1
|
Jiang W, Cui WR, Liang RP, Qiu JD. Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125302. [PMID: 33609869 DOI: 10.1016/j.jhazmat.2021.125302] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Due to the low efficiency of traditional sewage treatment methods, the effective removal of zwitterionic fluoroquinolone (FQs) antibiotics is of vital significant for environment protection. In this work, a SO3H-anchored covalent organic framework (TpPa-SO3H) was deliberately designed by linking phenolic trialdehyde with triamine through Schiff reaction, then low-content Tb3+ ions were loaded onto covalent organic framework according to wet-chemistry immersion dispersion method which benefitting for efficient FQs antibiotics uptaking. Tb@TpPa-SO3H functionalized with regularly distributed sulfonic acid groups and terbium ions which could provide difunctional binding sites. Tb3+ sites could capture carboxylic acid group of FQs molecules according to the complexes coordination effect and sulfonic acid sites play a significant role in the adsorption of FQs molecules through electrostatic interaction with amine group. Tb@TpPa-SO3H with dual complementary function sites exhibited ultra-fast adsorption kinetics (< 2 min, average over 99% removing rate) and high adsorption capacities of 989, 956, and 998 mg g-1 for Norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), respectively. Furthermore, Tb@TpPa-SO3H showed excellent selectivity for the adsorption of FQs in tanglesome system. This work not only explored synergistic adsorption in ion-functionalized 2D covalent organic framework with dual binding sites, but also delineated a promising strategy for the elimination of organic pollutants in environmental remediation.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China; Nanchang Institute for Food and Drug Control, Nanchang 330038, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
2
|
Li C, Sun Y, Li X, Fan S, Liu Y, Jiang X, Boudreau MD, Pan Y, Tian X, Yin JJ. Bactericidal effects and accelerated wound healing using Tb 4O 7 nanoparticles with intrinsic oxidase-like activity. J Nanobiotechnology 2019; 17:54. [PMID: 30992018 PMCID: PMC6466657 DOI: 10.1186/s12951-019-0487-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects is therefore highly desirable. Here, we show a new type of terbium oxide nanoparticles (Tb4O7 NPs) with intrinsic oxidase-like activity for in vitro and in vivo antibacterial application. RESULTS We find that Tb4O7 NPs can quickly oxidize a series of organic substrates in the absence of hydrogen peroxide. The oxidase-like capacity of Tb4O7 NPs allows these NPs to consume antioxidant biomolecules and generate reactive oxygen species to disable bacteria in vitro. Moreover, the in vivo experiments showed that Tb4O7 NPs are efficacious in wound-healing and are protective of normal tissues. CONCLUSIONS Our results reveal that Tb4O7 NPs have intrinsic oxidase-like activity and show effective antibacterial ability both in vitro and in vivo. These findings demonstrate that Tb4O7 NPs are effective antibacterial agents and may have a potential application in wound healing.
Collapse
Affiliation(s)
- Chen Li
- School for Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yurong Sun
- School for Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaoping Li
- School for Life Science, Shanxi University, Taiyuan, 030006, China
| | - Sanhong Fan
- School for Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Yimin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Radiation Oncology, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiumei Jiang
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Mary D Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Radiation Oncology, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| |
Collapse
|
3
|
Zhou Z, Li X, Gao J, Tang Y, Wang Q. Tetracycline Generated Red Luminescence Based on a Novel Lanthanide Functionalized Layered Double Hydroxide Nanoplatform. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3871-3878. [PMID: 30912937 DOI: 10.1021/acs.jafc.9b00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Considerable interest in using lanthanide complexes in optics have been well-known persisted for a long time. But such molecular-based edifices have been excluded from practical application because of their poor thermal or photo stabilities. Here a novel europium embedded layered double hydroxide (Mg-Al LDH-Eu) has been established and such an inorganic-organic framework demonstrates improved thermal performance due to hydrolysis and poly condensation of the trimethoxysilyl-unit. In addition, the incorporation of a functional building block such as ethylenediamine triacetic acid can significantly minimize the negative effects of hydroxyl groups. In the presence of tetracycline (Tc), the nanoprobe exhibits an "off-on" change in aqueous solution, and the red luminescence can be excited in the visible light range (405 nm). It provides a very sensitive signal response to Tc with an excellent linear relation in the range of 0.1 μM to 5.0 μM, and the detection limit of this probe is measured to be 7.6 nM. This nanoplatform exhibits low cytotoxicity during in vitro experiments and can be employed for the detection of tetracycline in 293T cells.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Xiangqian Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , P. R. China
| | - Jinwei Gao
- Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials , South China Normal University , Guangzhou 510006 , P. R. China
| | - Yiping Tang
- College of Material Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Qianming Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment , South China Normal University , Guangzhou 510006 , P. R. China
| |
Collapse
|
4
|
Belluco S, Gallocchio F, Losasso C, Ricci A. State of art of nanotechnology applications in the meat chain: A qualitative synthesis. Crit Rev Food Sci Nutr 2017; 58:1084-1096. [PMID: 27736191 DOI: 10.1080/10408398.2016.1237468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanotechnology is a promising area in industry with a broad range of applications including in the agri-food sector. Several studies have investigated the potential benefits deriving from use of nanomaterials in the context of the whole food chain drawing scenarios of benefits but also potential for concerns. Among the agri-food sector, animal production has potential for nanomaterial application but also for safety concerns due to the possibility of nanomaterial accumulation along the farm-to-fork path. Scope and Approach: The aim of this work was to define the state of the art of nanomaterial applications in the animal production sector by assessing data belonging to recently publishes studies. To do this, a qualitative synthesis approach was applied to build a fit-for-purpose framework and to summarise relevant themes in the context of effectiveness, feasibility and health concerns. Key findings and conclusions: Nanomaterials have potential for use in a wide range of applications from feed production and farming to food packaging, including several detection tools designed for the benefit of consumer protection. The current high degree of variability in nanomaterials tested and in study designs impairs external validation of research results. Further research is required to clearly define which safe nanomaterial applications have the potential to reach the market.
Collapse
Affiliation(s)
- Simone Belluco
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy.,b Department of Animal Medicine, Production and Health , University of Padua , Legnaro (PD) , Italy
| | - Federica Gallocchio
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Carmen Losasso
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| | - Antonia Ricci
- a Food Safety Department , Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro (PD) , Italy
| |
Collapse
|
5
|
Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-39306-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
A europium- and terbium-coated magnetic nanocomposite as sorbent in dispersive solid phase extraction coupled with ultra-high performance liquid chromatography for antibiotic determination in meat samples. J Chromatogr A 2015; 1425:73-80. [DOI: 10.1016/j.chroma.2015.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/19/2023]
|
7
|
Yánez-Jácome G, Aguilar-Caballos M, Gómez-Hens A. Luminescent determination of quinolones in milk samples by liquid chromatography/post-column derivatization with terbium oxide nanoparticles. J Chromatogr A 2015; 1405:126-32. [DOI: 10.1016/j.chroma.2015.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/11/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022]
|