtail > greater amberjack Mbs. On the other hand, autoxidation rate constants of the ferrous forms of those three carangid Mbs showed positive correlation between the ferrous state of the heme iron and rising temperature. The order of autoxidation rate was in the order of greater amberjack > yellowtail > silver trevally Mbs. The finding of the present study denotes that the thermal stability is not necessarily correlated with the functional stability of carangid Mbs even though their primary structures shared high homology (84-94%).
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Purnama Arafah
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hideo Ozawa
- Faculty of Applied Bioscience, Kanagawa Institute of Technology, Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Hideki Ushio
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
5
|
Viana FM, Wang Y, Li S, Conte-Junior CA, Chen J, Zhu H, Suman SP. Thermal Instability Induced by 4-Hydroxy-2-Nonenal in Beef Myoglobin. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.9479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The secondary products of lipid oxidation, such as 4-hydroxy-2-nonenal (HNE), compromise myoglobin (Mb) redox stability and can thus impact thermal stability. Previous studies examined HNE-induced redox instability in beef Mb, whereas investigations are yet to be undertaken to evaluate the relationship between lipid oxidation and thermal stability of beef Mb. Therefore, the objective of the present study was to investigate the direct influence of HNE on thermal stability of beef Mb at meat conditions. Beef oxymyoglobin (0.15 mM) was incubated with HNE (1.0 mM) at pH 5.6 and 4°C for 21 d in the dark. Metmyoglobin formation, percentage Mb denaturation (PMD), and HNE adduction sites in Mb were examined on days 0, 7, 14, and 21. The experiment was replicated 3 times (n = 3). The data were evaluated using the MIXED procedure of SAS, and the differences among means were detected at the 5% level using the least significant difference test. The HNE-treated samples exhibited greater (P < 0.05) metmyoglobin formation and PMD than the controls. Additionally, the PMD difference between HNE-treated and control samples increased (P < 0.05) over time. Mass spectrometric analyses indicated that the number of HNE adduction sites increased with storage, and 6 histidines (positions 24, 36, 64, 93, 113, and 152) were adducted on day 21. HNE adduction at the distal histidine (position 64), which is critical to he me stability, was observed only on days 14 and 21. An increase in PMD on days 14 and 21 in HNE-treated samples could be partially due to the adduction at distal histidine. These findings indicated that HNE compromises thermal stability of beef Mb, possibly through altering the conformation of the heme protein by nucleophilic adduction.
Collapse
Affiliation(s)
| | - Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | | | | | | | | | | |
Collapse
|
6
|
Nurilmala M, Ushio H, Watabe S, Ochiai Y. A streamlined isolation method and the autoxidation profiles of tuna myoglobin. Journal of Food Science and Technology 2018; 55:1641-1647. [PMID: 29666516 DOI: 10.1007/s13197-018-3068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Determination of the redox state of myoglobin (Mb) gives useful information for evaluating the quality of tuna meat. To attain this purpose, a fast streamlined method has been established basically based on preparative native gel electrophoresis to isolate Mb from the dark muscle of Pacific bluefin tuna. Crude Mb fraction was prepared from dark muscle by ammonium sulfate saturation fractionation and subsequently Mb was purified by preparative native gel electrophoresis under the isoelectric pH of the Mb, resulting in absorption (or trapping) of all the contaminating proteins in the gel. Purified Mb was converted to oxy form with a trace amount of sodium hydrosulfite, and subsequently dialyzed against 50 mM sodium citrate (pH 5.6) or 50 mM sodium phosphate (pH 6.5). The purified tuna Mb was examined for the temperature and pH dependencies of autoxidation using horse Mb as a reference. Tuna Mb was oxidized 2.5-3 times faster than horse Mb irrespective of the pH conditions examined. The highest autoxidation rates both at 0 and 37 °C were observed at pH 5.6. These data were comparable to those obtained for Mbs isolated by conventional chromatographic methods.
Collapse
Affiliation(s)
- Mala Nurilmala
- 1Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Hideki Ushio
- 2Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo 113-8657 Japan
| | - Shugo Watabe
- 3School of Marine Bioscience, Kitasato University, Minami, Sagamihara, Kanagawa 252-0373 Japan
| | - Yoshihiro Ochiai
- 4Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| |
Collapse
|
7
|
Nurilmala M, Ochiai Y. Molecular characterization of southern bluefin tuna myoglobin (Thunnus maccoyii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1407-1416. [PMID: 27126585 DOI: 10.1007/s10695-016-0228-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The primary structure of southern bluefin tuna Thunnus maccoyii Mb has been elucidated by molecular cloning techniques. The cDNA of this tuna encoding Mb contained 776 nucleotides, with an open reading frame of 444 nucleotides encoding 147 amino acids. The nucleotide sequence of the coding region was identical to those of other bluefin tunas (T. thynnus and T. orientalis), thus giving the same amino acid sequences. Based on the deduced amino acid sequence, bioinformatic analysis was performed including phylogenic tree, hydropathy plot and homology modeling. In order to investigate the autoxidation profiles, the isolation of Mb was performed from the dark muscle. The water soluble fraction was subjected to ammonium sulfate fractionation (60-90 % saturation) followed by preparative gel electrophoresis. Autoxidation profiles of Mb were delineated at pH 5.6, 6.5 and 7.4 at temperature 37 °C. The autoxidation rate of tuna Mb was slightly higher than that of horse Mb at all pH examined. These results revealed that tuna myoglobin was unstable than that of horse Mb mainly at acidic pH.
Collapse
Affiliation(s)
- Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, Indonesia.
| | - Yoshihiro Ochiai
- Laboratory of Aquatic Bioresource Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| |
Collapse
|
8
|
Suman SP, Nair MN, Joseph P, Hunt MC. Factors influencing internal color of cooked meats. Meat Sci 2016; 120:133-144. [DOI: 10.1016/j.meatsci.2016.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
|
9
|
Feng JB, Liu SK, Wang RJ, Zhang JR, Wang XL, Kaltenboeck L, Li JL, Liu ZJ. Molecular characterization, phylogenetic analysis and expression profiling of myoglobin and cytoglobin genes in response to heat stress in channel catfish Ictalurus punctatus. JOURNAL OF FISH BIOLOGY 2015; 86:592-604. [PMID: 25604925 DOI: 10.1111/jfb.12584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
To understand the function of myoglobin (Mb) and cytoglobin (Cygb) in channel catfish Ictalurus punctatus in response to heat stress, mb and cygb genes were identified and characterized in this study. These genes were widely expressed in all the tested tissues, but strong tissue preferences were observed, with the mb gene being expressed most highly in the heart, cygb1 most highly expressed in the intestine and cygb2 most highly expressed in the brain. After heat-stress challenge, mb and cygb genes were up-regulated in almost all tested tissues. In general, such up-regulation was more dramatic in the tolerant group than in the intolerant group, suggesting that higher expression of mb and cygb genes contributed to greater tolerance of I. punctatus to heat stress.
Collapse
Affiliation(s)
- J B Feng
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - S K Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - R J Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J R Zhang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - X L Wang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - L Kaltenboeck
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| | - J L Li
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Z J Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
10
|
Affiliation(s)
- Surendranath P. Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546;
| | - Poulson Joseph
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762;
| |
Collapse
|
11
|
NURILMALA M, USHIO H, KANEKO G, OCHIAI Y. Assessment of Commercial Quality Evaluation of Yellowfin Tuna Thunnus albacares Meat Based on Myoglobin Properties. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Chotichayapong C, Wiengsamut K, Chanthai S, Sattayasai N, Tamiya T, Kanzawa N, Tsuchiya T. Isolation of heat-tolerant myoglobin from Asian swamp eel Monopterus albus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1533-1543. [PMID: 22538454 DOI: 10.1007/s10695-012-9644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/09/2012] [Indexed: 05/31/2023]
Abstract
Myoglobin from Asian swamp eel Monopterus albus was purified from fish muscle using salt fractionation followed by column chromatography and molecular filtration. The purified Mb of 0.68 mg/g wet weight of muscle was determined for its molecular mass by MALDI-TOF-MS to be 15,525.18 Da. Using isoelectric focusing technique, the purified Mb showed two derivatives with pI of 6.40 and 7.12. Six peptide fragments of this protein identified by LC-MS/MS were homologous to Mbs of sea raven Hemitripterus americanus, yellowfin tuna Thunnus albacores, blue marlin Makaira nigicans, common carp Cyprinus carpio, and goldfish Carassius auratus. According to the Mb denaturation, the swamp eel Mb had thermal stability higher than walking catfish Clarias batrachus Mb and striped catfish Pangasius hypophthalmus Mb, between 30 and 60 (°)C. For the thermal stability of Mb, the swamp eel Mb showed a biphasic behavior due to the O(2) dissociation and the heme orientation disorder, with the lowest increase in both Kd(f) and Kd(s). The thermal sensitivity of swamp eel Mb was lower than those of the other Mbs for both of fast and slow reaction stages. These results suggest that the swamp eel Mb globin structure is thermally stable, which is consistent with heat-tolerant behavior of the swamp eel particularly in drought habitat.
Collapse
Affiliation(s)
- Chatrachatchaya Chotichayapong
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Khon Kaen University, 123 Mittrapab Road, T. Ni-Muang, A. Muang, Khon Kaen, 40002, Thailand.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hasan MM, Watabe S, Ochiai Y. Structural characterization of carangid fish myoglobins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1311-1322. [PMID: 22361749 DOI: 10.1007/s10695-012-9619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
The primary structures of myoglobin (Mb) from the following five carangid species were determined: yellowtail Seriola quinqueradiata, greater amberjack Seriola dumerili, yellowtail kingfish Seriola lalandi, Japanese horse mackerel Trachurus japonicus, and silver trevally Pseudocaranx dentex. The sequences were of varying composition both in the coding and in the noncoding regions, but all contained the open reading frame of 444 nucleotides encoding 147 amino acids. Amino acid sequence identities of carangid Mbs were in the range of 81-99%. The similarity of the heme pocket and associated heme-binding residues of carangid Mbs were evidence of the conservative nature of Mbs. Similar to the other teleost Mbs, carangid Mbs did not contain a D helix and had mostly conserved A and E helices as well as E-F and G-H inter-helical segments. Hydropathy profiles of carangid Mbs showed species-specific variations where silver trevally Mb exhibited generally higher hydrophobicity. Phylogenetic analysis based on the primary structures was in agreement with conventional morphological taxonomy, establishing close proximity of carangid Mbs with those of cichlid and scombroid, the other members of the Perciformes order.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
14
|
Joseph P, Suman SP, Li S, Fontaine M, Steinke L. Amino acid sequence of myoglobin from white-tailed deer (Odocoileus virginianus). Meat Sci 2012; 92:160-3. [PMID: 22608832 DOI: 10.1016/j.meatsci.2012.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Our objective was to determine the primary structure of white-tailed deer myoglobin (Mb). White-tailed deer Mb was isolated from cardiac muscles employing ammonium sulfate precipitation and gel-filtration chromatography. The amino acid sequence was determined by Edman degradation. Sequence analyses of intact Mb as well as tryptic- and cyanogen bromide-peptides yielded the complete primary structure of white-tailed deer Mb, which shared 100% similarity with red deer Mb. White-tailed deer Mb consists of 153 amino acid residues and shares more than 96% sequence similarity with myoglobins from meat-producing ruminants, such as cattle, buffalo, sheep, and goat. Similar to sheep and goat myoglobins, white-tailed deer Mb contains 12 histidine residues. Proximal (position 93) and distal (position 64) histidine residues responsible for maintaining the stability of heme are conserved in white-tailed deer Mb.
Collapse
Affiliation(s)
- Poulson Joseph
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Amino acid sequence of myoglobin from emu (Dromaius novaehollandiae) skeletal muscle. Meat Sci 2010; 86:623-8. [DOI: 10.1016/j.meatsci.2010.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022]
|
17
|
Joseph P, Suman S, Li S, Beach C, Claus J. Mass spectrometric characterization and thermostability of turkey myoglobin. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2009.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Joseph P, Suman SP, Li S, Beach CM, Steinke L, Fontaine M. Characterization of bison (Bison bison) myoglobin. Meat Sci 2009; 84:71-8. [PMID: 20374756 DOI: 10.1016/j.meatsci.2009.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Bison is an alternate meat species gaining increased popularity in North America. Although previous investigations reported that bison meat discolors faster than beef, the molecular basis of this observation has not been investigated. Therefore, the objective of the present study was to determine the redox stability, thermostability, and primary structure of bison myoglobin (Mb), in comparison with beef Mb. Purified bison and beef myoglobins were analyzed for autoxidation, lipid oxidation-induced oxidation, and thermostability. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry was utilized for determining the exact molecular mass of bison Mb, whereas Edman degradation was employed to determine the amino acid sequence. Bison and beef myoglobins behaved similarly in autoxidation, lipid oxidation-induced oxidation, and thermostability. The observed molecular mass of bison and beef myoglobins was 16,949 Da, and the primary structure of bison Mb shared 100% similarity with beef and yak myoglobins. Noticeably, the amino acid sequence of bison Mb was different from other ruminant myoglobins, such as water-buffalo, sheep, goat, and red-deer. The present study is the first to report the primary structure of bison Mb. Same primary structure and similar biochemical attributes of bison and beef myoglobins suggested that the observed rapid discoloration in bison meat could not be attributed to biochemistry of bison Mb.
Collapse
Affiliation(s)
- P Joseph
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
19
|
Structural and autooxidation profiles of myoglobins from three species and one hybrid of tilapia (Cichlidae, Perciformes). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:274-81. [PMID: 19602446 DOI: 10.1016/j.cbpb.2009.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
Abstract
cDNAs encoding myoglobin were cloned from the slow skeletal muscles of three representative species of tilapia, namely, Nile tilapia Oreochromis niloticus, blue tilapia O. aureus, Mozambique tilapia O. mossambicus and one hybrid O. niloticus female symbol x O. aureus male symbol, and the primary structures were deduced. All cDNAs contained an open reading frame of 444 base pairs, encoding 147 amino acids. The amino acid sequences of Mb were completely conserved among these species, though species variations in the nucleotide sequences were recognized both in coding and non-coding regions. The amino acid sequence identity was around 70-80% compared to other teleostean Mbs. In comparison of each alpha-helical segment (A through H) and the intersegment regions to the counterparts of tuna myoglobin, the alpha-helical segments C and F as well as the intersegment regions F-G and G-H were identical. The identities of alpha-helical segments B and H and the intersegment region F-G were relatively low. Differences were also recognized in the hydropathy plot and the tertiary structures obtained by homology modeling. The autooxidation rates at 25 degrees C of myoglobin fraction from the slow skeletal muscle were essentially the same among the above tilapia species, as expected from the conserved amino acid sequences.
Collapse
|
20
|
Ochiai Y, Ueki N, Watabe S. Effects of point mutations on the structural stability of tuna myoglobins. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:223-8. [PMID: 19285151 DOI: 10.1016/j.cbpb.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/27/2022]
Abstract
Structural stabilities of myoglobin (Mb) from several tuna fish species significantly differ from each other, although the amino acid sequence identities are very high (>95%), suggesting that limited number of substitutions greatly affect the stability of Mb. To address this hypothesis, attempts were made to elaborate recombinant tuna Mbs with point mutations on the different residues among fish Mbs. The expression plasmid constructs were based on bigeye tuna Mb cDNA sequence, and the recombinant proteins were expressed as GST-fusion proteins in Escherichia coli. After removal of the GST segment and affinity purification, the stability of five Mb mutants, namely, A49G, T91K, K92Q, V108A, and H112Q, together with the wild type (WT) were measured, taking temperature dependency of alpha-helical content and denaturant (urea and guanidine-HCl) concentration dependency of Soret band absorbance as parameters. As a result, the mutant H112Q showed much higher stability than WT, while the structures of K92Q, T91K and A49G mutants were destabilized. No essential change in helical content was observed for V108A, but the mutant was found to be destabilized easier by the denaturants. These findings suggested that the highly conserved residues among tuna species are responsible for their stability of Mbs, but a few non-conserved residues dramatically give rise to the differences in stability of Mbs among species.
Collapse
Affiliation(s)
- Yoshihiro Ochiai
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
21
|
Suman SP, Joseph P, Li S, Steinke L, Fontaine M. Primary structure of goat myoglobin. Meat Sci 2009; 82:456-60. [PMID: 20416681 DOI: 10.1016/j.meatsci.2009.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/30/2009] [Accepted: 02/26/2009] [Indexed: 11/29/2022]
Abstract
Color stability attributes of goat meat are different from those of sheep meat, possibly due to species-specific differences in myoglobin (Mb) biochemistry. An examination of post-genomic era protein databases revealed that the primary structure of goat Mb has not been determined. Therefore, our objective was to characterize the primary structure of goat Mb. Goat Mb was isolated from cardiac muscles employing ammonium sulfate precipitation and gel-filtration chromatography, and Edman degradation was utilized to determine the amino acid sequence. Sequence analyses of intact Mb as well as tryptic- and cyanogen bromide-peptides yielded the complete primary structure of goat Mb, which shared 98.7% similarity with sheep Mb. Similar to other livestock myoglobins goat Mb has 153 residues. Comparison of the sequences of goat and sheep myoglobins revealed two amino acid substitutions - THRgoat8GLNsheep and GLYgoat52GLUsheep. Goat Mb contains 12 histidine residues. As observed in other meat-producing livestock species, distal and proximal histidines, responsible for stabilizing the heme group and coordinating oxygen-binding, are conserved in goat Mb.
Collapse
Affiliation(s)
- S P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
22
|
Ueki N, Ochiai Y. Effect of amino acid replacements on the structural stability of fish myoglobin. J Biochem 2006; 140:649-56. [PMID: 16987944 DOI: 10.1093/jb/mvj192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Structural stabilities of myoglobin (Mb) from several fish (scombridae) species differ significantly, although their amino acid sequence identity is very high (>95%), suggesting that only a few substitutions greatly affect the stability of Mb. Accordingly, recombinant Mbs with point mutation(s) derived from bigeye tuna Mb cDNA were expressed as GST-fusion proteins in the soluble fractions of Escherichia coli. After removal of the GST segment, the stability of five mutants, namely, P13A, I21M, V57I, A62G, and I21M/V57I, together with the wild type (WT) were investigated, taking temperature dependency of alpha-helical content and denaturant concentration dependency of Soret band absorbance as parameters. As a result, the stability of P13A against denaturants and its alpha-helical content at 10 degrees C was found to be the highest among the mutants, whereas those of A62G were the lowest. The stabilities of V57I and I21M/V57I were higher than that of WT, though that of I21M was nearly the same as WT. These findings suggest that the structural stability of fish Mb is tuned up only by the substitutions of a few amino acid residues located in the alpha-helical segments forming the hydrophobic heme pocket.
Collapse
Affiliation(s)
- Nobuhiko Ueki
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
23
|
Ueki N, Ochiai Y. Structural stabilities of recombinant scombridae fish myoglobins. Biosci Biotechnol Biochem 2006; 69:1935-43. [PMID: 16244445 DOI: 10.1271/bbb.69.1935] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An expression system of recombinant myoglobins (Mb) of 3 scombridae fish species was constructed. The stability of these Mbs was compared with native Mbs purified from slow skeletal muscle. The addition of hemin during the cultivation of an Escherichia coli strain harboring a pGEX-2T expression vector was found to be necessary to prevent recombinant Mb from degrading and to attain its proper folding. The stabilities of recombinant Mbs were generally lower than those of native Mbs, partly due to the absence of post-translational modification. The alpha-Helical content of bullet tuna recombinant Mb at 10 degrees C was the lowest (29.0%) among the recombinant Mbs examined (the values for bluefin tuna and bigeye tuna Mbs being 34.8 and 35.5%, respectively). On the other hand, the stabilities of recombinant Mbs of bluefin tuna and bigeye tuna against denaturants (urea and guanidine hydrochloride) were found to be similar, whereas bullet tuna recombinant Mb exhibited the lowest stability among these Mbs. The pattern of temperature-dependent decrease in the alpha-helical content supported these results.
Collapse
Affiliation(s)
- Nobuhiko Ueki
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | |
Collapse
|